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Abstract: A method is developed to complete an incomplete set of equations of state of a
thermodynamic system. Once the complete set of equations is found, in order to verify the
thermodynamic validity of a system, the Hessian and entropy methods are exposed. An original
approach called the completeness method in order to complete all the information about the
thermodynamic system is exposed. The Hessian method is improved by developing a procedure
to calculate the Hessian when it is not possible to have an expression of the internal energy
as a fundamental equation. The entropy method is improved by showing how to prove the
first-degree homogeneous property of the entropy without having a fundamental expression of it. The
completeness method is developed giving a total study of the thermodynamic system by obtaining the
set of independent TdS equations and a recipe to obtain all the thermodynamics identities. In order to
show the viability of the methods, they are applied to a typical thermodynamic system as the ideal
gas. Some well-known and unknown thermodynamic identities are deduced. We also analyze a set of
nonphysical equations of state showing that they can represent a thermodynamic system, but in an
unstable manner. The rubber band, the paramagnetic solid and the Kelly equation of state for a plasma
are corrected using our methods. In each case, a comparison is made between the three methods,
showing that the three of them are complementary to the understanding of a thermodynamic system.
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1. Introduction

The formulation of classical thermodynamics is normally presented by first explaining the
thermodynamic quantities based on physical concepts and giving some examples that permit
understanding the three laws of classical thermodynamics. Starting from this, it is possible to define
many thermodynamic quantities and to obtain many kinds of relations between them, as for example,
Maxwell’s relations. Measurable quantities are defined that allow constructing experimental equations
of state to understand the different physical systems [1]. However, many rigorous formulations
of classical thermodynamics appeared during the last century probably led by the work done by
Caratheodory [2]. These treaties lead us to a deepening of classical thermodynamics. In the early
seventies of the last century, Tikody and Hummel [3] proposed a recipe for producing thermodynamic
consistent empirical equations of state. However, their analysis was constrained to a particular
set of thermodynamic relations without taking into account a more general and complete view.
Complementary to this, a very modern formulation done by Callen [4] guides us to perfectly
understand the role of the fundamental equations of a thermodynamic system. In fact, one of the more
important issues in Callen formulation is the requirement that both entropy and internal energy have to
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be first-degree homogeneous functions of the extensive variables, S = (U, V, N) for the entropy picture
(or entropy representation) and U = (S, V, N) for the internal energy picture (or energy representation).
This imposes many restrictions on the equations of state. Moreover, by claiming that [∂S/∂U]V,N be
positive, the first and the second laws of Thermodynamics are accomplished.

Recently, Essex and Andresen [5] showed that the first-degree homogeneous property of the
entropy is equivalent to show that the Hessian possesses an eigenvalue equal to zero and the others
have to be positive real numbers. Indeed, they developed this method to check the viability of the
empirical equations obtained in some areas of chemistry and engineering.

On the other hand, recently too, it has been shown that for thermodynamic systems with
unconventional state equations, the Carnot theorem is valid [6]. Apparently, the Carnot theorem
is a universal property for a large number of systems despite not behaving physically. However, such
a system may not have a first-degree homogeneous entropy. A method to correct such equations needs
to be improved. Our method represents a more general method than the Tikody and Hummel [3] one
and a complement for the technique developed by Essex and Andresen [5] to study the equations of
state proposed by the experimentalists. Unlike the method of Essex and Andresen, our proposal shows
how to correct the equations of state in order to describe a system that complies with thermodynamics.
In the process, a technique is developed obtaining a set of thermodynamic identities which describe the
system in a complete form. Some of the obtained identities are unknown for each system. Unlike the
methods used in [3–5], the completeness method aims at providing as much information as possible,
namely, by obtaining all the independent TdS relations.

The article is organized as follows. In Section 2, first, we develop a technique for obtaining
equations of state which complete a set of equations of state proposed in theoretical or empirical
forms that are incomplete in the sense that they are not sufficient in number to describe the system, or
possess physical inconsistencies. This is applied in Section 4.2 (Unconventional System: A Particular
Case) and Section 4.3 (The Rubber Band). Then, the Hessian method developed by Essex and
Andresen [5] is briefly exposed, and it is improved by developing a procedure to calculate the Hessian
when it is not possible to explicitly write an expression of the internal energy as a fundamental
equation. This is shown in Appendix C (paramagnetic solid case) and Appendix D (Kelly plasma
case). The entropy method based on Callen’s postulates [4] is exposed. It represents a technique
to test the thermodynamic viability of a set of equations using the first-degree homogeneity of the
entropy and the positive characteristic of the partial derivative of the entropy with respect to the
internal energy. We develop a technique to demonstrate the first-degree homogeneity of the entropy
even without knowing the entropy as a fundamental equation. This is shown in Appendix A, and
it is applied in Section 4.5.2 (Entropy method), for the Kelly plasma. In Section 3, the completeness
method is exposed. The complete set of TdS equations are obtained in order to obtain the independent
TdS equations which generate all the others. Starting from such equations, thermodynamic identities
which give a complete description of a thermodynamic system are derived. In Section 4, we first
apply the three methods to the ideal gas with N variable, obtaining the regular results and showing
some novel identities between the different heat capacities, as for example Equations (29) and (31).
A set of nonphysical equations of state is analyzed giving a well-defined but unstable thermodynamic
system. Additionally, a novel identity is obtained between the heat capacities, Equation (46). Using
the entropy method, the rubber band equations of state that appear in the literature are corrected by
considering the number of monomers in order to obtain the set of equations of state that describes the
thermodynamic system. The paramagnetic solid with N variable is analyzed showing the changes that
must be done in the expression of the TdS equations in order to obtain a real thermodynamic system.
Finally, we deduce the complementary equation of state that has to accompany the Kelly equation
of a plasma [7], in order to obtain a thermodynamic system. Some concluding remarks are made in
Section 5.
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2. The Constraints of the Equations of State in Classical Thermodynamics: Two Methods

A set of equations of state may not represent a thermodynamic system. In order to test if such
a set accomplishes the laws of classical thermodynamics, it is necessary to verify some properties.
First of all, it has to be determined if the number of equations entirely described the thermodynamic
system. Obviously, the independence of each equation has to be analyzed, and secondly, the number
of equations must be equal to the degree of freedom of the system. Two different methods are set out
to ensure that the set of equations represents a thermodynamic system. There are some properties that
are common to both methods, and they must be described.

2.1. Completing the Number of Equations

As was mentioned in the introduction, empirical state equations coming from experimentalists
in some areas of physics, chemistry and engineering are in many cases incomplete in the sense that
they are not sufficient in number to describe the system; that is, for example, we can deal with a
system with two degrees of freedom (n = 2), and we know just one equation of state. We need to
propose another equation of state in order to obtain a complete set of equations. In general, this is done
by identifying the intensive and extensive variables and then by using the equations of state in the
equation of the internal energy. Considering the fact that internal energy is a state function, the second
partial derivatives of the internal energy must be equal to each other by interchanging the order of the
partial derivatives (∂U/∂x∂y = ∂U/∂y∂x). Hence, it is possible to propose another equation of state
to complete the system. In such a way, we obtain a complete set of equations of state for the system
with the purpose of applying the below methods to check the thermodynamic viability of the system.
We apply this method in the examples entitled “The Unconventional System: a Particular Case”, the
“Rubber Band”, and in the “Kelly Equation for a Plasma” in Section 4.

2.2. The Calculation of the Entropy

It has to be highlighted that to have a complete knowledge of a system, it is necessary to know the
chemical potential. In some cases, the entropy of a system is not obtained correctly if the variation of the
number of particles N s not included. For example, if the entropy of the ideal gas is calculated without
permitting the variation of the N particles, it will not comply with the first-degree homogeneous
property (see, for example, [1]). As we mentioned before, the fact of including the calculation of the
chemical potential (Gibbs–Duhem method) gives the correct Boltzmann counting because considering
the term µdN (µ the chemical potential) in the first law implies the indistinguishability of the particles.
In particular, in “The Rubber Band” in Section 4, we consider the variation of the monomers in order
to obtain the chemical potential and, consequently, the correct entropy.

2.3. The Third Law of Thermodynamics

Although the third law of Thermodynamics must be satisfied, it is a well-known fact that the
equations of state such as for the ideal gas, for a plasma at high temperature or empirical equations
of state do not conform to this property. Therefore, we do not ask for compliance with the third law.
However, since the entropy must be a monotonically increasing function with respect to the internal
energy and when the temperature tends to zero, its limit is zero, we must ask the entropy to be positive,
that is:

S ≥ 0. (1)

2.4. Two Methods

Once we have a complete set of equations, we have to test the viability of it. We expose two
methods that can be used for this purpose. Nevertheless, as we see, it is not always possible to use
them directly, and it is necessary to develop some techniques for their applications. For example,
sometimes it is not possible to have an analytical expression for the internal energy as a function
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of the entropy, the volume, and the number of particles, and consequently, the second-order partial
derivatives needed to calculate the Hessian have to be derived indirectly.

2.4.1. Hessian Method

From the third postulate of Callen’s formulation [4], it can be deduced that the fundamental
equations, S = S(U, V, N) in the entropy picture or U = U(S, V, N) in the energy picture, must be
first-degree homogeneous functions, that is:

Sλ = S(λU, λV, λN, ...) = λS(U, V, N, ...), (2)

or equivalently
Uλ = U(λS, λV, λN, ...) = λU(S, V, N, ...). (3)

Essex and Andersen [5] showed that the Hessian H = Uij (Uij =
∂U

∂Xi∂Xj
with U(X0, X1, .., Xn)

the internal energy, S = X0 and X1, .., Xn the corresponding extensive variables) must have a null
eigenvalue and the other eigenvalues must be positive real in order for the second law to be respected.
Therefore, it is required that from a set of equations of state that tries to describe a thermodynamic
system, the internal energy satisfying such property can be derived without requiring to demonstrate
the first-degree homogeneous property; It has to be noted that the internal energy possesses n + 1
degrees of freedom, that is, U = U(X0, X1, X2, ..., Xn). Consequently, the Hessian Uij = ∂2U/∂Xi∂Xj
is a (n + 1) × (n + 1) matrix. Finally, Essex and Andersen [5] proposed this method to check the
viability of the equations of state given by the experimentalists. However, this method presents
three drawbacks. The first is that the internal energy cannot always be expressed algebraically as a
function of entropy and its extensive variables, greatly complicating the calculation of the Hessian.
The second inconvenience is that in many cases, experimentalists give a system of incomplete state
equations (this point is corrected by applying the method described in Section 2.1). These cases appear
in the examples that we analyze and solve. The third consists of noticing that Essex and Andresen’s
method [5] requires calculating all the eigenvalues in order to know the relaxation times that describe
the behavior of the disturbances. In reality, to check the viability of the equations of state, it is just
necessary to demonstrate the existence of a null eigenvalue because once we obtain the symmetrical
Hessian (Uij = ∂2U/∂Xi∂Xj = ∂2U/∂Xj∂Xi = Uji), it is known that the other eigenvalues must be
real positive. In reality, to check that a function represents a state function, it is sufficient to be twice
differentiable (Schwarz’s theorem or Clairaut’s theorem). That is, it is just necessary to check the
existence of ∂S/∂Xi∂X j or ∂U/∂Xi∂X j, without taking into account the way of differentiating the
second partial derivative (interchanging the sequence of differentiation).

Recipe of the Hessian Method

To test the viability of a set of equations, the following properties must be satisfied:

A Complete the set of equations
B Calculate the internal energy as a fundamental equation, that is:

U = U(S, V, N, Xk), (4)

where Xk represents any set of extensive variables of the thermodynamic system.
C Calculate the Hessian. If it is not possible to obtain an analytical expression for the internal energy

U, the Hessian must be calculated by means of using the thermodynamic identities (Maxwell’s
relations, for example) as it is described in Section 4 (for example, the Paramagnetic Solid and the
Kelly Plasma).

D Show that the Hessian possesses a null eigenvalue (λ = 0).
E Although it is not necessary to demonstrate that the other eigenvalues are positive, calculating

them gives more information on the system in order to relate them with its relaxation time.
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It has to be highlighted that in this method, it is not necessary to check that the internal energy or
the entropy are first-degree homogeneous functions and that the temperature is positive, since both
properties are satisfied if items A, C, and D are fulfilled, because they are equivalent to the second law
of classical thermodynamics [5]. In addition, this method can be used when the entropy cannot be
expressed analytically as a fundamental equation because, if possible, it would be easier to use the
entropy method that we describe below.

2.4.2. Entropy Method

As we mentioned before, from the third postulate of Callen’s formulation [4], the entropy method
is the simplest one to check the viability of a set of equations because it is only necessary to check that
the entropy is positive, that the entropy or the internal energy are first-degree homogeneous functions,
and that their derivatives of one with respect to the other are positive.

Recipe of the Entropy Method

To test the viability of a set of equations, the following properties must be satisfied:

A Complete the set of equations
F Calculate the entropy as a fundamental equation, that is:

S = S(U, X1, ..., Xn), (5)

where Xk belongs to the set of extensive variables of the thermodynamic system.
G Prove that Equation (1) is satisfied (S ≥ 0) and that the entropy represents a state function. It

is sufficient to be twice differentiable (Schwarz’s theorem or Clairaut’s theorem). That is, it is
just necessary to check the existence of ∂S/∂Xi∂X j without taking into account the sequence of
differentiation of the second partial derivatives.

H The temperature must be a positive quantity:[
∂S
∂U

]
V,N

> 0 or
[

∂U
∂S

]
V,N

> 0. (6)

I Prove that the entropy is a first-degree homogeneous function, that is, Equation (2) must
be satisfied.

When it is not possible to write explicitly the entropy as a fundamental equation, a method is
developed in Appendix A to test the validity of item I.

3. Completeness Method of a Thermodynamic System

Once one of the two methods described above has been used to test the viability of a set of
equations, it is necessary to analyze the system. Although when we know either of the fundamental
equations (S = S(U, X1, .., Xn) or U = U(S, X1, .., Xn)), it is supposed that all the properties of the
system are known, it is necessary to know all the TdS equations and all the possible thermodynamic
identities of the system. The method that is to be developed is based on the TdS equations. Therefore,
it is necessary to analyze the degree of freedom and the different representations of the system. The
degree of freedom is described in the fundamental equation of state and in the general case by n + 1
extensive variables as:

U = U(X0, X1, ..., Xn), (7)

where X0 = S and the other n extensive variables X j (with j 6= 0) may be represented by the
volume V, the number of particles N, the magnetization, etc. The equations are derived using the
following relations: [

∂U
∂X j

]
= xj with j = 0, 1, 2, ...n (8)
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where xj represents the corresponding intensive variables (Gibb’s formula). We need to
correctlydescribe Equation (8). For example,[

∂U
∂X0

]
{Xn ;−X0}

=

[
∂U
∂S

]
{Xn ;−S}

= T(X0, X1, ..., Xn)

and (9)[
∂U
∂X1

]
{Xn ;−X1}

=

[
∂U
∂V

]
{Xn ;−V}

= −P(X0, X1, ..., Xn),

where the set
{

Xn;−Xl
}

represents the set composed by all the extensive variables {Xn} without Xl .
From these equations of state, sometimes it is possible to analytically express the entropy and the other
extensive variables as functions of the intensive and extensive variables

U = U({xi} ,
{

X j
}
), (10)

where {xi} represents any set of i intensive variables chosen from the set of n + 1 possible intensive
variables and

{
X j} any set of j extensive variables of the set of n extensive variables without the

entropy such that the number of total variables is (i + j) = (n + 1), for example, U = U(T, V, N) for
the ideal gas. The functionality of U describes the number of representations depending on the form
of the equations, the possible different sets

{
{xi} ,

{
X j}} being all the possible representations of the

thermodynamic system. It has to be highlighted that some equations of state reduce the number of
representations as in the case of the photon gas. These cases are not analyzed in this work since the
consequences consist of reducing the degree of freedom. It is important to note that when proposing
the equations, the experimentalists choose the representation of the system and, from these equations,
the fundamental equations can be derived.

3.1. The TdS Equations

The first law of thermodynamics is δQ = dU + δW, where W represents the total work done on
the system, which in the general case must be written as

TdS = dU − xidXi, (11)

Gibb’s formula and note that V = X1 and the pressure P = −x1 = −δU/δV), where the Einstein
convention has been assumed for the i summation. It has to be noted that we cannot propose the
representation U = U(X0, X1, .., Xn) because, were it to be used, Equation (11) would turn to

TdX0 = TdX0 + xidXi − xidXi, (12)

which of course does not give any information. Moreover, it is easy to see that including any
representation where X0 appears (the entropy), U = U({xi} ; X0;

{
X j}) (in this case, i + j = n)

will not give any information when we try to use a TdS equation. Therefore, in order to obtain the TdS
equations, we must consider representations where the entropy is excluded, that is U = U({xi} ,

{
X j})

with X0 /∈
{

X j}.
Therefore, to build a TdS equation, we need a representation of the following form

U = U(
{

xi
}

;
{

X j
}
) with i + j = n + 1 and X0 /∈

{
X j
}

. (13)
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3.2. The Complete Representation:

The TdS equations take all the following forms by making all the possible representations
({xi} ,

{
X j}) and can be written as

TdX0

=

[[
∂U
∂xα

]
{xi ;−xα},{X j}

− xλ

[
∂Xλ

∂xα

]
{xi ;−xα}{X j}

]
dxα

+

[[
∂U
∂Xα

]
{xi},{X j ;−Xα}

− xα − xλ

[
∂Xλ

∂Xα

]
{xi}{X j ;−Xα}

]
dXα. (14)

All the TdS equations can be expressed as a row of a vector identity as follows:



TdS
TdS

...

...

...
·
:
·
:
·
:
·
:
·
:
·
:
·
:
·
:
·
:
·
:
·
:
·
:
·
:



=



a0
0 a0

1

... a0
n−1 a0

n 0 0
... ... 0

a1
0 a1

1

... a1
n−1 0 A1

1 0
... ... 0

a2
0 a2

1

... a2
n−1 0 0 A2

2

... ... 0
·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

an−1
0

·
:

·
: an−1

n−1 0
·
:

·
:

·
: An−1

n−1 0

an
0 an

1

... an
n−1 0 0 0

... 0 An
n

an+1
0 an+1

1

... 0 an+1
n An+1

1 0
... 0 0

an+2
0 an+2

1

... 0 an+2
n 0 An+2

2

... 0 0

an+3
0 ...

... 0 an+3
n 0 0

... ... 0
·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

a2n
0 a2n

1

... 0 a2n
n 0

...
... 0 A2n

n
·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

0 0
... 0 a

(
(2n+1)!
(n+1)!n!

)
n A

(
(2n+1)!
(n+1)!n!

)
1

...
...

... A

(
(2n+1)!
(n+1)!n!

)
n





dx0

dx1

...
dxn−1

dxn

dX1

dX2

...
dXn−1

dXn


(15)

where

ak
α =

[
∂U
∂xα

]
{xi ;−xα},{X j}

− xλ

[
∂Xλ

∂xα

]
{xi ;−xα}{X j}

and (16)

Ak
α =

[
∂U
∂Xα

]
{xi},{X j ;−Xα}

− xα − xλ

[
∂Xλ

∂Xα

]
{xi}{X j ;−Xα}

where the k-th entry corresponds to a certain representation
{
{xi}

{
X j}} = {k} following the order

imposed in Equation (15), and the TdS equation is denoted as the k-equation.

3.3. The Independent TdS Equations

This gives
(

(2n+1)!
(n+1)!n!

)
TdS equations, but they are not independent. Indeed, in the general case,

we just have n + 1 independent TdS equations. For example, If we take the 0- and the 1- equations, we
can generate the

(
n2 + 1

)
-equation; that is:

TdS = a0
0dx0 + ... + a0

kdxk + ... + a0
ndxn

TdS = a1
0dx0 + ... + a1

n−1dxn−1 + A1
1dX1 (17)
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Then, multiplying the 0-equation by a1
0 and the 1-equation by a0

0, and subtracting one from the
other, we arrive to

TdS =

(
a1

0a0
1 − a0

0a1
1
)(

a1
0 − a0

0
) dx1 + ... +

(a1
0a0

k − a0
0a1

k)(
a1

0 − a0
0
) dxk + ...

+

(
a1

0a0
n−1 − a0

0a1
n−1
)(

a1
0 − a0

0
) dxn−1 +

a1
0a0

n(
a1

0 − a0
0
)dxn −

a0
0 A1

1(
a1

0 − a0
0
)dX1. (18)

That is, we find the
(
n2 + 1

)
-equation and accordingly, we obtain(

a1
0a0

1 − a0
0a1

1
)(

a1
0 − a0

0
) = an2+1

1 ,
(a1

0a0
k − a0

0a1
k)(

a1
0 − a0

0
) = an2+1

k

a1
0a0

n(
a1

0 − a0
0
) = an2+1

n and −
a0

0 A1
1(

a1
0 − a0

0
) = An2+1

1 . (19)

With this technique, we can generate all the other TdS equations, starting from the first (n + 1)
equations. Equation (19) represents the technique in order to obtain some thermodynamic identities,
and it is used in the examples for obtaining novel relations between the thermodynamic quantities.
However, these thermodynamic identities do not always give different or novel relations, so we cannot
count how many can be obtained.

On the other hand, it has to be highlighted that it is not necessary to use the first (n + 1) TdS
equations. Indeed, for a complete representation of the TdS equations, it is necessary just to use n + 1
independent TdS equations from Equation (15). Of course, the set of all the differentials must contain
all the different differentials of the set (dxi, dX j). Let us propose a set of (n + 1) independent TdS
equations sufficient to generate all the other TdS equations. That is, from all the distinct representations,
we just need to use n + 1 of them which involve all the differentials of the intensive and extensive
variables. This implies that it is sufficient to reduce Equation (15) to a simpler matrix identity by
choosing the lines which represent the n + 1 independent representations. For example, if we choose
the first (n + 1) TdS equations, the matrix representation turns to:



TdS
·
:
·
:
·
:
·
:

TdS


=



a0
0 a0

1 ... a0
n−1 a0

n 0 0 0 ... 0
a1

0 a1
1 ... a1

n−1 0 A1
1 0 0 ... 0

a2
0 a2

1 ... a2
n−1 0 0 A2

2 0 ... 0
·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

·
:

an−1
0

·
:

·
: an−1

n−1 0
·
:

·
:

·
: An

n−1 0
an

0 an
1 ... an

n−1 0 0 0 ... 0 An
n





dx0

dx1

...
dxn−1

dxn

dX1

dX2

...
dXn−1

dXn


(20)

As we mentioned in the Introduction, unlike the methods used in [3–5], the completeness method
aims at providing as much information as possible, namely, by obtaining all the independent TdS
relations and giving new thermodynamic identities that are not obtained by using the other methods.

4. Examples

In order to apply the methods described in Sections 2 and 3, some examples are analyzed.
First, we start with the ideal gas with N variable. All the classical results are recovered for this case.
The completeness method permits obtaining certain novel identities. Then, an unconventional equation
of state is studied and procuring the other equation of state in order to get a thermodynamic system.
The rubber band with variable length is described giving a correct thermodynamic set of equations.
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Starting with the correct expression of the entropy, the paramagnetic solid system is exposed in order to
find the correct expressions of the TdS equations. Finally, a equation proposed by Kelly [7] is analyzed,
adding a equation in order to find a complete thermodynamic system.

4.1. Ideal Gas with N Variable

Let us analyze the ideal gas with N variable as is required in order to describe the thermodynamic
system in a complete form.

For the ideal gas, the well-known equations of state are

PV = NkT and U =
3
2

NkT. (21)

From this pair of equations of state, we can deduce all the properties of the ideal gas with the N
variable. Note that calculating the entropy of the ideal gas without considering N as a variable leads
to an expression of the entropy which does not comply with the first-degree homogeneous condition.
Including the chemical potential corrects the expression of the entropy.

4.1.1. Calculation of Entropy with N Variable

Using Equation (21), by integrating the the Gibbs–Duhem relation in order to deduce the chemical
potential µ and substituting the three equations of state into the Euler equation, we have

S = Ns0 + Nk ln

[(
U
U0

) 3
2
(

V
V0

)(
N
N0

)− 5
2
]

. (22)

with s0 = 5
2 k− N

( µ
T
)

0 and µ the chemical potential. The entropy S is homogeneous of first degree.
Note that with this method, using the chemical potential, the first-degree homogeneous property
is achieved without using Boltzmann counting. This is because when the number of particles N is
considered as variable, the particles are considered as indistinguishable. This result has not been noted
before. In reality, in order to assure that the entropy is positive, it is required to know via experiments
the value of the constant in order to be able to evaluate the chemical potential µ. However, the entropy
can be expressed using statistical mechanics and obtaining the Sackur–Tetrode equation, evaluating all
the constants in Equation (22), and observing that the entropy S > 0. Nevertheless, to be consistent
with the method, we have elected to keep Equation (22).

On the other hand, we can explicitly write the expression of the internal energy from the expression
of the entropy, Equation (22).

U = U0

(
V
V0

)− 2
3
(

N
N0

) 5
3

e
2S−2Ns0

3Nk . (23)

4.1.2. Hessian Method

The characteristic polynomial of the Hessian is(
−6N6k2V2 − 6N4k2V4 − 6N4k2V2S2

)
λ

+
(

5N4k2 + 5N2k2V2 − 4NkV2S + 2V2S2 + 2N2V2
)

λ2 − λ3 = 0.

It is easy to see that we obtain three different eigenvalues, which are:

λ = 0 and λ± = α± β
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where

α =

[
N2 +

3
5

S2 +
5
2

N2
(

k− 2
5

S
N

)2
]

V2 +
5
2

N4k2

and

β =
1
2

 −16V4N3Sk− 4k2V2N4S2 − 40k3V2N5S− 40V4N3k3S
−4k2N6V2 − 4V4N4k2 + 8V4N2S2 + 50k4V2N6 − 16V4S3kN
+25V4N4k4 + 4V4N4 + 25N8k4 + 4V4S4 + 36V4N2k2S2


1
2

.

This result coincides with that of Essex and Andresen [5], and it proves that the ideal gas described by
the equations of state, Equation (21), represents a thermodynamic system.

4.1.3. Entropy Method

We have already proven items A, F, G, and I. We just need to prove that item H must be satisfied,
that is: [

∂U
∂S

]
V,N

=
2

3Nk
BV−

2
3 N

5
3 e

2S
3Nk = T > 0.

where B = U0V
2
3

0 N−
5
3

0 e
−2s0

3k . The entropy method also shows that the set of equations, Equation (21),
represents a thermodynamic system.

4.1.4. Completeness Method

To exemplify our method, let us analyze the TdS equations. All the TdS equations can be
expressed using Equations (15) and (16). In this case, we obtain 10 TdS equations; however, as we
note in Section 3, only three independent ones are necessary to generate the other TdS equations
and to obtain all the information about the thermodynamic system. Let us choose the 2-, 3-, 4-, and
9-equations (see Appendix B for the derivations of such equations).

The 2-equation is:

TdS =
5
2

NkdT − NkT
P

dP +

[
5
2

kT − µ

]
dN. (24)

Note that this equation does not coincide with any of the three TdS equations normally reported
in the literature [8]. This is because normally, the ideal gas is analyzed considering that N is fixed, and
consequently, we have two variables.

The 3-equation is:

TdS = N
[

15
2

k− 3µ

T
+

µ2

kT2

]
dT + N

[
3
2
− µ

kT

]
dµ +

N
V

[
5
2

kT − µ

]
dV. (25)

The 4-equation is:

TdS =
Nµ

T
dT − Ndµ +

[
5
2

kT − µ

]
dN. (26)

Thermodynamic Identities

With the three independent TdS equations, it is possible to apply the method described in Section 3
by multiplying and subtracting each from each other and obtain a new TdS equation. Moreover, in
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this way, we can obtain different thermodynamic identities. Note that using Equation (14), we can
define in this case where i ≤ n

C{xi ;−T},{X j} =

[
dQ
dT

]
{xi ;T},{X j}

=

[
∂U
∂xα

]
{xi ;T},{X j}

− xλ

[
∂Xλ

∂xα

]
{xi ;−T}{X j}

= ai
0 for i ≤ n. (27)

Therefore, a3
0 = Cµ,V and a4

0 = Cµ,N . In this case, it is possible from the 3- and 4-equations to
get the 7-equation, which could previously be calculated using Equations (15) and (16). By putting
a7

0 =
(

∂U
∂T

)
V,N

= CV,N in the 7-equation, we obtain

TdS = CV,NdT +
NkT

V
dV +

[
3
2

kT − µ

]
dN. (28)

We have

a7
0 =

a4
2a3

0 − a3
2a4

0

a4
2 − a3

2
, A7

1 =
A3

1a4
2

a4
2 − a3

2
, and A7

2 = −
A4

2a3
2

a4
2 − a3

2
.

Then, by substituting the above calculated coefficients, we arrive at

a7
0 =
−Cµ,V −

[ 3
2 −

µ
kT
]

Cµ,N[ µ
kT −

5
2
] , A7

1 =
NkT

V
, and A7

2 =

[
3
2

kT − µ

]
.

We obtain [
3
2
− µ

kT

]
Cµ,N

Cµ,V
+ 1 = −CV,N

Cµ,V

[
µ

kT
− 5

2

]
, (29)

which represents a novel identity.

The 9-equation is (see Appendix B):

TdS =

[
− N

W(Z)
+

N
(1 + W(Z))W(Z)

]
dµ +

[
2µN
3V

(
− 1

W(Z)
+

1
W(Z) + W2(Z)

)]
dV

+

[
1
3

µ

(
−3− 3

W(Z)
− 2

W(Z) + W2(Z)

)]
dN. (30)

Now we can recalculate the 9-equation using the 3- and 7-equations. We arrive at

a9
2 =

a7
0a3

2(
a7

0 − a3
0
) , A9

1 =

(
A3

1a7
0 − A7

1a3
0
)(

a7
0 − a3

0
) , and A9

2 = −
a3

0 A7
2(

a7
0 − a3

0
) .

That is,

N
(
− 1

W(Z)
+

1
(1 + W(Z))W(Z)

)
=

CV,N

[
3
2 N − µN

kT

]
CV,N − Cµ,V

,

2µN
3V

(
− 1

W(Z)
+

1
W(Z) + W2(Z)

)
=

NkT
V


[ 5

2 −
µ

kT
]

1− Cµ,V
CV,N

− 1
CV,N
Cµ,V
− 1

 ,

1
3

µ

(
−3− 3

W(Z)
− 2

W(Z) + W2(Z)

)
=

Cµ,V
[
µ− 3

2 kT
]

CV,N − Cµ,V
.
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Obtaining from the last identity

CV,N = −3kT
µ

(
− 1

W(Z) +
1

(1+W(Z))W(Z)

)
(
−3− 3

W(Z) −
2

W(Z)+W2(Z)

)Cµ,V . (31)

This is a novel identity, not reported in the literature, and it represents an interesting result since
normally, the heat capacity at constant µ and V is never taken into account.

Another example is using the 8-equation, the 2-equation, and the 7-equation, obtaining

CP,N − CV,N =
2
3

CV,N ,

which corresponds to the Mayer relation when N is constant.

4.2. Unconventional System: A Particular Case

As we mentioned in the Introduction, it has been shown that for thermodynamic systems with
unconventional state equations, the Carnot theorem is valid [6]. Apparently, the Carnot theorem is a
universal property for a large number of systems despite not behaving physically.

Let us consider the following equation of state,

P =
aV
NT

, (32)

with a > 0. We have to note that the isothermal compressibility κT ,

κT = − 1
V

(
∂V
∂P

)
T,N

= − 1
V

NT
a

= − NT
PNT

a a
= − 1

P
< 0, (33)

is negative and for most substances κT > 0. In statistical mechanics, it is required that κT > 0 in
order to have low fluctuations which give sense to it. Moreover, Van Hove’s theorem [1] proves that
by means of regular intermolecular forces, κT must be positive within the framework of statistical
mechanics. However, as we shall see, we can have a thermodynamic system without matching the
classical proposal of statistical mechanics. A discussion about this point is conducted at the end of the
Hessian method.

On the other hand, as we do not have another equation of state, we use our method for proposing
it. First, we know that (

∂U
∂V

)
T
= T

(
∂P
∂T

)
V
− P.

In our case, (
∂U
∂V

)
T,N

= T
(
− aV

NT2

)
− aV

NT
= −2aV

NT
.

We know that (
∂2U

∂V∂T

)
N
=

(
∂2U

∂T∂V

)
N

,

Then, we can propose that U is such that

U = − aV2

NT
or U = −PV, (34)

which shows that the internal energy is always negative. Note that in order to differentiate our system
with respect to regular systems, we do not incorporate the ideal gas limit term 3

2 NRT in order to have
a completely different unconventional system.
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4.2.1. Calculation of Entropy with the N Variable

From Equation (32), by integrating the Gibbs–Duhem relation, we can calculate the chemical
potential obtaining

µ

T
=

u2

2av2 −
u2

0
2av2

0
+
( µ

T

)
0

, (35)

where u = U/N and v = V/N. On the other hand, by applying the Euler relation, we arrive at

s =
1
T

u +
P
T

v− µ

T
,

Therefore, the entropy is

S = −NU2

2aV2 + Ns0, (36)

where

s0 =
u2

0
2av2

0
−
( µ

T

)
0

.

We obtain an entropy that complies with the first-degree homogeneous property. However, it has
to be noted that entropy can be negative. This implies that we obtain a restriction in the value of the
chemical potential µ of this system. Indeed, It is important to note that if we rewrite S, as S(T, µ, N),
using Equation (35) in the following form, we have

S = −NU2

2aV2 + N

(
u2

0
2av2

0
−
( µ

T

)
0

)

= −Nµ

T
. (37)

Therefore, in order to have a positive entropy S > 0, we need to have a negative chemical
potential, µ < 0.

4.2.2. Hessian Method

We can obtain the internal energy as a fundamental equation using Equation (36)

U = −
√

2aV
√

Ns0 − S√
N

. (38)

Since from Equation (36),

Ns0 − S =
NU2

2aV2 > 0,

we can assure that the internal energy is a real negative quantity. First, note that the temperature[
∂U
∂S

]
V,N

=

√
aV√

2
√

N
√

Ns0 − S
= T > 0. (39)

We can calculate the Hessian by noting that Shwarz’s theorem is fulfilled. Then, from the the
Hessian, we obtain the characteristic polynomial,

(
4N4S2 + 4N2S4 − 8N5Ss0 − 8N3S3s0 + 4N6s2

0
+4N4S2s2

0 + 4N2S2V2 − 8N3Ss0V2 + 4N4s2
0V2

)
λ

+
(

N2V − 3S2V + 4NSs0V
)

λ2

−λ3 = 0



Entropy 2020, 22, 398 14 of 39

We can see that one of the eigenvalues is λ = 0, and the other two are,

λ± = α± β,

with
α =

1
2

(
N2V + (4Ns0 − 3S) SV

)
and

β =
1
2

[(
N2V − 3S2V + 4NSs0V

)2
+ 16N2

(
N2S2 + S4 − 2N3Ss0 − 2NS3s0 + N4s2

0
+N2S2s2

0 + S2V2 − 2NSs0V2 + N2s2
0V2

)] 1
2

.

We know that Ns0 > S, and it must be fulfilled that S > 0, so for Ns0 > 0, we can see

4Ns0 − 3S > 0,

so α > 0. Rewriting β, we have

β =
1
2

[(
N2V − 3S2V + 4NSs0V

)2
+ 16N2

((
NS− N2s0

)2
+
(

S2 − NSs0

)2
+ (SV − Ns0V)2

)] 1
2

,

so β > 0.
However, this system will be an unstable system according to the Le Chatelier–Braun principle [4]

because the isothermal compressibility is negative (see Equation (33)). However, the no-null
eigenvalues are real, which means that the relaxation times τ ∝ 1/λ [9] are real. This means that this
system is an unstable thermodynamic system that may after a perturbation come back to a equilibrium
state [10], but the effects of the instability will bring it to a position of increasing volume.

4.2.3. Entropy Method

By looking at Equations (32), (34), (36) and (39), we have already proven that the items A, F, G, H,
and I are fulfilled. Therefore, the set of equations represents a thermodynamic system.

4.2.4. Completeness Method

In general, we can express the TdS equations of this system using Equation (15). In this case, we
need just three independent TdS equations. We choose the 1-, 2-, and 3-equations.

The 1-equation is:

TdS = a1
0dT + a1

1dP + A1
1dV, (40)

From Equations (15) and (16), we need to know U = U (T, P, V) and N = N (T, P, V), that is:

N =
aV
PT

, U = −VP and µ =
TP2

2a
+ CT,

with C = − u2
0

2av2
0
+
( µ

T
)

0. We arrive to the 1-equation,

TdS = CP,VdT +

(
−V

2
+

CaV
P2

)
dP +

(
−P

2
− Ca

P

)
dV, (41)

with CP,V = PV
2T + CaV

PT .
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The 2-equation is:

TdS = a2
0dT + a2

1dP + A2
2dN. (42)

From Equations (15) and (16), we need to know U = U (T, P, N) y V = V (T, P, N), that is:

V =
TPN

a
, U = −TP2N

a
and µ =

TP2

2a
+ CT.

Finally, the 2-equation is

TdS = −TPN
a

dP +

(
−TP2

2a
− CT

)
dN. (43)

The 3-equation is:

TdS = a3
0dT + a3

2dµ + A3
1dV, (44)

From Equations (15) and (16), we need to know U = U (T, µ, V), N = N (T, µ, V), and P =

P (T, µ, V), that is:

N =
aV

√
2T

1
2 (aµ− aCT)

1
2

, U = −V
√

2 (aµ− aCT)
1
2

T
1
2

and P =

√
2 (aµ− aCT)

1
2

T
1
2

.

We need to analyze µ− CT; we know that µ = u2T
2av2 −

u2
0T

2av2
0
+ T

( µ
T
)

0 and C = − u2
0

2av2
0
+
( µ

T
)

0, we

see that µ− CT = u2T
2av2 , and µ− CT > 0, so (aµ− aCT)

1
2 is real. Therefore, the 3-equation is

TdS = Cµ,VdT +
−a2µV + 2a2VCT

2
√

2T
1
2 (aµ− aCT)

3
2

dµ− aµ
√

2T
1
2 (aµ− aCT)

1
2

dV, (45)

with a3
0 = Cµ,V = aµV

2
√

2T
3
2 (aµ−aCT)

1
2

(
3aµ−4aCT

aµ−aCT

)
.

Thermodynamic Identities

With the three independent TdS equations, it is possible to calculate the remaining TdS equations
and in this way obtain different thermodynamic identities. In this case, it is possible from the 1-equation
and 2-equation to deduce the 7-equation, which can be calculated previously with the formulas of the
method developed in Section 3. We have

a7
0 =

a2
1a1

0 − a1
1a2

0

a2
1 − a1

1
, A7

1 =
A1

1a2
1

a2
1 − a1

1
, and A7

2 = −
A2

2a1
1

a2
1 − a1

1
.

Then, if we substitute the already calculated coefficients in a7
0 =

(
∂U
∂T

)
V,N

= CV,N (remember that

a2
0 = CP,N = 0), we have

(CV,N − CP,V) = CV,N

(
aVP2 − 2a2VC

2TP3N

)
. (46)

Note that it can be proven that this system complies with the Carnot theorem.
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4.3. The Rubber Band

The rubber band is normally described using two equations of motion which consider the
following constraints:

(i) An analogue of the mole number might be associated with the number of monomer units in the
rubber band, but in this first approach, this mole number is not considered as a variable and is
taken as a constant. It has to be highlighted that for the ideal gas, we can consider the number
of particles as a constant, but the entropy will not be a homogeneous function of degree one.
The same happens with the entropy of the rubber band when the number of monomer is not
taken as a variable.

(ii) In the rubber band, the length L and the tension τ play a role analogue to the volume V and
minus the pressure −P in the ideal gas, respectively.

(iii) L0 represents the unstretched length of the rubber band, L1 is the elastic limit length, and c
and b are characteristic constants.

The equations of state for this model are:

τ = bT
L− L0

L1 − L0
, (47)

and

U = cL0T. (48)

By considering the different representations from the variables T, τ, and L, we can obtain the TdS
equations, to check the validity of the entropic relations and deduce the entropy. Everything functions
like a thermodynamic system unless the entropy does not satisfy the first-degree homogeneous
property; that is, the obtained entropy is

S = S0 + cL0 ln
U
U0
− b

L− L0

L1 − L0
dL. (49)

which is obviously not a first-degree homogeneous function as happens with the ideal gas when the
number of particles N is taken as a constant. It has to be noted that Callen [4] says that these equations
have been constructed on the basis only of the most qualitative of information. They do not include
any numbers of monomers. Our purpose in this section is to give an expression of the entropy which
meets the first-degree homogeneous requirement. However, as in the ideal gas, we are obligated to
consider including a quantity related with the number of monomer. Let us consider that this number
of monomer can be described by N in a linear way, L0/N0 being the length of each monomer when
the rubber band measures L0 and L/N the length of each monomer when the rubber band measures L
and is composed of N monomers.

Therefore, let us propose the following equations of state with N variable:

τ =
b
a

T
(

L
N
− L0

N0

)
, (50)

with
a = L1 − L0

Then, we need to propose another equation of state. We propose it using the property that U is a
function of state and therefore,

dU =

(
∂U
∂L

)
T

dL +

(
∂U
∂T

)
L

dT.
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and (
∂2U

∂L∂T

)
N
=

(
∂2U

∂T∂L

)
N

, (51)

We arrive at
∂2U

∂T∂L
= 0. (52)

We can now propose

CV,N =

(
∂U
∂T

)
V,N

= c
N
N0

L0.

Consequently, we arrive to our final proposal for the internal energy as

U = cNl0T, (53)

where l0 = L0/N0, and it coincides with the internal energy when the number of monomers are
constant equal to N0.

4.3.1. Calculation of Entropy with N Variable

The state equations for this case are Equations (50) and (53)

τ =
b
a

T
(

L
N
− l0

)
and U = cNl0T.

From these expressions, using the Gibbs–Duhem method, we obtain the entropy,

S =
b

2a
L2

N
− b

a
l0L + Ncl0 ln

(
U
N

)
+ Ns0, (54)

where,

s0 = cl0 − cl0 ln u0 +
b

2a
l2
0 +

( µ

T

)
0

.

The expression for the entropy shows that is a first-degree homogeneous function. Moreover,
µ0 must be such that S > 0. Therefore, this will limit the validity of the system by giving a range of
temperature such that S > 0.

We can explicitly write the energy in the following way

U = N exp
{

S− Ns0

Ncl0
− b

2acl0
L2

N2 +
b
ac

L
N

}
. (55)

4.3.2. Hessian Method

We rewrite our energy as

U = N exp
{

A
S
N
− B− X

L2

N2 + Y
L
N

}
, (56)

with A = 1
cl0

, B = s0
cl0

, X = b
2acl0

y Y = b
ac .

First, it is necessary to calculate the temperature,[
∂U
∂S

]
L,N

=
A
N

N exp
{

A
S
N
− B− X

L2

N2 + Y
L
N

}
=

A
N

U = T. (57)

This shows the requirement that
[

∂U
∂S

]
L,N

= T > 0.

Further, it is clear that the internal energy accomplishes Schwarz’s theorem.
Then, the characteristic polynomial of the Hessian is
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(
2A2L2N6X + 2A2N8X

+2A2N6S2X

)
λ +



A2N4 + A2N2S2

−2L2N2X− 2N4X
−4AL2NSX + 4L4X2

+4L2N2X2 + 2ALN2SY
−4L3NXY− 4LN3XY
+L2N2Y2 + N4Y2


λ2 − λ3 = 0.

We can see that one of the eigenvalues is λ = 0 and the other two are

λ± = α± β,

with

α =
1
2

 A2N4 + A2N2S2 − 2L2N2X− 2N4X
−4AL2NSX + 4L4X2 + 4L2N2X2 + 2ALN2SY
−4L3NXY− 4LN3XY + L2N2Y2 + N4Y2


and

β =
1
2


 A2N4 + A2N2S2 − 2L2N2X− 2N4X
−4AL2NSX + 4L4X2 + 4L2N2X2 + 2ALN2SY
−4L3NXY− 4LN3XY + L2N2Y2 + N4Y2


2

+
(
8A2L2N6X + 8A2N8X + 8A2N6S2X

)


1
2

.

Consequently, the requirement for the Hessian is satisfied.

4.3.3. Entropy Method

By looking at Equations (50), (53), (54) and (57), we have already proven that the items A, G, C,
Hm and I are fulfilled. Therefore, the set of equations represents a thermodynamic system.

4.3.4. Completeness Method

In general, we can express all the TdS equations of this system using Equation (15). Before
continuing, let us give the chemical potential as:

µ = −cTl0 ln
U
N
− bT

2a
L2

N2 + cl0T − Ts0,

µ = −cTl0 ln
U
N
− bT

2a
L2

N2 + TC

with
C = cl0 ln u0 +

b
2a

l2
0 +

( µ

T

)
0

.

As in the case of the ideal gas from the ten TdS equations, we just need to choose three linearly
independent equations. Let us choose the 1-equation, the 2-equation, and the 3-equation.

The 1-equation is:

TdS = a1
0dT + a1

1dτ + A1
1dL.

From Equations (15) and (16), we need U = U (T, τ, L) and N = N (T, τ, L). We have

U = cl0TL
( aτ

bT
+ l0

)−1
and N = L

( aτ

bT
+ l0

)−1
,

and
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µ = −cl0T ln cl0T − bT
2a

( aτ

bT
+ l0

)2
+ TC.

Therefore,

a1
0 = Cτ,L =

[
1 + ln cl0T − C

cl0

]
acLl0τ

bT

( aτ

bT
+ l0

)−2
+ cLL0

( aτ

bT
+ l0

)−1
+

Lτ

2T
,

a1
1 = −

[
1 + ln cl0T − C

cl0

]
acLl0

b

( aτ

bT
+ l0

)−2
− L

2
,

A1
1 =

[
1 + ln cl0T − C

cl0

]
cl0T

( aτ

bT
+ l0

)−1
− τ

2
+

bT
2a

l0. (58)

The 2-equation is:

TdS = a2
0dT + a2

1dτ + A2
2dN,

From Equations (15) and (16), we need to know U = U (T, τ, N) and L = L (T, τ, N). We have

U = cl0TN and L = N
( aτ

bT
+ l0

)
,

and
µ = −cl0T ln cl0T − bT

2a

( aτ

bT
+ l0

)2
+ TC.

Therefore,

a2
0 = cl0N +

aNτ2

bT2 , a2
1 = − aNτ

bT
,

A2
2 = cl0T

(
1 + ln cl0T − C

cl0

)
− τ

( aτ

bT
+ l0

)
+

bT
2a

( aτ

bT
+ l0

)2
. (59)

Hence,

TdS = Cτ,NdT − aNτ

bT
dτ + A2

2dN, (60)

with a2
0 = Cτ,N = cl0N + aNτ2

bT2 .

The 3-equation is:

TdS = a3
0dT + a3

2dµ + A3
1dL, (61)

From Equations (15) and (16), we need to know U = U (T, µ, L), N = N (T, µ, L) and τ =

τ (T, µ, L). We have

N =
b

1
2 LT

1
2

√
2 (−aµ + aCT − acl0T ln cl0T)

1
2

, U =
cl0b

1
2 LT

3
2

√
2 (−aµ + aCT − acl0T ln cl0T)

1
2

,

and

τ =
bT
a

(√
2 (−aµ + aCT − acl0T ln cl0T)

1
2

b
1
2 T

1
2

− l0

)
.

Accordingly,
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a3
0 = Cµ,L = − b

1
2 cLl0T

3
2 (aC−acl0−acl0 ln cl0T)

2
√

2(−aµ+aCT−acl0T ln cl0T)
3
2

(
1− µ

cl0T

)
+ 3b

1
2 cLl0T

1
2

2
√

2(−aµ+aCT−acl0T ln cl0T)
1
2

(
1− µ

3cl0T

)
,

a3
2 = ab

1
2 cLl0T

3
2

2
√

2(−aµ+aCT−acl0T ln cl0T)
3
2

(
1− µ

cl0T

)
,

A3
1 = b

1
2 cl0T

3
2

√
2(−aµ+aCT−acl0T ln cl0T)

3
2

(
1− µ

cl0T

)
− bT

a

(√
2(−aµ+aCT−acl0T ln cl0T)

1
2

b
1
2 T

1
2

− l0

)
,

(62)

We know that with the three above TdS equations, we can generate all the other TdS equations.
We deal with the 7-equation in order to determine some interesting identities. The 7-equation is:

TdS = a7
0dT + A7

1dL + A7
2dN, (63)

with

a7
0 =

(
∂U
∂T

)
L,N

, A7
1 =

(
∂U
∂L

)
T,N
− τ and A7

2 =

(
∂U
∂N

)
T,L
− µ.

From Equations (15) and (16), we need to know U = U (T, L, N), τ = τ (T, L, N) and µ =

µ (T, L, N). We have

U = cNl0T, τ =
b
a

T
(

L
N
− l0

)
, and µ = −cTl0 ln cl0T − bT

2a
L2

N2 + TC.

Therefore,

a7
0 = cl0N, A7

1 = − b
a

T
(

L
N
− l0

)
, A7

2 = cl0T + cTl0 ln cl0T +
bT
2a

L2

N2 − TC. (64)

with a7
0 = CL,N = cl0N.

Thermodynamic Identities

With the three linearly independent TdS equations, it is possible to calculate the remaining
TdS equations and in this way obtain different thermodynamic identities. In this case, it is possible
from the 1-equation, Equation (58), and the 2-equation, Equation (60), to deduce the 7-equation,
Equations (63) and (64), using the method previously described in Section 3; we obtain

a7
0 =

a2
1a1

0 − a1
1a2

0

a2
1 − a1

1
, A7

1 =
A1

1a2
1

a2
1 − a1

1
, A7

2 = −
A2

2a1
1

a2
1 − a1

1
. (65)

Then, we arrive at

CL,N = a7
0 =

a2
1Cτ,L − a1

1Cτ,N

a2
1 − a1

1
, A7

1 =
A1

1a2
1

a2
1 − a1

1
, A7

2 = −
A2

2a1
1

a2
1 − a1

1
. (66)

Finally, a Mayer-like equation for the rubber band is obtained:

Cτ,L − CL,N =

([
1 + ln cl0T − C

cl0

]
cLl0T

Nτ

( aτ

bT
+ l0

)−2
+

bTL
2aNτ

)
(Cτ,N − CL,N) . (67)
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4.4. The Paramagnetic Solid

There exists an interesting discussion about the TdS equations for a paramagnetic solid [11].
Indeed, according to Kittel [12] “a great deal of unnecessary confusion exists as to how to write
the First Law of Thermodynamics for a magnetic system”. Callen [4] gave a proposal for a simple
paramagnetic system described by the internal energy as:

U = NkT0

[
S

Nk
+

M2

N2M2
0

]
,

where M represents the magnetization, and T0 and M0 are positive constants. However, he said that
this model does not describe any particular known system. Moreover, in Appendix C, he treated the
paramagnetic solid by including the solenoid which produces the magnetic field, redefining the energy
of the system by putting

U = E− 1
2µ0

∫
B2dV.

However, he needed to give a redefinition of the energy by subtracting the energy stored in the
volume by the magnetic field. The most appropriate treatment is given by Barrett and Macdonald [13],
who studied the system in a more direct way and through statistical physics obtain an expression for
the work done by the magnetic field in a paramagnetic solid. Barrett and Macdonald mentioned there
are two forms for the work done when the magnetic field B and the magnetization M change, that is:

δmsW = BdM and δsW = −MdB, (68)

where the form δmsW applies when the mutual field energy is included in the system and the form
δsW when it is not. Although he claimed that there are thermodynamic systems with no fundamental
thermodynamic equation, he arrived to the conclusion that the work done by the magnetic field for a
system where the mutual field is not included as

δsW = −MdB. (69)

Of course, for a fundamental equation in the S representation, the work must be written as the
product of an intensive quantity times the differential of an extensive quantity, which is not expressed
in Equation (69) (note that there is a misprint in the Barrett and Macdonald [13] article of the sign in
the expression for the temperature). The good expression is:

µB
kT

= ln [µ + M/N]− ln [µ−M/N] . (70)

= ln
[

1 + M/µN
1−M/µN

]
(71)

= tanh−1 M/µN. (72)

From Equation (70), he arrived to the correct expression for the entropy:

S = Nk
[
−
(

1
2
+

M
2µN

)
ln
(

1
2
+

M
2µN

)
−
(

1
2
− M

2µN

)
ln
(

1
2
− M

2µN

)]
, (73)

or in a different form

S = −Nk
2

[(
1 +

M
µN

)
ln
(

1 +
M

µN

)
+

(
1− M

µN

)
ln
(

1− M
N

)]
+ Nk ln 2 (74)
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being S = S(M, N) and consequently [
∂S
∂U

]
M,N

=
1
T

= 0, (75)

which implies an infinite temperature. These contradicts Equation (70), where the temperature is
well-defined. Therefore, we need to obtain another representation to express the thermodynamic
system. The problem is based on that the TdS equation is written as

TdS = dU + MdB, (76)

which implies [
∂S
∂N

]
U,B

= λ = 0 and
[

∂S
∂B

]
U,N

=
M
T

, (77)

where λ = (∂S/∂N)U,B does not represent minus the chemical potential over the temperature−φ/T =

(∂S/N)U,X (we use this notation for this case in order to not be confused with the magnetic µ, and
X represents an extensive quantity which has to be defined below). That is, these identities derived
from Equation (76) are obtained by considering that the number of particles is constant and can be
corrected by calculating the chemical potential using the Gibbs–Duhem relation. However, due to
Equations (73)–(75), we can conclude that the magnetization M is not a good extensive variable.

In order to solve this inconsistency, let us define a set of extensive variables for the paramagnetic
solid: U the internal energy, N the number of particles and

G = NB the number magnetic field,

where G is defined as an extensive special variable which will help to obtain an expression for the
entropy as a fundamental equation; that is, S = S(U, G, N), if it exists, will represent a fundamental
equation and, as a consequence, a thermodynamic system. In order to verify that Equation (73)
represents the entropy of the paramagnetic solid, let us begin by taking the result derived by
Greiner et al. [14] for j = 1/2, and we have that (see Figure 1):

S = Nk [ln (2 cosh βε)− βε tanh βε] , (78)

where ε = µB. Using Equation (70) in Equation (78), we obtain Equation (73). Introducing in
Equation (73) U, G and N, and using the other equation of state,

U = −MB = −mG, (79)

where m = M
N , we have (see Figure 2),

S = −Nk
2

[(
1 +

U
µG

)
ln
(

1 +
U

µG

)
+

(
1− U

µG

)
ln
(

1− U
µG

)]
+ Nk ln 2. (80)



Entropy 2020, 22, 398 23 of 39

R

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

x

y

Figure 1. y = S
Nk and x = βε. For T → 0, S→ 0 and for T → ∞, S→ cte. Note that x > 0.
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Figure 2. y = S
Nk and x = U

µG . The entropy satisfies the third law of Thermodynamics. Note that when
m > 0 as it has to be considered, U < 0.

This expression for the entropy is now in the form of a fundamental equation, S(U, G, N), and it
can be used to directly obtain the TdS equation, the equations of state, and in particular the chemical
potential φ.

Then,
1
T

= −Nk
2

[
1

µG
ln
(

1 +
U

µG

)
− 1

µG
ln
(

1− U
µG

)]
. (81)

Using Equation (79), we obtain

1
T = Nk

µG
1
2 ln

[ (
1+ m

µ

)
(

1−m
µ

)
]

1
T = Nk

µG tanh−1 m
µ

m
µ = tanh µG

NkT ⇒ M = µN tanh µB
kT ,

(82)
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which represents the equation of state as expected, Equation (72). Note that if m is negative, we have a
negative temperature. For now, we consider m > 0, and we postpone the discussion of the possibility
of having m < 0 below in this subsection. Further,[

∂S
∂G

]
U,N

= −UNk
µG2

[
1
2

ln

(
1 + m

µ

1− m
µ

)]

= −UNk
µG2 tanh−1 m

µ
=

mk
µB

tanh−1 m
µ

. (83)

Using Equation (82), we arrive at[
∂S
∂G

]
U,N

=
mk
µB

tanh−1 m
µ

=
mk
µB

tanh−1
[

tanh
µB
kT

]
=

m
T

. (84)

Then,[
∂S
∂N

]
U,G

= − k
2

[(
1 +

U
µG

)
ln
(

1 +
U

µG

)
+

(
1− U

µG

)
ln
(

1− U
µG

)]
+ k ln 2

= −φ

T
=

S
N

(85)

We can now express dS as

dS =
1
T

dU +

[
∂S
∂G

]
U,N

dG +

[
∂S
∂N

]
U,G

dN. (86)

Finally, the TdS equation can be written as

TdS = dU + mdG +
ST
N

dN. (87)

On the other hand,

dU = TdS−mdG− ST
N

dN. (88)

If we consider the case where N is constant, we arrive at

dU = TdS−md(NG) = dU = TdS−MdB, (89)

which coincides with Equation (76) obtained by Barrett and Macdonald [13].
Finally, we have shown how to construct a fundamental equation for the paramagnetic solid with

the N variable. It has to be highlighted that when N is not constant and we want to represent the TdS
equation in the representation U, B and N, we arrive at

TdS = dU + mdG +
ST
N

dN

= dU + MdB +

(
MB + ST

N

)
dN. (90)

Note that
(

MB+ST
N

)
/T represents (∂S/∂N)U,B and not minus the chemical potential (−φ).

4.4.1. Hessian Method

In order to calculate the Hessian, we need to express U = U(S, G, N). However, an inspection of
Equation (80) shows that it is not possible to write explicitly U = U(S, Ĥ, N), and consequently, it is
not possible to directly obtain the Hessian. In Appendix C, the Hessian for the paramagnetic solid is
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calculated. Since we have all the entries for the Hessian and by putting ρ = µG
NkT and ψ = ln (2 cosh ρ),

the characteristic polynomial is:

 T2
(

N2+G2

N2G2

)
+
(

µ
Nρ ψ− µ

N tanh ρ
)2

 λ +


T

kNρ2 cosh2 ρ + 2kT
N ψ− 2µG

N2 tanh ρ

+

(
k

1
2 T

1
2

N
1
2 ρ

cosh ρψ− k
1
2 T

1
2

N
1
2

sinh ρ

)2

 λ2 − λ3 = 0. (91)

We can see that one of the eigenvalues is λ = 0 as it is required, and the other two are

λ± = α± β,

with

α =
1
2


T

kNρ2 cosh2 ρ + 2kT
N ψ− 2µG

N2 tanh ρ

+

(
k

1
2 T

1
2 ψ

N
1
2 ρ

cosh ρ− k
1
2 T

1
2

N
1
2

sinh ρ

)2


and

β =
1
2




T
kNρ2 cosh2 ρ + 2kTψ

N − 2µG
N2 tanh ρ

+

(
k

1
2 T

1
2 ψ

N
1
2 ρ

cosh ρ− k
1
2 T

1
2

N
1
2

sinh ρ

)2


2

+

 4T2
(

N2+G2

N2G2

)
+4
(

µψ
Nρ −

µ
N tanh ρ

)2




Therefore, the system satisfies the thermodynamic requirements.

4.4.2. Entropy Method

We have already proven item I, that is, the entropy is a first-degree homogeneous function (80),
and items A and G are satisfied by looking at Equations (79), (82) and (80). Therefore, we just need to
prove conditions H (∂S/∂U > 0) and G (S > 0) are satisfied, that is, for condition H, we have shown
in the Hessian that λ are positive if m is positive, which is equivalent to T > 0 [5]. However, from
a statistical point of view, it is possible to have a negative temperature which comes from an initial
oriented magnetization due to use a contrary direction of the magnetic field and suddenly changes the
direction of it. However, this represents a non-equilibrium system [14,15]. Therefore, we can consider
that the entropy is positive in a regular situation with m positive (m > 0→ S > 0) . For condition G, it
is clear that all the first and second derivatives exist. Further, note that obtaining Equation (73) is left
as an exercise (Problem 2.4) in Reif’s book [16] and the discussion of negative temperatures can be
found in Problem (3.2).

4.4.3. Completeness Method

In general, we can express the TdS equations of this system using Equation (15). In this case,
we know that we only need three linearly independent equations. Thus, we choose the 1-equation,
the 2-equation, and the 5-equation. That is, in these three equations, all the differentials of the
variables T, m, φ, Ĥ, and N are included in one of the equations as it is required to obtain the three
independent equations.

The 1-equation is:

TdS = a1
0dT + a1

1dm + A1
1dG, (92)
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From Equations (15) and (16), we need to know U = U (T, m, G), N = N (T, m, G), and φ =

φ (T, m, G), that is:

U = −mG,

N =
−2Gµ

Tk
[
ln
(

1− m
µ

)
− ln

(
1 + m

µ

)] ,

φ =
Tk
2

[(
1− m

µ

)
ln
(

1− m
µ

)
+

(
1 +

m
µ

)
ln
(

1 +
m
µ

)
− 2 ln 2

]
.

Hence,

a1
0 = Cm,G = − µG

T ln
(

µ−m
µ+m

)
 (

1− m
µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)
− 2 ln 2

 ,

a1
1 = −G +

G
(

2µ2

µ2−m2

)
ln2
(

µ−m
µ+m

)
 (

1− m
µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)
− 2 ln 2

 ,

A1
1 =

µ

ln
(

µ−m
µ+m

)
 (

1− m
µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)
− 2 ln 2

 .

The 2-equation is

TdS = a2
0dT + a2

1dm + A2
2dN, (93)

From Equations (15) and (16), we need to know U = U (T, m, N), G = G (T, m, N), and φ =

φ (T, m, N), that is:

U = m
kTN
2µ

[
ln
(

1− m
µ

)
− ln

(
1 +

m
µ

)]
,

G = − kTN
2µ

[
ln
(

1− m
µ

)
− ln

(
1 +

m
µ

)]
,

φ =
Tk
2

[(
1− m

µ

)
ln
(

1− m
µ

)
+

(
1 +

m
µ

)
ln
(

1 +
m
µ

)
− 2 ln 2

]
Therefore,

a2
0 = 0,

a2
1 =

kTN
2µ

ln
(

µ−m
µ + m

)
,

A2
2 = − kT

2

 (
1− m

µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)
− 2 ln 2

 .

The 5-equation is

TdS = a5
1dm + a5

2dφ + A5
1dG, (94)

From Equations (15) and (16), we need to know U = U (m, φ, G) and N = N (m, φ, G). We have
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U = −mG,

N =
−Gµ

φ
[
ln
(

1− m
µ

)
− ln

(
1 + m

µ

)] [(1− m
µ

)
ln
(

1− m
µ

)
+

(
1 +

m
µ

)
ln
(

1 +
m
µ

)]
,

and

T =
2φ

k
[(

1− m
µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)] ,

1
T

=
k
[(

1− m
µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)]
2φ

,

Then, by putting ρ =
(

1− m
µ

)
ln
(

1− m
µ

)
+
(

1 + m
µ

)
ln
(

1 + m
µ

)
− 2 ln 2

and ψ =
[
ln
(

1− m
µ

)
− ln

(
1 + m

µ

)]
, we obtain

a5
1 = −2G +

2Gµ2ρ

(µ−m) (µ + m)ψ2 , a5
2 = −Gµρ

φψ
and A5

1 =
µρ

ψ
(95)

Thermodynamic Identities

With the three linearly independent TdS equations, it is possible to calculate the rest of the TdS
equations and in this way obtain different thermodynamic identities. In this case, it is possible from
the 1-equation and the 2-equation to deduce the 7-equation, which can be calculated using the method
previously described in Section 3, that is:

TdS = a7
0dT + A7

1dG + A7
2dN. (96)

We have

a7
0 =

a2
1a1

0 − a1
1a2

0

a2
1 − a1

1
, A7

1 =
A1

1a2
1

a2
1 − a1

1
and A7

2 = −
A2

2a1
1

a2
1 − a1

1
. (97)

Then, by putting a7
0 =

(
∂U
∂T

)
G,N

= CG,N , and remembering that a2
0 = 0, we have

CG,N =
a2

1Cm,G

a2
1 − a1

1
.

We obtain

(CG,N − Cm,G) = CG,N
a1

1
a2

1
.

Or, in an equivalent form, we obtain a Mayer-like relation:

(CG,N − Cm,G) = CG,N
Gµ

kTNψ


(

4
1− m

µ2
2

)
ψ2 ρ− 2

 (98)
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4.5. The Kelly Plasma Equation

For more than 70 years, there has been much interest in plasma physics due to its applications in
Tokamaks and Astrophysics. However, under nonrelativistic conditions, the equations of state for an
ideal gas state are used as the first approximation to calculate the equations of balance, the moment
equations, and thermodynamic flows [17,18]. Nevertheless, among other proposals, Kelly [7] gave an
equation of state for a plasma with different species relating the pressure P, the number of particles
for each species Ni, the volume V, and the temperature T. However, one equation of state is not
enough to describe a system composed of many species without giving another equation of state. This
point was partially corrected by Wergeland [19] by including an expression for the corrected internal
energy due to Debye and Hückel theory, where the energy is obtained by making an average of the
Coulomb energy.

Our purpose in this subsection consists of using our method to complete the set of equations, as
we did in Section 4.2 (Unconventional System: A Particular Case) and in Section 4.3 (The Rubber Band),
obtaining the Debye–Hückel–Wergeland corrected total internal energy. Since in many situations in
plasma physics, it is just necessary to consider only the electrons, we analyze the Kelly equations for
one species. We obtain the entropy for a plasma composed of electrons where the effect of the ions
is considered just in the equations of state. We obtain the entropy as a function of the volume V, the
number of electrons N, and the temperature T. Since it is not possible to explicitly write the entropy as
a function of the internal energy U, the volume V, and the number of electrons N, that is, the entropy
as a fundamental equation, we develop a method to obtain the Hessian in order to check the viability
of the system similar to what we have done in Section 4.2 (Unconventional System: A Particular Case).
Indeed, in plasma physics, it is very important to know the relaxation times which are related with the
eigenvalues of the Hessian. We also analyze the first-degree homogeneous property of the entropy
using a technique exposed in Section 2.4. We also show that the temperature T is positive. The TdS
equations can be obtained from the results obtained for calculating the Hessian.

The Kelly equation of state for a system with different species is:

P = ∑
α

Nα

V
kT
(

1− 1
18ND

)
. (99)

If we consider just one species (electrons) but keeping the interaction with the ions of the system,
we have

P =
N
V

kT
(

1− 1
18ND

)
=

N
V

kT

1− 1

24 N
V

(
VkT

4πNe2

) 3
2

 , (100)

where

ND =
4
3

πD3 N
V

D =

(
k

4πe2Z2
1

) 1
2 V

1
2 T

1
2

N
1
2

=

(
kTV

4πNe2

)1/2
. (101)

It is necessary to note that D is Debye’s length and ND represents the number of particles contained
in Debye’s sphere. The contribution of the pressure that corrects the ideal gas is

Pcorr = −
N
V

kT
1

24π N
V

(
VkT

4πNe2

) 3
2
= − 1

24π

kT
D3 . (102)

Following Wergeland [19], the contribution of the energy should be

Ucorr = −
1
2

N
e2

D
. (103)
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We note that
Pcorr =

1
3

Ucorr

V
, (104)

which has the form of the equation of state for bosons and fermions. Let us analyze Equation (104);
we have

1
3

Ucorr

V
=

1
3

(
−1

2
N

e2

VD

)
= −1

6
Ne2

VD

= −1
6

Ne2

V
(

kTV
4πNe2

)1/2 = − 1
6× 4π

kT(
k3T3V3

43π3 N3e6

)1/2 = − 1
24π

kT
D3 . (105)

Finally, we can write the total pressure as

P =
NkT

V
− N

V
kT

1

24π N
V

(
VkT

4πNe2

) 3
2

or (106)

P =
NkT

V
− N

3
2

3V
3
2 T

1
2

(
π

1
2 e3

k
1
2

)
,

and the total energy as

U =
3
2

NkT + 3VPcorr

or (107)

U =
3
2

NkT − N
3
2

V
1
2 T

1
2

(
π

1
2 e3

k
1
2

)
.

It is interesting that we can obtain the heat capacity CV,N , that is:

CV,N =

[
∂U
∂T

]
V,N

=
3
2

Nk +
N

3
2

2V
1
2 T

3
2

(
π

1
2 e3

k
1
2

)
. (108)

Due to the similarity with the relationship between energy and pressure in the case of photons,
we can propose a correction for the entropy given by the following expression

Scorr =
Ucorr

3T
. (109)

Note that due to the expression of the corrected energy in our case (see Equation (107)), there
is a factor 1/3 and not a factor 4/3 as it happens in the photon case. Thus, we can propose the total
entropy as

S = Sig + Scorr, (110)

where Sig represents the entropy for a null charge, e = 0, that is, the ideal gas. It has to be noted that
although Sig is formally the entropy of the ideal gas, it cannot be substituted in another functionality,
that is, the expression is good for our purpose only when it is a function of the volume V, the
temperature T, and the number of particles N. Therefore,

S = Sig +
Ucorr

3T

= Sig −
N

3
2

3V
1
2 T

3
2

(
π

1
2 e3

k
1
2

)
. (111)
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In order to verify that this proposed entropy describes the system, it is necessary to check that we
can obtain the equations of state. For this purpose, let us calculate the Helmholtz free energy A, that is:

A = U − TS

= Uig + Ucorr − T
(
Sig + Scorr

)
A = Aig + Ucorr − TScorr. (112)

Now, we can calculate the pressure P,

P = −
[

∂A
∂V

]
T,N

=
NkT

V
−
[

∂Ucorr

∂V

]
+ T

[
∂Scorr

∂V

]

=
NkT

V
−
[

N
3
2

2V
3
2 T

1
2

(
π

1
2 e3

k
1
2

)]
+ T

[
N

3
2

6V
3
2 T

3
2

(
π

1
2 e3

k
1
2

)]

=
NkT

V
− N

3
2

3V
3
2 T

1
2

(
π

1
2 e3

k
1
2

)
, (113)

and the equation of state is verified. Using Equations (111) and (112), the equation of state for U can
also be verified.

4.5.1. Hessian Method

In order to calculate the Hessian, we need to express U = U(S, V, N). However, an inspection
of Equation (111) shows that it is not possible to write explicitly U = U(S, V, N), and consequently,
it is not possible to directly obtain the Hessian. In Appendix D, the Hessian for the Kelly plasma
is calculated. Once the Hessian is obtained and by putting ρ = 12N2T5V3 and ψ = T

5
2 V

5
2 , the

characteristic polynomial is:


+2ρN2 (kN + Scorr)

2 − 2ρk2N2 (Sig + Scorr
)2

−ρkNScorr
(
Sig + Scorr

)2 − N2ρ (Scorr + 2kN)2

+
(
kN2ψ− 6NScorrψ

)2
+ 3ρ

(
SigScorr + S2

corr
)2

+ (2Scorr − kN) N2Scorrρ− 25k2N4ψ2

 λ

+


10N2ψV−2 (kN − Scorr)

2

+4ψ
(
Sig − kN

)2
+ 2

(
3k2 + 2

)
N2ψ

+ (19kN − 18Scorr) N2ScorrψV−2

+3
(
4Sig − 3kN

)
Scorrψ

 λ2 − λ3 = 0. (114)

Therefore, we found an eigenvalue λ = 0, and the other two eigenvalues are:

λ± = α± β, (115)

with

α =
1
2

(
10N2ψV−2 (kN − Scorr)

2 + 4ψ
(
Sig − kN

)2
+ 2

(
3k2 + 2

)
N2ψ

+ (19kN − 18Scorr) N2ScorrψV−2 + 3
(
4Sig − 3kN

)
Scorrψ

)
(116)

and
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β =
1
2




10N2ψV−2 (kN − Scorr)

2

+4ψ
(
Sig − kN

)2
+ 2

(
3k2 + 2

)
N2ψ

+ (19kN − 18Scorr) N2ScorrψV−2

+3
(
4Sig − 3kN

)
Scorrψ


2

+4


+2ρN2 (kN + Scorr)

2 − 2ρk2N2 (Sig + Scorr
)2

−ρkNScorr
(
Sig + Scorr

)2 − N2ρ (Scorr + 2kN)2

+
(
kN2ψ− 6NScorrψ

)2
+ 3ρ

(
SigScorr + S2

corr
)2

+ (2Scorr − kN) N2Scorrρ− 25k2N4ψ2





1
2

. (117)

4.5.2. Entropy Method

The items A, F, and G can be verified by looking at Equations (106), (107) and (A32). Although we
have not been able to deduce the entropy as a fundamental equation for this system, we can apply the
technique developed in Section 2.4 in order to verify item I. Therefore, we need to prove Equation (A1)
in our case (see Appendix A), that is:

S(T, λV, λN) = λSig −
λ

3
2 N

3
2

3λ
1
2 V

1
2 T

3
2

(
π

1
2 e3

k
1
2

)

= λ

(
Sig −

N
3
2

3V
1
2 T

3
2

(
π

1
2 e3

k
1
2

))
= λS(T, V, N)

It is necessary to prove that the temperature is positive (item H). We know from Equations (102),
(103) and (104) that:

Ucorr = −
1
2

N
e2

D
, Pcorr = −

1
24π

kT
D3 , and Pcorr =

1
3

Ucorr

V
,

which implies that T > 0.
On the other hand, due to the fact that that the number of particles contained in a Debye sphere is

big, the isothermal compressibility is positive,

κT = − 1
V

(
∂V
∂P

)
T,N

=
1

kT

N
V
− 1

16
1(

VkT
4πNe2

) 3
2


−1

> 0

Therefore, the Kelly completed plasma represents a stable system.

5. Concluding Remarks

In the present work, we have compared two different methods to study the viability of a system
represented by a set of equations and developed a method to give a complete view of a thermodynamic
system. We arrive to the following comments for each one.

The Hessian Method: The principal method consists of obtaining a characteristic polynomial,
one of its eigenvalues being null. The other eigenvalues must be real positive values which are related
with the relaxation times. This last property is possibly the most important aspect of this method.

The Entropy Method: The method consists of noting that the first-degree homogeneous entropy
must comply with [∂U/∂S]{Xn} > 0 or [∂S/∂U]{Xn} > 0. This method is the simplest one.

Completeness Method: This method provides as much information as possible of a thermodynamic
system. It permits knowing all the TdS equations and obtaining the thermodynamic identities.
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General Results:

(i) We have shown how to obtain a complete set of equations from an incomplete set of equations.
(ii) We have proven that by applying the Gibbs–Duhem method, a first-degree homogeneous

entropy is obtained. That is, Boltzmann counting is included in the method.
(iii) We have developed a method to obtain the Hessian of a thermodynamic system without

knowing the expression of the fundamental equation in the energy picture.
(iv) We have developed a method to correct a TdS equation when this last one is not well-defined.
(v) Novel thermodynamic identities have been found for each analyzed system.

(vi) These three methods have been applied to the ideal gas, to an unconventional system, to the
rubber band, to the paramagnetic solid, and to the Kelly plasma, but they can be applied to
analyze any thermodynamic system that presents a problem in order to correct it or to obtain
all the information which can be derived from it.
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Appendix A

The purpose of this appendix is to give a method that allows us to demonstrate when the entropy
is a first-degree homogeneous function if we do not know S as a fundamental equation. That is, in the
case of having proven the items A, G , and H without having been able to deduce the entropy as a
fundamental equation for this system, for example, if we do not know S = S(U, V, N) and we know
S = S(T, V, N), it is possible to check the first-degree homogeneous property of the entropy using the
below result. Let us suppose Equation (2) obeys this property, then we have

λS = S(λU, λV, λN).

However if we know, for example, S = S(T, V, N), we have

S(U, V, N) = S(T, V, N) = S

((
∂U(S, V, N)

∂S

)
V,N

, V, N

)

Then,
S(λU, λV, λN) = λS(U, V, N) = λS(T, V, N).

On the other hand,

S(λU, λV, λN) = S
((

∂U(λS, λV, λN)

∂λS

)
, λV, λN)

)
= S(T, λV, λN).

Therefore, it is necessary to prove that

S(T, λV, λN) = λS(T, V, N). (A1)

That is, we can obviously generalize the result to any representation of the entropy; that is, if

S({xl}, {λX j}, ) = λS({xl}, {X j}), (A2)
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where xl and Xk are intensive and extensive variables, respectively, such that the total number of them
is n + 1, and the entropy is a first-degree homogeneous function in the extensive variables. This result
is analyzed in the Kelly Plasma case, Section 4.5.2.

Appendix B

Let us calculate some of the TdS equations for the ideal gas with the N variable.

The 2-equation is:

Let us calculate the 2-, 3-, 4-, and 9-equations for the ideal gas with the N variable.

TdS = a2
0dT + a2

1dP + A2
2dN, (A3)

where from Equation (16),

a2
0 =

(
∂U
∂T

)
P,N

+ P
(

∂V
∂T

)
P,N

, a2
1 =

(
∂U
∂P

)
T,N

+ P
(

∂V
∂P

)
T,N

,

A2
2 =

(
∂U
∂N

)
T,P
− µ + P

(
∂V
∂N

)
T,P

. (A4)

In order to calculate the above relations, we need to know the internal energy and the volume as
functions of T, P, and N, that is, U = U(T, P, N) and V = V(T, P, N). Hence,

U =
3
2

NkT and V =
NkT

P
. (A5)

Consequently, the 2-equation is

TdS =
5
2

NkdT − NkT
P

dP +

[
5
2

kT − µ

]
dN. (A6)

The 3-equation is:

TdS = a3
0dT + a3

2dµ + A3
1dV, (A7)

where

a3
0 =

(
∂U
∂T

)
µ,V
− µ

(
∂N
∂T

)
µ,V

, a3
2 =

(
∂U
∂µ

)
T,V
− µ

(
∂N
∂µ

)
T,V

,

A3
1 =

(
∂U
∂V

)
T,µ

+ P− µ

(
∂N
∂V

)
T,µ

. (A8)

From Equations (15) and (16) for this case, we need to know U = U(T, µ, V) and N = N(T, µ, V).
We use

N = T
3
2

(
3k

2U0

) 3
2
(

V
V0

)(
1

N0

)− 5
2

e{
µ

kT +
s0
k −

5
2}, (A9)

U =
3
2

RT
5
2

(
3k

2U0

) 3
2
(

V
V0

)(
1

N0

)− 5
2

e{
µ

kT +
s0
k −

5
2}, (A10)

Therefore, the 3-equation is

TdS = N
[

15
2

k− 3µ

T
+

µ2

kT2

]
dT + N

[
3
2
− µ

kT

]
dµ +

N
V

[
5
2

kT − µ

]
dV. (A11)
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The 4-equation is:

TdS = a4
0dT + a4

2dµ + A4
2dN, (A12)

where

a4
0 =

(
∂U
∂T

)
µ,N

+ P
(

∂V
∂T

)
µ,N

, a4
2 =

(
∂U
∂µ

)
T,N

+ P
(

∂V
∂µ

)
T,N

,

A4
2 =

(
∂U
∂N

)
T,µ
− µ + P

(
∂V
∂N

)
T,µ

. (A13)

From Equations (15) and (16) for this case, we need to know U = U(T, µ, N) and V =

V(T, µ, N). Hence,

U =
3
2

NkT, V =

(
2U0

3k

) 3
2

N−
5
2

0 V0NT−
3
2 e
{

5
2
− s0

k
− µ

kT

}
. (A14)

Consequently, the 4-equation is

TdS =
Nµ

T
dT − Ndµ +

[
5
2

kT − µ

]
dN. (A15)

The 9-equation is:

We can repeat the same procedure for the 9-equation

TdS = a9
2dµ + A9

1dV + A9
2dN (A16)

From Equations (15) and (16) for this case, we need to know U = U (µ, V, N) and P = P (µ, V, N)

and µ. We have

PV = NkT, U =
3
2

NkT,

µ = T
[
−3

2
k ln

(
U

Nu0

)
− k ln

(
V

Nv0

)
+
( µ

T

)
0

]
. (A17)

We solve for U and P and obtain

U = − µN

W

− µ
(

V
Nv0

) 2
3 exp

(
−

2( µ
T )0
3k

)
u0


, P = − 2Nµ

3VW

− µ
(

V
Nv0

) 2
3 exp

(
−

2( µ
T )0
3k

)
u0


(A18)

where W is the Lambert function. Finally,

a9
2 = − N

W(Z)
+

N
(1 + W(Z))W(Z)

, A9
1 =

2µN
3V

(
− 1

W(Z)
+

1
W(Z) + W2(Z)

)
,

A9
2 =

1
3

µ

(
−3− 3

W(Z)
− 2

W(Z) + W2(Z)

)
, (A19)
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where W is the solution along the real axis of the Lambert W-function, and we have put

Z = −
µ
(

V
Nv0

) 2
3 exp

(
− 2( µ

T )0
3k

)
u0

.

Finally, the 9-equation is

TdS =

[
− N

W(Z)
+

N
(1 + W(Z))W(Z)

]
dµ +

[
2µN
3V

(
− 1

W(Z)
+

1
W(Z) + W2(Z)

)]
dV

+

[
1
3

µ

(
−3− 3

W(Z)
− 2

W(Z) + W2(Z)

)]
dN. (A20)

Appendix C

In order to calculate the Hessian for the paramagnetic case, we need to express U = U(S, G, N).
However, an inspection of Equation (80) shows that it is not possible to write explicitly U = U(S, Ĥ, N),
and consequently, it is not possible to directly obtain the Hessian. However, since the Hessian is
constituted by entries of this kind [

∂2U
∂S∂S

]
G,N

=

[
∂T
∂S

]
G,N

,

if we have an expression of T = T(S, G, N), it will be sufficient for obtaining this entry. That is, starting
from Equations (78) and (79) and using ε = µB, we have

S
Nk

= ln
(

cosh
µG

kTN

)
− βε tanh

µG
kTN

+ ln 2.

1
Nk

[
∂S
∂T

]
G,N

=

(
µG
kN

)2

T3
1

cosh2 µG
NkT

.

That is [
∂2U
∂S∂S

]
G,N

=

[
∂T
∂S

]
G,N

=
1[

∂S
∂T

]
G,N

=
NkT3

µ2G2 cosh2 µG
NkT

. (A21)

Then, for the entry [
∂2U

∂G∂S

]
N
=

[
∂T
∂G

]
S,N

, (A22)

we can use [
∂T
∂G

]
S,N

[
∂G
∂S

]
T,N

[
∂S
∂T

]
G,N

= −1.

That is [
∂T
∂G

]
S,N

= −

[
∂S
∂G

]
T,N[

∂S
∂T

]
G,N

.

Then, using the expression of the entropy and the temperature, Equations (80) and (81), we obtain

S
Nk

= ln
(

2 cosh
µG

kTN

)
− µG

kTN
tanh

µG
kTN

(A23)
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That is S = S(T, G, N) and we can calculate
[

∂S
∂G

]
T,N

and
[

∂S
∂T

]
G,N

in order to obtain[
∂2U

∂G∂S

]
N

. Then, [
∂S
∂G

]
T,N

= −
µ2G sech2 µG

NkT
kNT2

Then [
∂S
∂T

]
G,N

=
µ2G2 sech2 µG

NkT
kNT3 (A24)

Then, [
∂2U

∂G∂S

]
N
=

[
∂T
∂G

]
S,N

= −

[
∂S
∂G

]
T,N[

∂S
∂T

]
G,N

=
T
G

. (A25)

Now, let us calculate [
∂2U

∂G∂G

]
S,N

.

We need to know U = U(S, G, N). However, we know from Equation (88) that

∂U
∂G

= −m.

Consequently, we need to know m = m(S, G, N) for obtaining[
∂2U

∂G∂G

]
S,N

= −
[

∂m
∂G

]
S,N

.

However
U
G

= −m,

then, [
∂2U

∂G∂G

]
S,N

= −
[

∂
U(S,G,N)

G
∂G

]
S,N

=
U(S, G, N)

G2 − 1
G

[
∂U
∂G

]
S,N

=
U(S, G, N)

G2 +
m
G

=
−mG

G2 +
m
G

= 0. (A26)

Another term that we need to obtain for the Hessian is:[
∂2U

∂G∂N

]
S

We know that from Equation (88) [
∂U
∂N

]
S,G

= −ST
N

Then, using Equation (A25)[
∂2U

∂G∂N

]
S
=

[
∂− ST

N
∂G

]
N,S

= − 1
N

[
∂ST
∂G

]
N,S

= − S
N

[
∂T
∂G

]
N,S

= − S
N

T
G

. (A27)
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We also need [
∂2U

∂S∂N

]
G

.

We know from Equation (88) that [
∂U
∂N

]
G,S

= −ST
N

.

Using Equation (A24), we have[
∂2U

∂S∂N

]
G

=

[
−

∂ ST
N

∂S

]
G,N

= − 1
N

[
∂ST
∂S

]
G,N

= − 1
N

[
T + S

[
∂T
∂S

]
G,N

]

= −T(S, G, N)

N
− SkT3

µ2G2 cosh2 µG
NkT

. (A28)

Finally, we need to know [
∂2U

∂N∂N

]
S,G

.

We know that from Equation (88) [
∂U
∂N

]
S,G

= −ST
N

.

Hence, [
∂2U

∂N∂N

]
S,G

=

[
−

∂ ST
N

∂N

]
S,G

=
ST
N2 −

S
N

[
∂T
∂N

]
S,G

.

We need to use [
∂T
∂N

]
S,G

[
∂N
∂S

]
T,G

[
∂S
∂T

]
N,G

= −1

Accordingly, using Equations (A23) and (A24), we arrive at[
∂T
∂N

]
S,G

= −
[

∂T
∂S

]
N,G

[
∂S
∂N

]
T,G

= − T
N
− k2NT3

µ2G2 sech2 µG
NkT

ln
(

2 cosh
µG

NkT

)
+

kT2 cosh µG
NkT sinh µG

NkT
µG

.

Therefore,[
∂2U

∂N∂N

]
S,G

=

[
−

∂ ST
N

∂N

]
S,G

=
2ST
N2 +

Sk2T3

µ2G2 sech2 µG
NkT

ln
(

2 cosh
µG

NkT

)

−
SkT2 cosh µG

NkT sinh µG
NkT

NµG
. (A29)

Appendix D

In order to calculate the Hessian for the Kelly plasma, we need to express U = U(S, V, N).
However, an inspection of Equation (111) shows that it is not possible to write explicitly U =

U(S, V, N), and consequently, it is not possible to directly obtain the Hessian. However, since the
Hessian is constituted by entries of this kind,
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[
∂2U
∂S∂S

]
V,N

=

[
∂T
∂S

]
V,N

, (A30)

Having an expression for T = T(S, V, N) will be sufficient. Then, let us give the expression of the
entropy of the ideal gas using the Sackur–Tetrode expression:

Sig = Nk ln

[
VT

3
2

N

]
+ N

(
5
2

k +
3
2

k ln
[

2kπm
h2

])
= Ns0 + Nk ln

[
VT

3
2

N

]
. (A31)

We can rewrite S in the following way:

S = Ns0 + Nk ln

[
T

3
2 V
N

]
− YN

3
2

3V
1
2 T

3
2

, (A32)

where Y = π
1
2 e3

k
1
2

. We know that
[

∂T
∂S

]
V,N

= 1
[ ∂S

∂T ]V,N
, then

[
∂S
∂T

]
V,N

=
3
2

Nk
T

+
YN

3
2

2V
1
2 T

5
2
=

1
2

(
3NkV

1
2 T

3
2 + YN

3
2

V
1
2 T

5
2

)
. (A33)

That is, [
∂2U
∂S∂S

]
V,N

=

[
∂T
∂S

]
V,N

=
1[

∂S
∂T

]
V,N

. (A34)

Therefore, [
∂2U
∂S∂S

]
V,N

=

(
2V

1
2 T

5
2

3NkV
1
2 T

3
2 + YN

3
2

)
. (A35)

The other entries of the Hessian are obtained in the same way. They are:

[
∂2U

∂V∂S

]
N
= − T

3V

(
6NkV

1
2 T

3
2 + YN

3
2

3NkV
1
2 T

3
2 + YN

3
2

)
, (A36)

and [
∂2U

∂N∂S

]
V

=

(
k− s0 − k ln

[
T

3
2 V
N

])
2

(
V

1
2 T

5
2

3NkV
1
2 T

3
2 + YN

3
2

)

+

(
YN

1
2 T

3NkV
1
2 T

3
2 + YN

3
2

)
, (A37)

and [
∂2U

∂V∂V

]
S,N

= −1
2

(
N

3
2 Y− 2NkT

3
2 V

1
2

V
5
2 T

1
2

)
+

(
6NkV

1
2 T

3
2 + YN

3
2

)2

18V
5
2 T

1
2

(
3NkV

1
2 T

3
2 + YN

3
2

) , (A38)

and [
∂2U

∂N∂V

]
S

=

(
s0 + k ln

[
T

3
2 V
N

]
− k

)
T

3V

(
6NkV

1
2 T

3
2 + YN

3
2

3NkV
1
2 T

3
2 + YN

3
2

)

− YN
1
2

6V
3
2 T

1
2

(
6NkV

1
2 T

3
2 + YN

3
2

3NkV
1
2 T

3
2 + YN

3
2

)
−
(

2kV
1
2 T

3
2 −YN

1
2

2V
3
2 T

1
2

)
, (A39)

and



Entropy 2020, 22, 398 39 of 39

[
∂2U

∂N∂N

]
S,V

=

(
− 1

2 k− s0 − k ln
[

T
3
2 V
N

]
+ YN

1
2 +3kV

1
2 T

3
2

2V
1
2 T

3
2

)
×
(

k− s0 − k ln
[

T
3
2 V
N

]
+ YN

1
2 T

2V
1
2 T

5
2

)
×
(

2V
1
2 T

5
2

3NkV
1
2 T

3
2 +YN

3
2

)
+ 2kTV

1
2 T

1
2−YN

1
2

2NV
1
2 T

1
2

.

(A40)

Note that if we take Scorr = 0, which corresponds to e = 0, we obtain the same Hessian matrix of
the ideal gas (Hpe=0 = Hig).
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