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Abstract: Risk diversification is an important topic for portfolio managers. Various portfolio
optimization algorithms have been developed to minimize portfolio risk under certain constraints.
As an extension of the complex risk diversification portfolio proposed by Uchiyama, Kadoya, and
Nakagawa in January 2019 (Yusuke et al. Entropy. 2019, 21, 119.), we propose a risk diversification
portfolio construction method which incorporates quaternion risk. We show that the proposed
method outperforms the conventional complex risk diversification portfolio method.

Keywords: portfolio management; risk diversification; Hilbert transform; principal component
analysis; quaternion

1. Introduction

A combination of multiple financial assets generated as a result of deciding which and how much
to invest in multiple financial assets is called a portfolio. When constructing a portfolio, a method
for quantitatively determining the risk using a mathematical method and minimizing the risk under
certain constraints is called a portfolio optimization method. Many portfolio optimization algorithms
have been devised that can mathematically minimize portfolio risk. The most famous portfolio
optimization algorithm is the mean variance (MV) approach proposed by Markowitz [1]. The idea is
to reduce risk by combining different assets with low correlation, but it has been pointed out that the
weight of a specific asset may become too high [2].

A risk parity (RP) portfolio is a portfolio which is constructed to equalize the contribution of
each asset to the overall portfolio risk [3]. On the other hand, it has been pointed out that risk parity
portfolios have a uniform risk contribution in each asset, but this does not necessarily diversify the
sources of the risk.

Meucci [4] proposed a new measure of portfolio risk variance called the variance index. Maximum
risk diversification (MRD) portfolios have been proposed, which use principal component analysis to
construct a principal component portfolio which is uncorrelated from the original assets and equalizes
the risk contribution of each principal component portfolio to the portfolio risk. MRD portfolios
have also been confirmed to outperform MV portfolios and to be able to allocate the risk contribution
of assets [5]. After the concept and method for the MRD portfolio construction were proposed, the
method was tested and has been used both in academia and industry. Recently, in fact, the availability
of MRD portfolio construction has been reported in an empirical test for commodities [6].

The conventional portfolio construction methods described above are constructed based on
the covariance matrix estimated from the time-series of the return of the assets. However, this
covariance matrix cannot incorporate dynamic information of the time-series, in terms of the return
of the assets. Therefore, Uchiyama, Kadoya, and Nakagawa proposed a method called complex
valued risk diversification (CVRD) [7]. The traditional risk diversification portfolio was inspired
by empirical orthogonal function methods developed in the field of meteorological physics. In the
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empirical orthogonal function method, the complex orthogonal function is determined by performing
principal component analysis on the Hermitian matrix of the analytic signal, as an evolution of
the method that uses principal component analysis of the Hermitian matrix of the time-series data
(corresponding to the covariance matrix of the returns in the risk diversification portfolio). As the
complex orthogonal function includes phase information in addition to amplitude, it is possible
to extract dynamic information relating to a time delay inherent in the target time-series data.
After forming the complex variable time-series from Hilbert-transformed return series of each asset,
calculating the complex valued matrix, and constructing the risk diversification portfolio, the authors
realized risk diversification including dynamic risk information while outperforming the traditional
portfolio construction methods.

In this paper, we propose the quaternion valued risk diversification (QVRD) method, which
extends CVRD by naturally extending the complex valued covariance matrix to a quaternion valued
covariance matrix. We use a quaternion signal, which has a four-dimensional information of amplitude
and three phases, in order to try to more precisely find signal movements which cannot be observed in
a complex signal.

2. Conventional Methods

In this section, we review conventional portfolio construction methods. We use the
following notation:

• M ∈ N : the number of assets
• {p(m)

t }0<t<T : mth asset prices

• r(m)
t =

p(m)
t+1 − p(m)

t

p(m)
t

: the return of mth asset prices

• Σ = E[(rt − E[rt])(rt − E[rt])T ] : the covariance matrix
• w = (wm) : a portfolio (vector)
• Rt = ∑M

m=1 wmrm
t : the return of the portfolio w

• σ2 = wTΣw : the variance of the portfolio w

2.1. Mean Variance Portfolio

Markowitz first introduced MV portfolio construction as a sophisticated method in modern
portfolio theory. In this theory, the risk of an asset is defined as the standard deviation of the return.
Given µ ∈ R and {pm}, the MV optimization with expected return µ can be described as follows:

Problem 1. Find the portfolio w which minimizes σ2 subject to Rt = µ.

We can solve this problem using the Lagrange multipliers method, under some constraint with
respect to the portfolio w.

2.2. Risk Parity Portfolio

It has been pointed out that the asset class of a MV portfolio may not be fully allocated. To
disperse the risk contributions of portfolios, RP portfolio construction has been proposed. The key
idea of an RP portfolio is equalizing the risk of contributions.

The risk contributions of the mth asset are derived from the variance as follows:

σm = wm
∂σ

∂wm
= wm

(Σw)m

σ
.

Equalizing the risk contributions (minimize
(

σm −
σ

M

)
), we have the RP optimization:
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Problem 2. Find the portfolio w which minimizes ∑M
m=1

(
wm −

σ2

(Σw)m M

)
.

2.3. Maximum Risk Diversification Portfolio

In general, the origins of the risks of assets seem to be entangled; namely, the covariance matrix
of the return of a portfolio contains non-diagonal components. To unravel entangled risks, principal
component analysis has been incorporated into portfolio constructions [4].

As the covariance matrix Σ is symmetric, it can be transformed into a diagonal matrix by using an
appropriate orthogonal matrix:

Λ = UTΣU = diag{λm}.

The eigenvalues {λm} introduce a probability distribution of risk contribution. Thus, the entropy
H with respect to the probability distribution is defined and is employed as the objective function of
the MRD portfolio construction:

Problem 3. Find the portfolio w which maximizes the entropy H.

As is well-known, the principle of maximum entropy introduces the most diversified probability
distribution under given constraints. In this case, such a probability distribution of risk contributions
is desirable for allocating the origin of risks related to the assets of a portfolio.

3. Complex Valued Risk Diversification Portfolio Construction

In this section, we review the CVRD method, according to Uchiyama, Kadoya, and Nakagawa [7],
which is the conventional method used for comparison in this paper.

3.1. Complex Hilbert Transform and Analytic Signal

Definition 4 (Complex Hilbert transform). The Hilbert transform of a real signal x(t) on t ∈ [0, ∞) is
defined by:

H[x(t)] =
1
π

∫ ∞

0

x(τ)
t− τ

dτ, (1)

where the improper integral is understood in the sense of Cauchy’s principal value [8]. In practice, empirical
time-series are recorded at a certain sampling rate ∆t, which introduces a discrete time tn = n∆t, with n being
an integer. The Hilbert transform for a discrete time-series is given by:

HD[xk] = −i sgn
(

k− N
2

) N−1

∑
n=0

xnei 2πn
N , (2)

where sgn(·) is the sign function [9].

Definition 5 (Analytic signal). For a real signal x(t), we say x(t) + iH[xt] is the analytic signal of x(t).

3.2. Procedure

In this section, we review the procedure of CVRD using the following notation:

• M ∈ N : the number of assets
• {p(m)

t }0<t<T : mth asset prices

• r(m)
t =

p(m)
t+1 − p(m)

t

p(m)
t

: the return of mth asset prices

• w ∈ ∆n := {(wm)|wm > 0, w1 + · · ·+ wm = 1} : a portfolio (vector)

We apply the Hilbert transform to the return of the portfolio and obtain the analytic signal as:
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zt = rt + iHD[rt]. (3)

As well as the principal component analysis for real valued time-series, the analytic signal zt

provides a complex valued covariance matrix, defined as:

Cz = E[(zt − E[zt])(zt − E[zt])
∗], (4)

where z∗t := zt
T . As Cz is a Hermitian matrix, it is diagonalizable with unitary matrix U. Note that Cz

is a positive definite Hermitian matrix. The eigenvalues of Cz are positive real values (including zeros),
and the unitary matrix U transforms Cz into:

U∗CzU = Λ, (5)

where Λ is an orthogonal matrix which consists of the eigenvalues λn of Cz. The portfolio risk can be
estimated as vm := |w̃m|2λm under w̃ = U∗w, with w̃m being the mth component of the transformed
weight coefficient w̃, and the probability distribution for vm is defined by:

pm =
vm

∑M
m=1 vm

. (6)

From this probability distribution, the corresponding entropy can be introduced as:

H = −
M

∑
m=1

pm log pm. (7)

In general, the weight coefficients of portfolios are constrained based on trading strategies. Thus,
we constructed a Lagrangian function with the entropy H and constraint functions gl for weight
coefficients as:

L = H −
L

∑
l=1

µl gl(w̃), (8)

where µl is a Lagrange multiplier. Optimizing L with respect to w ∈ Rn gives the weight coefficients
of the expected CVRD portfolio.

4. Quaternion Valued Risk Diversification Portfolio Construction

In this section, we review quaternions [10] and discuss the procedure for building a quaternion
valued risk diversification portfolio.

4.1. Quaternion

Definition 6 (Quaternion, Conjugate). We define the R-algebra H by a four-dimensional real vector space:

H = {x0 + x1i + x2 j + x3k : x0, x1, x2, x3 ∈ R} ,

with the following multiplication operations:

i2 = j2 = k2 = ijk = −1.

An element of H is called a quaternion. For a quaternion x = x0 + x1i + x2 j + x3k, the quaternion x =

x0 − x1i− x2 j− x3k is called the conjugate of x.

Remark 7. We note some basic remarks:

• H = R⊕Ri⊕Rj⊕Rk ' C⊕Cj ' R4.
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• Multiplication of two quaternions is non-commutative (e.g., ij = −ji).

Definition 8 (Adjoint, Eigenvalue, Hermitian matrix). Let n and m be natural numbers. We denote
by M(n, m,H) the set of n × m matrices and by M(n,H) the set of n-dimensional square matrices with
quaternion coefficients:

• For a matrix X = {xij} ∈ M(m, n,H), the matrix X∗ := XT
= {xji} ∈ M(n, m,H) is called the adjoint

of X.
• For a matrix X ∈ M(n,H), we say λ ∈ H is a (right) eigenvalue and v ∈ Hn \ {0} is an eigenvector of X

if Xv = vλ.
• A matrix X ∈ M(n,H) is called a Hermitian matrix if X = X∗.

Fact 9 ([10]). A Hermitian matrix is diagonalizable and its eigenvalues are real.

4.2. Quaternion Fourier Transform and Quaternion Signal

In this section, we review the quaternion Fourier transform, according to Bihan, Sangwine, and
Aug [11].

Definition 10. For a complex valued function z(t), the quaternion Fourier transform is defined as:

Fj[z](ν) =
∫ ∞

−∞
z(t)e−j2πνtdt.

The inverse transform is defined as:

F−1
j [z](t) =

∫ ∞

−∞
z(ν)ej2πνtdν.

As well as the complex case, a quaternion Hilbert transform can be defined, as follows:

Definition 11. With z(t) being a complex signal, the quaternion Hilbert transform Hj[z(t)] is defined as:

Hj[z(t)] = F−1
j [−j sgn(ν)Fj[z]](ν).

The quaternion signal (see [9] (hypercomplex signal representation)) is defined as:

ẑ(t) = z(t) + jHj[z(t)]

4.3. Procedure

With the preparations so far, we can see that the procedure 2.2 can be appropriately generalized
to quaternions. Specifically, the procedure can be changed as follows:

1. After derivation of the analytic signal (3), transform it to the quaternion signal:

ẑt = z(t) + jHj[z(t)].

2. Instead of the complex valued covariance matrix (4), we use the quaternion valued covariance
matrix, defined as:

Qẑ = E[(ẑt − E[ẑt])(ẑt − E[ẑt])
∗].

Note that Qẑ is a positive definite Hermitian matrix.
3. By Fact 9, the matrix Qẑ is diagonalizable and its eigenvalues are real; namely,

U∗QẑU = Λ.
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Use this instead of Equation (5).

5. Empirical Analysis

In this section, we test the performance of the proposed quaternion valued risk diversification
portfolio by comparing it with the complex valued risk diversification portfolio method.

5.1. Data Description

To evaluate the performance of each portfolio, we selected four commodities, six indices, and five
global currencies (to US dollar), as shown in Table 1. All daily historical data were collected during
January 2005 to November 2019 and transformed into returns to estimate the covariance matrices. The
descriptive statistics of the returns of the assets are shown in Table 2.

Table 1. Asset list.

Name Type Definition
TX1 Commodity 10 Year T-Note Futures
XM1 Commodity Australian 10 Year Bond
CN1 Commodity Canadian Government 10 Year Note
G1 Commodity Gilt UK
SP1 Index S&P500
XP1 Index S&P/ASX 200(Austraria)
PT1 Index S&P/TSX 60 Index(Canada)
GX1 Index DAX(German)
Z1 Index FTSE100(UK)
NK1 Index Nikkei225(Japan)
AUD Currency AUD/USD
CAD Currency CAD/USD
EUR Currency EUR/USD
GBP Currency GBP/USD
JPY Currency JPY/USD

Table 2. Descriptive statistics of the dataset.

Mean Standard Deviation Skewness Kurtosis
TX1 –0.00073 0.0209 0.0412 3.0058
XM1 –0.0293 0.0166 0.3360 5.6617
CN1 –0.00796 0.01996 0.228 2.9235
G1 –0.01266 0.0271 0.6344 10.6518
SP1 0.031 0.0114 –0.1345 12.6226
XP1 0.0187 0.0102 –0.35485 5.1535
PT1 0.0235 0.0107 –0.4535 13.110
GX1 0.03747 0.01287 0.12318 7.36026
Z1 0.01708 0.01096 0.01678 9.2329
NK1 0.02847 0.01424 –0.31261 9.06316
AUD –0.0005 0.0079 –0.57578 13.3238
CAD –0.00085 0.0058 0.2659 3.2109
EUR –0.0039 0.00567 0.2659 3.2109
GBP –0.0085 0.00588 –0.4954 11.6138
JPY 0.0003 0.00613 0.36956 4.8302

5.2. Performance Test of Portfolios

In order to implement the portfolio optimization methods, we used a complex valued empirical
covariance matrix for CVRD portfolio construction and a quaternion valued empirical covariance
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matrix for QVRD portfolio construction. It has been pointed out, in the random matrix theory, that the
empirical covariance matrix cannot infer the true value of a covariance matrix [12–14]. Nevertheless,
the empirical covariance matrix has been used to construct portfolios in industry, due to ease of
estimation for practitioners. Based on the correction formula proposed in [14], the empirical return
of the portfolio is 1/

√
1− p/n times larger than its true value, where p is number of assets in the

portfolio and n is the length of the historical data. In this case, p = 15 and n = 252 and, so, the correction
ratio was evaluated as 1/

√
1− p/n ≈ 1.031. Thus, we believe that the empirical covariance matrix

can be used to better infer the true covariance matrix.
All portfolios were rebalanced on a monthly basis, and the one year daily data from the analyzing

month was used for each covariance matrix estimate. Transaction costs were considered as 10 bps per
transaction. Cumulative returns, standard deviations, and Sharpe ratios were used as performance
indicators. These are all commonly used indicators, in practice. Although Sharpe ratios are commonly
used, the standard deviation, which was adopted in the Sharpe ratios, is not a good measure of risk as
it penalizes upside deviation, as well as downside deviation. Farinelli and Tibiletti [15] proposed a FT
ratio that exclusively looks at the upper and lower partial moments by comparing the favorable and
unfavorable events. Formally, for any prospect X, its FT ratio is defined as:

φFT,X(η) =
(E[(X− η)

p
+])

1/p

(E[(η − X)
q
+])

1/q
, (9)

where x+ = max0, x and η is called the return threshold. For any investor, return below their return
threshold is considered loss and return above is gain. Furthermore, p and q are positive values which
represent an investor’s degree of risk aversion. Thus, the FT ratio is the ratio of average gain to average
loss, each raised by some power index to proxy for the investor’s degree of risk aversion. We used 0
for the threshold return and two different combinations of p and q.

For moderate investors, we used p = q = 1, which is called the Omega ratio. For conservative
investors, we used p = 0.5 and q = 2 [16,17].

Table 3 shows the cumulative return, monthly return standard deviation, Sharpe ratio, omega
ratio, and FT ratio for each portfolio. The QVRD portfolio outperformed the RP and the MRD and the
CVRD portfolio in terms of return, Sharpe ratio, omega ratio, and FT ratio.

Table 4 shows the average weight of each asset for each portfolio. The major difference between
the QVRD portfolio and the CVRD portfolio is the weight on the currency, which was basically a lower
weight for the QVRD.

Figures 1–6 show the weight sequences of each asset corresponding to the RP, CVRD, and QVRD
portfolios for each term. It can be seen that the weight changes were more gradual in the QVRD
portfolio than in the CVRD portfolio. Therefore, it was considered that the rebalancing cost can be
further reduced.

Figures 7–9 show the cumulative returns for all terms, from 2005 to 2010, and from 2011 to 2019,
respectively, for each approach. The QVRD portfolio constantly outperformed the other approaches.
In particular, the QVRD portfolio significantly outperformed each portfolio from 2017. It is likely that
expanding to quaternions captured the more complex risk characteristics of the financial assets.

Table 3. Performance measures.

RP MRD CVRD QVRD
Return 0.061 –0.141 0.420 1.232
Standard Deviation 0.053 0.073 0.064 0.078
Sharp Ratio 0.022 –0.037 0.126 0.331
Omega Ratio 0.925 0.816 1.015 1.016
FT Ratio 0.388 0.385 0.496 0.512
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Table 4. Averaged weights of the portfolios.

RP(%) MRD(%) CVRD(%) QVRD(%)
TX1 6.9 11.5 12.1 13.4
XM1 6.9 9.5 8.9 6.1
CN1 5.6 9.6 9.3 12.3
G1 6.7 12.1 10.1 13.8
SP1 6.4 8.4 7.9 7.1
XP1 6.5 7.5 7.7 5.0
PT1 6.4 7.7 5.5 5.9
GX1 6.6 7.0 5.9 8.9
Z1 6.3 6.2 5.6 7.9
NK1 6.5 4.3 6.9 7.1
AUD 7.1 4.1 5.6 3.3
CAD 6.7 4.4 4.5 3.5
EUR 6.6 4.4 4.2 2.0
GBP 7.1 4.9 3.9 2.3
JPY 7.1 5.1 4.1 1.5

Figure 1. The allocation of the assets in the risk parity (RP) portfolio construction from 2005 to 2012.
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Figure 2. The allocation of the assets in the risk parity (RP) portfolio construction from 2013 to 2019.

Figure 3. The allocation of the assets in the complex valued risk diversification (CVRD) portfolio
construction from 2005 to 2012.
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Figure 4. The allocation of the assets in the complex valued risk diversification (CVRD) portfolio
construction from 2013 to 2019.

Figure 5. The allocation of the assets in the quaternion valued risk diversification (QVRD) portfolio
construction from 2005 to 2012.
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Figure 6. The allocation of the assets in the quaternion valued risk diversification (QVRD) portfolio
construction from 2013 to 2019.

Figure 7. The cumulative returns of the RP and the MRD and the CVRD and the QVRD portfolio
construction.
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Figure 8. The cumulative returns of the RP and the MRD and the CVRD and the QVRD portfolio
construction from 2005 to 2010.

Figure 9. The cumulative returns of the RP and the MRD and the CVRD and the QVRD portfolio
construction from 2011 to 2019.
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6. Conclusions

The complex risk diversification portfolio method, proposed by Uchiyama, Kadoya, and
Nakagawa in January 2019 [7], was the first to include dynamic asset information in portfolio
optimization. We tried to include more complex dynamic information in portfolio optimization
by naturally extending complex risk to quaternion risk.

The conventional method, which uses the Hilbert transform, is equivalent to performing a
two-dimensional amplitude and phase analysis by viewing the real signal as a projection of a complex
signal. In this paper, we use a quaternion signal, which has four-dimensional information of amplitude
and three phases. Just as we can detect more detailed signal movements by considering complex
signals, we can find signal movements more precisely that cannot be observed in a complex signal.
From the results, it can be said that it is better to use the quaternion signal, compared to the complex
one, especially after 2013. It is considered that, as the global financsial markets became more complex
after 2013, risk properties have become harder to detect.

As a result, the QVRD portfolio outperformed the CVRD portfolio in key performance indicators,
such as cumulative return, Sharpe ratio, and omega ratio. In practice, changing the time period for
estimating the quaternion valued covariance matrix or changing the limits of portfolio construction
enables more optimal portfolios for investors.

Furthermore, we can consider the dynamic risks using a Clifford algebra, in principle, in the same
way. In the future, we may extend the concept of the risk to Clifford algebras.

Author Contributions: Conceptualization, S.S.; Data curation, S.S.; Formal analysis, K.M.; Methodology, S.S.
and K.M.; Project administration, S.S.; Resources, S.S.; Software, K.M.; Validation, S.S.; Visualization, S.S.;
Writing-original draft, S.S.; Writing-review and editing, S.S. and K.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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MV Mean-Variance
RP Risk-Parity
MRD Maximum Risk Diversification
CVRD Complex Valued Risk Diversification
QVRD Quaternion Valued Risk Diversification
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