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Abstract: The rapid growth of Internet technologies has led to an enormous increase in the number of
electronic documents used worldwide. To organize and manage big data for unstructured documents
effectively and efficiently, text categorization has been employed in recent decades. To conduct text
categorization tasks, documents are usually represented using the bag-of-words model, owing to
its simplicity. In this representation for text classification, feature selection becomes an essential
method because all terms in the vocabulary induce enormous feature space corresponding to the
documents. In this paper, we propose a new feature selection method that considers term similarity
to avoid the selection of redundant terms. Term similarity is measured using a general method
such as mutual information, and serves as a second measure in feature selection in addition to term
ranking. To consider balance of term ranking and term similarity for feature selection, we use a
quadratic programming-based numerical optimization approach. Experimental results demonstrate
that considering term similarity is effective and has higher accuracy than conventional methods.

Keywords: text categorization; information gain; mutual information; chi-square statistic;
quadratic programming

1. Introduction

The rapid growth of Internet technologies has led to an enormous increase in the number of
electronic documents used worldwide. To organize and manage documents effectively and efficiently,
text categorization (TC) has been employed in recent decades. TC assigns text documents to pre-defined
topics, categories, or classes, which is an important task in information retrieval [1]. TC has been
gaining additional traction in recent years owing to easily-available digitized text such as web pages,
e-mails, blogs, social network services, product information or reviews, etc. [2].

To conduct TC tasks, documents are usually represented using the bag-of-words model, because of
its simplicity. In this representation, dimensionality is high [3,4] because all terms in the vocabulary
are used to construct the feature vectors corresponding to the documents. As a matrix representation,
the documents and terms correspond to rows and columns, respectively, and the number of terms may
reach tens to hundreds of thousands [5]. While dimensionality may be very high, a large number of
terms may not be relevant to the topic, and can be considered as noise. Thus, many researchers have
proposed different feature selection methods for TC [6–8] to reduce dimensionality, to simplify the
feature vectors, and to achieve high accuracy and efficiency.

For TC, conventional feature selection metrics measure the dependency between terms and the
topic based on term frequency, such as χ2, mutual information, and information gain, and then rank
the terms using the dependency values [9]. However, these approaches may select redundant terms
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because, in large text documents, similar terms occur, and the metrics give similar scores to similar
terms (for example, synonyms). Many recent feature selection methods used for TC are also based on
these metrics, and may operate under this restriction. Thus, these redundant terms can impose a limit
on the accuracy of TC.

In this paper, we propose a novel term selection method to reduce selection of redundant terms
by considering term similarity. Term similarity is measured using a general method, such as χ2,
and serves as a second measure in feature selection, in addition to term ranking. Our approach induces
independent terms to avoid redundant terms and finds various terms for considering many documents
that can cover various subjects. For this goal, the proposed method gives independent terms priority to
avoid redundant terms. Thus, the method is not limited to select semantically-related terms. Moreover,
to consider balance between term ranking and term similarity for selection of appropriate terms
from a global perspective, we use a quadratic programming-based numerical optimization approach.
Quadratic programming traditionally has been used to several studies because of usable computational
procedure [10,11]. Our objective function is a quadratic function that consists of a quadratic term for
term similarity and a linear term for term ranking. We calculate optimal weights for term similarity
and ranking using quadratic programming, and select useful terms based on the weights.

2. Related Works

There have been studies on dimension reduction, such as random projection, that do not use
topic information. For TC, Lin et al. discussed two dimensionality reduction techniques, namely latent
semantic indexing and random projection, and proposed a hybrid method combining the two [12].
Bingham et al. presented experimental results using random projection for dimensionality reduction in
text document data [13]. Torkkola proposed a feature transform method based on linear discriminant
analysis using either random projection or latent semantic indexing [14].

Henceforth, we introduce detailed definitions of three classical feature selection metrics that
have been widely used and have achieved satisfactory performance in TC tasks. These metrics are
χ2 statistic, information gain, and mutual information. The following definitions are based on [6,15].
ti and Cj represent a specific term and a specific category, respectively, and the set of all categories is
represented by C = {C1, . . . , Cm} where m is the number of categories.

• a is the number of documents term in which ti and Cj co-occur.
• b is the number of documents term in which ti occurs without Cj.
• c is the number of documents in which Cj occurs without ti.
• d is the number of documents in which neither Cj or ti occurs.

The χ2 statistic is used to measure the lack of independence between ti and Cj, and it can be
regarded as the χ2 distribution with one degree of freedom. It is defined as

χ2(ti, Cj) =
M× (ad− bc)2

(a + c)× (b + d)× (a + b)× (c + d)
(1)

where M is the total number of documents and can be represented as a + b + c + d. Generally,
the category-specific scores of a term can be captured with the average value as

χ2
avg(ti, C) =

m

∑
k=1

p(Ck)χ
2(ti, Ck) (2)

where p(Ck) can be estimated by a+c
M . The maximum value can also be used for the score as

χ2
max(ti, C) =

m
max
k=1
{χ2(ti, Ck)}. (3)
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Information Gain (IG) was first used as a feature selection measure in a decision tree. In a a
typical example of a decision tree, the ID3 algorithm iteratively decides the feature that divides classes
well using IG [16]. Supervised feature selection methods such as ID3 can identify different categories.
The IG of term ti in multi class text data can be defined as [15]

IG(ti, C) = −
m

∑
k=1

p(Ck) log p(Ck) + p(ti)
m

∑
k=1

p(Ck|ti) log p(Ck|ti)

+p(t̄i)
m

∑
k=1

p(Ck|t̄i) log p(Ck|t̄i).
(4)

In the above definition, P(ti), P(Ck|ti), and P(Ck|t̄i) correspond to a+b
M , a

a+b , and c
c+d , respectively.

Mutual Information (MI) measures the mutual dependency of two random variables [15], and is
defined as

MI(ti, Cj) = log
p(ti, Cj)

p(ti)p(Cj)
(5)

where p(ti, Cj) can be estimated by a/M. In MI, the category-specific scores of a term can also be
captured using the average value as

MIavg(ti, C) =
m

∑
k=1

p(Ck)MI(ti, Ck). (6)

To conclude, conventional feature selection methods for text categorization evaluate the
importance of ti based on its dependency on categories C, and the top-scoring features are used
in the categorization process without requiring a special search.

Recently, some feature selection methods have been introduced based on classical methods
for TC. Uysal proposed an improved global feature selection scheme (IGFSS) that creates a feature
set representing all classes almost equally [17]. In the final step of the method, a common feature
selection scheme is modified to obtain a more representative feature set. However, when the dataset
is imbalanced, the IGFSS has difficulty in selecting a feature set that represents all classes equally.
Tang et al. proposed a feature selection method based on a divergence measure for naive Bayes
classification [18]. Moreover, they analyzed the asymptotic properties of the divergence measure
relating to Type I and II errors of a Bayesian classifier. However, the method is specialized only for
the Bayesian classifier. Javed et al. proposed a two-stage feature selection method that combines
conventional feature-ranking and feature search for improved efficiency [19]. In their method,
the first stage employs a feature-ranking metric such as IG, and in the second stage, a Markov
blanket filter is applied. Wang et al. proposed an approach using Student’s t-test to measure the
diversity of the distributions of term frequency between a specific category and the entire corpus [6].
Uysal et al. proposed a distinguishing feature selector using a filter-based probabilistic feature selection
method [20]. They assumed that an ideal filter should assign high scores to distinctive features while
assigning lower scores to irrelevant ones. To achieve their objective, they defined a term as a distinctive
term if that term frequently occurs in a single class and does not occur in other classes.

3. Proposed Method

Let f (ti, C) denote a function of the ith feature that represents the dependency between the ith
term (1 ≤ i ≤ N) and a specific category C. f is defined to select informative features for TC, and can
be any conventional feature selection metric such as those in Equations (2), (4), or (6). Then, the top
n features are selected by sorting on the function values. In our earlier studies [21,22], we proposed
feature selection methods for a multi-label dataset. In this work, we first applied the method for the
TC problem, and then used other conventional feature selection metrics for TC to model a new term
selection method.
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In the proposed method, a penalty is assigned to similar or redundant terms. f (ti, c) such as χ2

used in TC is also used in the proposed method, and we add another penalty function. The penalty
for similar terms is calculated based on the dependency among terms similar to f (ti, C). To calculate
the dependency among terms, we use the same function f as f (ti, tj). Then, for ti, we obtain values
of f (ti, C), and { f (ti, tj)|1 ≤ j ≤ N, i 6= j}. To select a term that is not similar to other terms,
and simultaneously has a high dependency with category C, we can define the score for a term ti as

J(ti) = f (ti, C)−
N

∑
i=1,i 6=j

f (ti, tj). (7)

In this score, the first term on the right hand side is the conventional feature selection metric and the
second is used to consider the similarity with other terms. To calculate the similarity among terms,
we define new categories in the perspective of terms using a, b, c, and d in Section 2 as:

• a is the number of documents in which ti and tj co-occur.
• b is the number of documents in which ti occurs without tj.
• c is the number of documents in which tj occurs without ti.
• d is the number of documents in which neither tj nor ti occurs.

f (ti, tj) is used as a generalized similarity function by using newly defined a, b, c, and d, and the
function can be specifically chosen, e.g., χ2, information gain, or mutual information. For instance,
the similarity between ti and tj can be calculated as

χ2(ti, tj) =
M× (ad− bc)2

(a + c)× (b + d)× (a + b)× (c + d)
.

However, all f (ti, tj) should not be calculated because, when the final term set contains only one
of ti or tj, then f (ti, tj) is meaningless. In other words, the score function can be different based on the
number of selected terms. For example, if we select three terms, numbered 1, 2, and 3 features from
a total of five terms, then we need not calculate f (t1, t4), ... f (t1, t5). Thus, we should consider the
relative importance of the terms; and not the simple score function for a term ti.

Let S be the final feature subset. Then, we can define the feature selection problem as

max
S

J = ∑
ti∈S

f (ti, C)− ∑
ti ,tj∈S

f (ti, tj). (8)

Although a score function that considers term similarity has been designed, selecting the best
feature subset is impractical because the number of feature subset candidates can be 2N . To circumvent
the combinatorial optimization problem, we transform the score function in Equation (8) into a
numerical optimization problem, namely quadratic programming.

Let x ∈ RN be a weight vector and xi be an element that represents the relative importance of the
ith term. The relative importance of each term is represented as a continuous value between zero and
one. The weight vector x has the following constraints:

x1, ..., xN ≥ 0,
N

∑
i=1

xi = 1. (9)

As a result, the score function (8) for the term subset can be transformed to

max
x

J = ∑
ti

f (ti, C)xi −∑
ti ,tj

f (ti, tj)xixj. (10)
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In the new score function in Equation (10), the combinatorial optimization problem in Equation (8) has
been transformed into a numerical optimization problem. Moreover, Equation (10) can be rewritten in
the quadratic form as

max
x

J = cTx− 1
2

xTQx (11)

where c ∈ RN is a vector and each element of c is defined as

ci = f (ti, C), (12)

and Q ∈ RN×N is a symmetric matrix and each element of which is defined as

Qi,j = f (ti, tj). (13)

The score function in Equation (11) is now in typical quadratic programming form. If matrix Q
is a positive definite matrix, then we can obtain the optimal x because J(x) is a convex function [23].
In other words, the numerical optimization problem in Equation (11) for TC can now be solved more
easily. For the positive definiteness of matrix Q, shift eigenvalue correction can be used a solution [24].
The original matrix Q is decomposed as

Q = UΛUT , (14)

where U and Λ contain the eigenvectors and corresponding eigenvalues of Q. Then, the shift eigenvalue
correction can be calculated as [25]

Q∗ = QVshi f tVT
shi f tQ, (15)

where Vshi f t = U|Λ|−1(Λ − νI)
1
2 and ν is the smallest value of Λ. Other techniques for positive

definiteness can also be used [24,26].
The steps of the algorithm for the proposed method are as follows;

1. Calculate feature ranking using a common measure such as χ2 for Equation (12).
2. Calculate the dependency among features using the same measure for Equation (13).
3. Solve the optimization problem Equation (11) and select the top n features by x

Algorithm 1 represents the detailed pseudo-code of the proposed method. On Line 14, to solve
the optimization problem, we use the interior point method from the ‘optimization toolbox’ in
MATLAB. Ye et al. demonstrated that convex quadratic programming can be done in O(N3) arithmetic
operations by an iterative algorithm such as the interior point method where N is the dimension
of x [27]. The proposed method consumes time for three parts: calculating f (ti, tj) and f (ti, C),
shift eigenvalue correction, and solving quadratic programming. Calculating f (ti, tj) is the largest part
in time consumption. Thus, the time complexity of the proposed method O(N2).



Entropy 2020, 22, 395 6 of 12

Algorithm 1 Pseudo-Code of the Proposed Method.

1: Input:
2: T = {t1, · · · , tN}, C = {C1, · · · , Cm}, n; ti and Cj are the ith term and jth topic of documents,

respectively, and n is the number of terms to be selected
3: Output:
4: S; where S is the final subset with n terms
5: Process:
6: initialize Q ∈ RN×N , c ∈ RN

7: for all i = 1 to N
8: ci ← f (ti, C) using one among Equations (2), (3), (4), and (6)
9: for all j = i + 1 to N

10: Qi,j ← f (ti, tj) using one among Equations (2), (3), (4), and (6)
11: end for
12: end for
13: Q← Q + QT

14: Calculate eigenvectors U and corresponding eigenvalues Λ of Q
15: v← the least value of Λ
16: Q∗ ← QVshi f tVT

shi f tQ where Vshi f t = U|Λ|−1(Λ− vI)1/2

17: Solve the problem maxx[cx − 1
2 xTQ∗x] with constraints to ∑i xi = 1 and xi ≥ 0

18: Rank the terms with descending order of x and select the top n terms

4. Experimental Results

4.1. Experimental Setup

To validate the performance of the proposed method, we conducted experiments on three datasets:
20-Newsgroups (20NG), Reuters, and Topic Detection and Tracking (TDT). These three datasets
have been widely used in TC research for performance evaluation. The 20NG dataset consists of
approximately 20,000 documents collected from the postings of 20 different online newsgroups, and the
number of categories is relatively balanced. The Reuters dataset originally consisted of approximately
20,000 documents and 135 topics. However, some documents belong to multiple topics and the the
distribution among topics is imbalanced. Following the work of Mccallum et al. [28], the Reuters
dataset was separated into Reuters10 or Reuters20, consisting of the documents of the first 10 and first
20 topics, respectively. We used Reuters10 in our experiments. It consists of 7285 documents, and each
document contains 48.6 terms on average. The TDT dataset consists of approximately 10,000 documents
from newswires, radio programs, and television programs [18]. The documents of the TDT dataset also
have multiple and imbalanced topics. We used the first 10 topics with the highest number of documents
in our experiments, calling the dataset TDT10. The TDT10 dataset consists of 7456 documents, and each
document contains 174.1 terms on average. Table 1 shows detailed information about the text datasets.

Table 1. Datasets used in the experiments.

Datasets Documents Terms Topics Average Terms Maximum Terms
in Each Document in a Document

20NG 18,774 11,745 20 131.6 6216
Reuters10 7285 5204 10 48.57 464

TDT10 7456 12,867 10 174.1 1392

We used the F1 measure to evaluate the classification performance. The F1 measure is one of the
most popular measure, and is defined as

F1 =
2× p× r

p + r
. (16)
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Precision (p) is the percentage of documents that are correctly classified as positive from the documents
that are classified as positive, and recall (r) is the percentage of documents that are correctly classified
as positive from all documents that are actually positive. The metrics are defined as

p =
TP

TP + FP

r =
TP

TP + FN
,

(17)

where TP denotes the number of true positives, FP denotes the number of false positives, and FN
denotes the number of false negatives. For multi-category TC, F1 is used in two ways, i.e., the micro-F1

and macro-F1 as

micro-F1 =
∑m

i=1 F1(i)
m

(18)

macro-F1 =
2p̄× r̄
p̄ + r̄

(19)

where F1(i) is the F1 value of the predicted ith category, and p̄ and r̄ are the precision and recall values
across all categories, respectively.

We used the naive Bayes classifier to classify with multinomial distribution, and obtained the
classification results with 100, 120, 140, . . . , 1000 features that were selected by feature selection
methods. To demonstrate the superiority of the proposed method, we compared the proposed method
with two types of methods. First, we compared the conventional feature selection metrics, χ2

avg, χ2
max,

IG, and MIavg, with the proposed method. Second, we compared the recent feature selection methods
for TC with the proposed method. The methods are IGFSS [17], t-test [6], and the Distinguishing
Feature Selector (DFS) [20].

4.2. Comparison Results

Figure 1 shows the four comparison results, χ2
avg, χ2

max, IG, and MIavg, for the 20NG dataset.
Upper and lower figures represent micro- and macro-F1 results, respectively. In χ2

MAX results
(the figures of the second column), the proposed method shows results similar to the original feature
selection method. However, the best performance is obtained in the proposed method when the
number of selected features is about 700. The other results show that the proposed method outperforms
original feature selection methods regardless of the number of selected features. Most results show
that F1 performance increases steeply before the number of features is 300, and then increase slowly.
The MIavg result shows the lowest performance.
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Figure 1. Experimental comparison result of naive Bayes classifier for 20NG dataset.
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Figure 2 shows the results for the Reuters10 dataset. The four subfigures show tendencies similar
to those in Figure 1 corresponding to the 20NG dataset. Overall, the results show that the performance
of the proposed method is better than that of other feature selection methods. Figure 3 shows the
results for the TDT10 dataset. The oscillations over the number of selected features occur because the
F1 measure is bounded within a small range from 0.91 to 0.92. From the results in these figures, we can
conclude that considering term similarity can be an effective mechanism for TC.
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Figure 2. Experimental comparison result of naive Bayes classifier for Reuters10 dataset.
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Figure 3. Experimental comparison result of naive Bayes classifier for TDT10 dataset.

We compared the proposed method with latent semantic indexing based on Principle Component
Analysis (PCA) or Singular Value Decomposition (SVD) because feature transform methods are widely
used in TC [29]. In this case, the proposed method is designed based on the χ2

max method. Figure 4
shows the results of comparison of the proposed method with conventional feature transform methods.
The three subfigures in Figure 4 correspond to the 20NG, Reuters10, and TDT10 datasets, respectively.
Upper and lower figures represent micro- and macro-F1 results, respectively. In all cases, the proposed
method outperforms feature transformation methods. In most cases, when the number of transformed
feature is larger, feature transform method is getting worse. Due to nature of transform method that
finds largest variance, many features can aggravate performance. However, the proposed method is
stable when the number of terms is larger because of balance of term ranking and term similarity.
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Figure 4. Experimental comparison result of naive Bayes classifier with conventional feature transform
methods and the proposed method.

Figure 5 shows the results of comparison of the proposed method with more recent feature
selection methods. In this case, the proposed method is also designed based on the χ2

max method.
The three subfigures in Figure 5 correspond to the 20NG, Reuters10, and TDT10 datasets, respectively.
Upper and lower figures represent micro and macro-F1 results, respectively. In the case of the
20NG dataset, the proposed method shows better micro- and macro-F1 measures than other methods
regardless of the number of selected features. The second figure shows the result of Reuters10. When the
number of selected features is more than 300, the proposed method shows the best performance. In the
TDT10 dataset, the proposed method shows better micro-F1 measure than the other methods regardless
of the number of selected features. In macro-F1 measure, the proposed method and DFS show very
similar performance. However, the best performance is obtained in the proposed method when the
number of selected features is 160.
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Figure 5. Experimental comparison result of naive Bayes classifier with conventional feature
selection method.

Table 2 and 3 show the experimental results of each comparison method, when the number of
selected terms is 300. To obtain statistically meaningful result, we conducted a holdout cross-validation;
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70% of the documents in a given dataset were randomly chosen as the training set, and the remaining
30% of the documents were used as the test set. Each experiment was repeated 30 times, and the
average value was used to represent the classification performance according to each conventional
method. The best performance among the four comparison methods is represented in bold. † indicates
that the proposed method is statistically superior to all conventional methods based on the paired
t-test (0.05 significance level). In all cases, the proposed method shows better performance than the
conventional methods. In most cases, the proposed method shows statistically superior performance.

Table 2. Experimental micro-F1 results of naive Bayes classifier when the number of selected terms
is 300.

Datasets IGFSS [17] DFS [20] t-test (MAX) [6] Proposed

20NG 0.3757 0.5505 0.1901 0.5880 †

Reuters10 0.8246 0.8904 0.6293 0.8920 †

TDT10 0.8103 0.9411 0.3576 0.9419 †

Table 3. Experimental macro-F1 results of naive Bayes classifier when the number of selected terms
is 300.

Datasets IGFSS [17] DFS [20] t-test (MAX) [6] Proposed

20NG 0.3846 0.5665 0.1825 0.5880 †

Reuters10 0.6220 0.7696 0.3085 0.7794 †

TDT10 0.7502 0.9271 0.3122 0.9278

4.3. Analysis of the Proposed Method

In this subsection, we analyze the proposed method with Type I and II errors, and the execution
time. Type I and II errors are terms used in statistical hypothesis testing. A Type I error is the incorrect
rejection of a true null hypothesis, while a Type II error is the incorrect retention of a false alternative
hypothesis. In text categorization, Types I and II correspond to false positives and false negatives,
respectively. Tables 4–6 show Type I and II errors with 500 selected features and 10 topics for the
proposed method. In the 20NG dataset, the Type I error is nearly equal to the number of true positives
while the Type II error is very small compared to the number of true negatives. In the Reuters10 and
TDT10 datasets, Type I and II errors are much smaller than the numbers of true positives and negatives.
These results verify that the selected features of the proposed method reduce the classification error.

Table 4. Type I and II errors of the proposed method in 20NG dataset.

Topic Index 1 2 3 4 5 6 7 8 9 10

Type I error 211 346 371 344 184 192 227 106 80 123
Type II error 112 178 101 142 106 122 109 124 51 70
True Positive 206 211 290 250 277 268 273 271 346 327

True Negative 6770 6743 6769 6938 6923 6896 7004 7028 6985 6988

Table 5. Type I and II errors of the proposed method in Reuters10 dataset.

Topic Index 1 2 3 4 5 6 7 8 9 10

Type I error 15 31 34 64 76 67 26 32 35 25
Type II error 25 17 6 1 4 3 4 1 1 0
True Positive 1015 603 92 72 65 54 31 23 20 20

True Negative 1002 1406 1925 1920 1912 1933 1996 2001 2001 2012
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Table 6. Type I and II errors of the proposed method in TDT10 dataset.

Topic Index 1 2 3 4 5 6 7 8 9 10

Type I error 73 56 5 3 2 1 65 19 1 7
Type II error 27 7 3 0 0 1 1 0 0 0
True Positive 529 572 348 239 132 127 85 67 66 53

True Negative 1628 1602 1881 1995 2103 2108 2086 2151 2170 2177

We ran experiments in the MATLAB environment with an Intel Xeon processor and 16 GB memory.
The proposed method requires 143, 12, and 86 min to complete for 20NG, Reuters10, and TDT10
datasets, respectively. Owing to term similarity evaluation, the proposed method takes more time than
the classical feature selection methods such as χ2 statistics. If a low-rank approximation technique such
as Nyström method is used for the Q matrix, then time consumption can be reduced [30]. Reducing
the time complexity can be considered as an area of future work.

5. Conclusions

We present the potential of using term similarity when selecting features for TC. Experimental
results show that the proposed method outperforms conventional feature selection methods.
The proposed method considers not only the dependencies between terms and topics, but also the
dependencies among terms. Furthermore, the proposed method finds the optimal balance between
two dependencies for feature selection using a numerical optimization approach. We can conclude
that considering term similarity reduces the number of redundant terms selected and improves
categorization accuracy.

Despite the simplicity and superiority of the proposed method, it suffers from high processing
time requirements. Compared with simple conventional methods, the proposed method considers
more dependencies among terms, and this increases the processing time. Our future work will include
the study of methods to address this limitation.
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