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Abstract: Massive multiple-input multiple-output (M-MIMO) is a substantial pillar in fifth generation
(5G) mobile communication systems. Although the maximum likelihood (ML) detector attains the
optimum performance, it has an exponential complexity. Linear detectors are one of the substitutions
and they are comparatively simple to implement. Unfortunately, they sustain a considerable
performance loss in high loaded systems. They also include a matrix inversion which is not
hardware-friendly. In addition, if the channel matrix is singular or nearly singular, the system
will be classified as an ill-conditioned and hence, the signal cannot be equalized. To defeat the
inherent noise enhancement, iterative matrix inversion methods are used in the detectors’ design
where approximate matrix inversion is replacing the exact computation. In this paper, we study a
linear detector based on iterative matrix inversion methods in realistic radio channels called QUAsi
Deterministic RadIo channel GenerAtor (QuaDRiGa) package. Numerical results illustrate that the
conjugate-gradient (CG) method is numerically robust and obtains the best performance with lowest
number of multiplications. In the QuaDRiGA environment, iterative methods crave large n to obtain
a pleasurable performance. This paper also shows that when the ratio between the user antennas
and base station (BS) antennas (β) is close to 1, iterative matrix inversion methods are not attaining a
good detector’s performance.

Keywords: 5G; massive MIMO; detection; iterative matrix inversion methods; QuaDRiGa

1. Introduction

The number of mobile devices is remarkably growing year over year. For instance, the number of
mobile devices reached 8.6 billion devices at the end of 2017, up from 7.3 billion devices at the end
of 2014 and it is expected to exceed 12.3 billion devices at the end of 2022. Furthermore, the global
mobile data traffic was almost 15 exabytes per month at the end of 2018, up from 3.7 exabytes per
month at the end of 2015 and it is projected to be 77.5 exabytes at the end of 2022. It is also foreseeable
that over 400 million devices are going to be fifth generation (5G) capable and about 12% of a global
mobile data will be on the 5G cellular connectivity by 2022 [1–3]. 5G networks will attain 1.5 billion
subscriptions in 2024 [4]. Massive multiple-input multiple-output (M-MIMO), together with other
technologies, is a auspicious technology to meet high data rate, ultra-low latency, broader coverage
5G system requirements [5]. M-MIMO can also reinforce the spectrum and power efficiencies [6–8].
It also increases the throughput of wireless networks. For instance, when the number of user terminals
is large, channel time spent on channel state information (CSI) feedback can bury the channel time
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spent of transmission of data. Therefore, a scalable user selection mechanism has been proposed in
dense use population to enhance the overall throughput [9]. In addition, distributed MIMO eliminates
the interference and improves the throughput in wireless communication networks [10]. The capacity
enhancement is also possible by furnishing the base station (BS) with extra antennas [11]. In [12],
influence of different number of antennas on the performance is comprehensively illustrated. However,
along with attractive advantages of the M-MIMO system, the optimal detection methods such as the
maximum likelihood (ML), encounter a high complexity in case of higher constellations (i.e., 64QAM)
and higher number of antennas (> 16 and more), which prohibits the ML in realization. The literature
is rich with M-MIMO detection schemes to balance the performance and the computational complexity.
For example, a survey dated 2015 [13] offered a comprehensive illustration of MIMO detection basics
and concepts, and illustrated the half-a-century history of detection schemes for MIMO technology.
Another comprehensive paper can be found [14] wherein an intensive comparison between linear and
non linear methods-based M-MIMO detection have been provided. For instance, a detector based
on sphere decoding (SD) can be found in [15–18]. The fixed-complexity SD would also suffer from
high complexity with large number of antenna elements [19]. In [20], dominance conditions are taken
into consideration to propose an efficient king SD algorithm where the computational complexity is
significantly reduced. In [21], the branch-and-bound algorithm is also developed with the dominance
conditions where the channel matrix properties are exploited to reduce the complexity. In [22],
SD and single tree-search scheme is proposed where extrinsic log-likelihood ratios (LLRs) are used to
achieve convinced balance between the performance and the complexity. Approximate expectation
propagation (EP) is proposed in [23]. In [24], a detector based on likelihood ascent search (LAS)
was proposed for M-MIMO. Although they achieve a good performance, the complexity is still high.
A class of linear detection methods attracted the researchers’ attention because of low complexity.
However, linear detectors have a considerable performance loss and high complexity in ill-conditioned
environment. They also affords inverse of the matrix which is not a hardware-friendly. In the literature,
approximate matrix inversion methods are illustrated to avoid the burden of exact computation of the
matrix inversion [25–29]. In [30,31], a discrete sorting optimization scheme with QR decomposition is
proposed for UL M-MIMO system where all simulation was conducted in QuaDRiGa.

In this paper, several iterative matrix inversion methods are exploited to detect the signal and is
illustrated in real scenarios. QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) package [32]
is used in the simulation to compare among iterative matrix inversion methods. In realistic scenario,
we provide a comparison between the Neumann series (NS), the Gauss-Seidel (GS), the successive
overrelaxation (SOR) method, the Jacobi (JA) method, the Richardson (RI) method, the optimized
coordinate descent (OCD) method, and the conjugate-gradient (CG) method. In the QuaDRiGA,
large n is required to obtain an acceptable performance. This paper also shows that when β ≈ 1,
iterative matrix inversion methods are not attaining a good performance, where β is the ratio between
the user antennas and BS antennas.

This paper is arranged as: Section 2 illustrates the M-MIMO model, definitions, and fundamentals
of linear detectors. Section 3 exhibits the approximate matrix inversion methods. Section 4 shows the
complexity analysis of iterative matrix inversion methods. In Section 5, numerical results are presented.
Section 6 presents the future trend, research challenges, and concludes the paper. Table 1 illustrates the
notations and corresponding full meaning.
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Table 1. Notation and corresponding full meaning.

Notation Meaning
β ratio between user antennas and BS antennas
5G fifth generation
K number of user terminals
N number of BS antennas
x transmitted symbol vector
y received symbol vector
S(.) slicer
n additive white Gaussian noise (AWGN)
H channel matrix
OK decision variables
A equalization matrix
H+ Moore-Penrose pseudo-inverse
G Gram matrix
D Diagonal matrix
E non-diagonal matrix
L lower triangular matrix
U upper triangular matrix
ω relaxation parameter
n number of iterations

2. Overview

The fundamental communications theoretic concepts of MIMO detection date back to 1960s,
although the term was not used at that time. During the last half a century, significant research efforts
were made on MIMO detection by the wireless communication researchers [33]. A detail discussion on
the history of MIMO detection is presented in [13]. A plethora of MIMO detector implementation can
be found in the literature. The first MIMO detector implementation is presented in [34]. Wong et al.
exploited a breadth first k-best tree search MIMO detection for a 4× 4 MIMO configuration. Garett et al.
presented a soft output optimal detector using a parallel architecture [35]. Garett et al. also proposed
a depth first sphere decoding (SD) algorithm for 4× 4 MIMO systems and 16-QAM [36]. The first
minimum-mean square estimation (MMSE) implementation can be credited to Burg et al who proposed
an architecture of the 4× 4 MMSE in [37]. Burg et al. also proposed the first architecture for the lattice
reduction algorithm [38]. The long-term evolution (LTE) specific implementations can be found,
e.g., in [39,40]. M-MIMO or large scale MIMO, is an expansion of the ordinary small scale MIMO
systems [41,42] where large number of antennas at the BS avails concurrently numerous users with
an elasticity to select what users to schedule for reception at any moment. The popular M-MIMO
connotation postulates that the user terminals have a solely antenna (the M-MIMO is predominantly
inaccurate, because of the single-antenna element. The system is a multiple-input single-output (MISO)
downlink or a multiuser single-input multiple-output (SIMO) uplink (UL). As is accustomed in the
literature, M-MIMO system will be used in this paper to refer both single and multiple antenna
terminal) and that the number of served antennas at the user terminals is remarkably smaller than
the number of antennas at the BS. M-MIMO technology is one of the key technologies in 5G and
beyond 5G communication systems. M-MIMO system is substantial in implementation of many
5G applications such as the massive machine-type communications (mMTC) where large number
of mobile apparatuses is sporadically active [43,44]. In M-MIMO systems, there are an interest in
linear detectors because of relative simplicity and low complexity. In this section, the linear detection
mechanism is illustrated. It is assumed that the massive MIMO BS antennas N is serving K single
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antenna user terminals where N � K. The channel entries between N BS antennas and K users forms
a channel matrix (H) as

H =


h11 h12 · · · h1j
h21 h22 · · · h2j

...
...

...
...

hi1 hi2 · · · hij

 , (1)

where hij presents the channel coefficients (gain\loss) between ith receive antenna and jth transmit
antenna. Each user transmit its symbols individually. The symbol vector x = [x1, x2, ....., xK]

T presents
the transmitted symbols.The corrupted vector y = [y1, y2, ....., yN ]

T is received by the BS receives.
This system can be modelled as

y = Hx + n, (2)

where n is the additive noise. The column vectors of H are assumed to be asymptotically orthogonal.
Equation (2) is mostly used in detection approaches, where the channel state information (CSI) is
supposed to be perfect at the BS with good synchronization. It is noteworthy that if the instantaneous
values of H elements are known from the channel estimation, the detection of x belongs to the family
of coherent detection. On the other hand, if the instantaneous channel state estimation is averted,
the detection of x is said to be a noncoherent scheme. It should be noted that noncoherent detectors
have high computational complexity and an enormous performance loss compared to the coherent
detectors because of a degradation in the power efficiency. In M-MIMO detector, the transmitted vector
x is retrieved from the received vector y. The ML sequence detection (MLSD) obtains the optimum
solution but it exhaustively searches all possible signals as

x̂ML = arg min
x∈OK

‖y−Hx‖2
2. (3)

The ML scheme has an exponential computational complexity in the number of decision variables
OK and therefore, it is prohibitively complex in massive MIMO.For example, if a transmitter has
four antennas and using 64-QAM scheme, it needs a 16.7× 106 comparisons if the ML detection is
used. Linear detectors can solve the problem in (3) with convex optimization methods to obtain the
quasi-optimal solution. They are relatively simple in implementation, but they afford a considerable
performance loss in high loaded systems. Furthermore, if the system size is large, the required matrix
inversion becomes complex and approximations may be needed. In linear detectors, received signal
y is multiplied with the equalization matrix AH , x̂ = S(AHy), followed by a slicer S(.) to quantize
every element to the closest neighbour in the constellation [45]. In this section, we present the most
popular linear detectors, i.e., the matched filter (MF), the zero-forcing (ZF) and the MMSE.

2.1. MF-Based Detector

In MF, the estimated signal is given as

x̂MF = S(HHy). (4)

The MF works truly when N is much larger than K but it obtains the worst performance compared to
other linear detectors. The MF-based detector maximizes the received signal-to-noise ratio (SNR) of
each stream by ignoring the impact of interference. In case of ill-conditioned channels, the performance
is badly deteriorated for a square M-MIMO system [46].

2.2. ZF-Based Detector

In the ZF-based detector, the aim is to make the received signal-to-interference ration (SINR) as
large as possible. However, the channel matrix H is inverted and hence, taking off the impact of the
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channel [47]. The equalization matrix depends on the Moore-Penrose pseudo-inverse (H+) and it is
given as

AH
ZF = (HHH)−1HH = H+. (5)

However, to avoid the square channel matrix (H) scenario, β has to be small. In the ZF-based detector,
the signal can be estimated as

x̂ZF = S(AH
ZFy). (6)

The ZF detector discards the noise effects and it works fairly in interference-limited scenarios with
high computational complexity. In a small-valued coefficient channel, the ZF- and MF-based detectors
may have a noise enhancement. Therefore, the minimum mean square error (MMSE)-based detector is
proposed to take the noise effect in the equalization process.

2.3. MMSE-Based Detector

In an MMSE detector, the mean square error (MSE) between x and HHy is minimized as

AH
MMSE = arg min

H∈N×K
E‖x−HHy‖2. (7)

The MMSE detector takes into consideration the impact of noise as

AH
MMSE =

(
HHH +

K
SNR

I
)−1

HH , (8)

where I is the identity matrix. In MMSE detector, the signal is estimated as

x̂MMSE = S(AH
MMSEy). (9)

The MMSE in (8) relies on a reduction of the noise enhancement and needs an awareness of the SNR [48].
Thus, the MMSE outperforms the ZF- and MF-based detectors. As mentioned earlier, the column vectors
of H are asymptotically orthogonal, thus, the MMSE detector achieves near-optimal performance.

3. Matrix Inversion Methods

A matrix inversion of the Gram matrix (G) is mandatory to estimate the signal. However, the
computational complexity of linear detectors grows as the size of M-MIMO system rises. In 2013, a
new class of detection techniques for M-MIMO is introduced by Wu et al. and approximate matrix
inversion method-based UL detector is illustrated in [49]. This detection class has been the most
popular of detectors since its initiation in 2013. In M-MIMO, the channel hardening is used to repeal
the characteristics of a small scale fading and is being dominant when the number of receive antennas
(N) is much higher than the number of served users (K). For instance, the diagonal entries of HHH grow
gradually stronger compered to the non-diagonal entries when the size of the M-MIMO system gets
larger [23]. The diagonlisation of the elements in the Gram matrix G = HHH, where the non-diagonal
entries lean to zeros and diagonal components are close to N [50,51]. To compute the G−1, a complexity
of O

(
N3) is required, which is not hardware-friendly for M-MIMO. This section presents the concepts

of several iterative matrix inversion methods which can be used in low-complexity detectors. It also
discusses the pros and cons of each method.

3.1. Neumann Series

Neumann series (NS) is a leading solution to approximate the matrix inversion in M-MIMO
detector. It takes the benefit of iterative structure to progressively enhance the computing precision of
the matrix inversion [52]. The Gram matrix G = HHH decomposed into G = D + E, where D is the
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main diagonal entries and E is the non-diagonal elements [53,54]. The Gram matrix inversion can be
approximated as

G−1 =
∞

∑
i=0

(
−D−1E

)i
D−1, (10)

which converges to G−1 if limi→∞
(
−D−1E

)
= 0, is fulfilled. In real time applications, a sum of finite

terms (i) is exploited (10) and hence, fixed number of iterations (n) is required where n is critical in
obtaining good accuracy of the matrix inverse which affects the complexity. In [55], channel-aware
decision fusion over MIMO channels is illustrated. low complexity sub optimal solution is proposed
based on the NS solution. However, it should be noted that the NS method has a abundant performance
loss when β ≈ 1. In addition, the convergence of NS method is slow with large number of user
terminals. In other words, higher complexity is required which leads to inaccurate matrix inversion
and hence, the detector experiences a significant loss.

3.2. Gauss-Seidel

The GS or the successive displacement, is an iterative method to avoid the matrix inversion [56].
In each iteration, it uses the most up-to-date estimation from the previous iteration. In the GS detector,
the Hermitian positive definite matrix (A) is decomposed into A = D + L + U where D, L and U are
the diagonal elements, the strictly lower triangular entries, and the strictly upper triangular entries,
respectively. GS iterative method can estimate the signal (x̂) as

x̂(n) = (D + L)−1
(

x̂MF −Ux̂(n−1)
)

, n = 1, 2, · · · (11)

where x̂MF is the output of MF method. To obtain fast convergence rate and hence, reduce the complexity,
initialization is mandatory in GS detector. If the initial values x̂(0) are not well known, they can be
considered zeros [57]. The GS detector is not desired in parallel implementation because of the internal
sequential iterations structure [58]. The GS detector achieves better performance than the NS detector
with lower complexity.

3.3. Successive Overrelaxation

The GS detector has a performance loss. Therefore, the SOR method is used because of the
flexibility to achieve a good performance [59]. The SOR method is also an iterative method to avoid
matrix inversion where the signal is estimated as

x̂(n) =
(

1
ω

D + L
)−1 (

x̂MF +

((
1
ω
− 1
)

D−U
)

x̂(n−1)
)

, (12)

where ω is the relaxation parameter and has a considerable impact in obtaining a high performance
within a small n. A suitable value of ω is required for convergence. If ω = 1, the SOR method will
be equivalent to the GS method. In general, the SOR method is convergent when 0 < ω < 2 [60].
In addition, the GS and SOR methods are not readily implemented on parallel computing platforms
because the triangular systems have to be solved at every iteration.

3.4. Jacobi Method

In JA method, the signal estimation in a diagonally dominant system is obtained as

x̂(n) = D−1
(

x̂MF + (D−A) x̂(n−1)
)

, (13)

which holds if:
lim

n→∞

(
I−D−1A

)n
= 0. (14)
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The initial estimation (x̂(0)) can be used as

x̂(0) = D−1x̂MF. (15)

The JA detector obtains a good performance when β is small. In general, it can be easily implemented
for parallel computation. In numerical methods, it is well known that the convergence speed of the JA
method is slower than the convergence speed of the GS and SOR methods. In [61], the convergence
speed of the conventional JA method has been improved by a decision-aided JA method.

3.5. Conjugate-Gradient Method

The CG is another method to avoid the matrix inversion and is an example par excellence of a
Krylov subspace method. The CG detector can estimate the transmitted signal as

x̂(n+1) = x̂(n) + α(n)p(n), (16)

where p(n) is the conjugate direction with paying attention to A, i.e.,(
p(n)

)H
Ap(j) = 0, f or n 6= j, (17)

and

p(n) = x̂(n)MF +
x̂(n)MF.x̂(n)MF

x̂(n−1)
MF .x̂(n−1)

MF

p(n−1), (18)

and α(n) is a scalar parameter as

α(n) =
x̂(n)MF.x̂(n)MF

Ax̂(n−1)
MF .x̂(n−1)

MF

. (19)

The CG method is numerically robust and can operate much better under close to ill-conditioned
channel than the other algorithms [62]. It usually performs better than the NS and JA methods. It is also
implemented in Xilinx Virtex-7 FPGA for a 128× 8 in [63]. However, it suffers from low parallelism
and considerable correlation issues [64].

3.6. Richardson Method

In the RI method, symmetric matrices are used and defined as positive at their execution.
Similar to the SOR method, it is overly sensitive to a relaxation parameter (ω) to achieve faster
convergence where 0 < ω ≤ 2

λ and λ is the largest eigenvalue of H [64]. The signal is estimated as

x(n+1) = x(n) + ω
(

y−Hx(n)
)

n = 0, 1, 2, · · · . (20)

In a Richardson-based detector, the initial solution x(0) can be set as a zero vector without loss of
generality as no prior knowledge of the final solution is available [65]. A constant-valued relaxation
parameter (ω) has high impact to achieve a satisfactory performance [66,67]. The value of ω can
be determined by the eigenvalues. A detector based on the RI method is a hardware-friendly and
decreases the complexity from O

(
K3) to O

(
K2) [68]. However, a satisfactory performance can be

achieved when n is large which increases the complexity as well.
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3.7. Optimized Coordinate Descent Method

Coordinate descent (CD) attains an approximate solution of large number of convex optimization
using series of coordinate-wise updates. It employs the single-variable to refine the estimated signals
sequentially where the estimated signal is given as

x̂k =
(
‖hk‖2 + N0

)−1
hH

k

(
y−∑

j 6=k
hjxj

)
, (21)

A pre-processing and refinements are offered to reduce the operations within each iteration and this is
called optimized CD (OCD). A low complexity detector based on the OCD method is implemented in
a high-throughput FPGA design for M-MIMO systems with high use efficiency [69,70].

4. Complexity Analysis

In complexity analysis, the most dominant mathematical operations are the number of divisions
and number of multiplications. To compute the D−1, K real number of divisions are required.
The computational complexity of the NS method is O

(
K3) while the RI, the SOR, the GS, the JA,

and the CG methods require O
(
K2). The OCD-based detector requires the lowest complexity of

O (K). Table 2 compares between the complexity of detectors based on several approximate matrix
inversion methods.

Table 2. Complexity comparison among approximate matrix inversion methods.

Method Number of Multiplications
NS 4K3(n− 2) + (2K + 1)K2 + (4N − 1)K
RI (4N + 4n)K2 + 2KN
SOR (4N + 4n− 2)K2 + 2(N − n + 1)K
GS (4N + 4n− 2)K2 + 2(N − 2n + 1)K
OCD (8NK + 4K)n
JA (4N + 4n + 1)K2+2NK
CG (N + 2K2)n

5. Results and Discussion

The performance and the complexity of the NS, GS, SOR, JA, RI, OCD, and CG detectors will be
described. A comparison between the iterative matrix inversion methods-based M-MIMO detector
will be provided in bit-error-rate (BER) performance, the SNR, and the number of multiplications.
In all simulations, we consider urban macro-cell line of sight (LOS) channels generated by QuaDRiGA
to generate realistic radio channel impulse responses for system-level simulations of mobile radio
networks. Depending on the angular spread and the amount of diffuse scattering, the typical value
of clusters is around 10 clusters for the line-of-sight (LOS) propagation environment and 20 clusters
for non-LOS. The angular spread values around 20–90 degrees and the carrier frequency is 2 GHz.
The configuration of M-MIMO systems with user terminals and BS antennas are 16× 128, 32× 128,
and 64× 128 and the modulation scheme is 64QAM.
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Figure 1 shows the performance of a detector based on several approximate matrix inversion
methods at 16× 128 MIMO where β = 16

128 = 0.125 � 1). In such scenario, a detector based on
approximate matrix inversion methods needs high n (i.e., n > 10) to achieve a satisfactory performance.
At n = 15, the detector based on the CG method achieved a good performance while other methods
required higher n to achieve an acceptable performance. The CG method is numerically robust even
when the channel is ill-conditioned. The SOR and OCD methods are obtained BER = 10−2 at SNR = 15
dB at n = 20 and n = 25, respectively. It is noteworthy that the NS method, RI method and JA method
are not attaining a satisfactory performance in realistic radio channels.

Figure 1. Performance of a detector based on several approximate matrix detection methods and the
exact MMSE method for 16× 128 M-MIMO system and 64QAM.

Figure 2 presents the performance profile when β = 32
128 = 0.25. In this case,

unsatisfactory performance is obtained. However, the CG method achieves the MMSE performance at
high n (i.e.,n = 60). A detector based on other methods does not obtain a satisfactory performance
even in case of high n.

Figure 3 shows that the performance of several approximate matrix inversion methods when
β = 64

128 = 0.5. It is clear that the performance of the detector is not satisfactory and the approximate
matrix inversion methods are not numerically robust when the number of users is relatively high
compared to the number of antennas at the BS. However, high n is required to achieve BER = 10−1.

Figure 4 presents the number of multiplications among the approximate matrix inversion methods.
It is clear that the CG method has the lowest number of multiplications and it has the best performance
as mentioned in Figure 1. On the other hand, the NS method and the OCD method had the highest
number of multiplications and they need more iterations to converge.
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Figure 2. Performance of a detector based on several approximate matrix detection methods and the
exact MMSE method for 32× 128 M-MIMO system and 64QAM.

Figure 3. Performance of a detector based on several approximate matrix inversion methods and the
exact MMSE method for 64× 128 M-MIMO system and 64QAM.
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Figure 4. Number of multiplications among several approximate matrix inversion methods in 16×
128 MIMO.

6. Conclusions and Future Directions

This research could be extended by investigating different M-MIMO setup. For instance,
different number of LOS and non-LOS clusters, different angular spread values, and different carrier
frequencies could be considered.

To improve the performance-complexity trade-off, a deep learning (DL)-based sphere decoding
(SD) for M-MIMO UL data detection has to be studied where the radius of the hypersphere could be
intelligently learnt by a deep neural network (DNN). In addition, use of approximate matrix inversion
methods, such as the NS and Newton iteration (NI) methods, should be investigated to reduce the
computational complexity by reducing the searched space which make the SD algorithm more efficient.
We expect that use of the DNN and approximate matrix inversion methods will achieve a quasi-optimal
performance with low computational complexity. Machine learning can be used to select the best
algorithm to be applied rather than finding the best signal estimation. In addition, the performance of a
sparsity-based M-MIMO detection has to be investigated with the iterative matrix inversion methods.

This paper studied a detector based on several iterative matrix inversion methods in realistic
radio channel, QuaDRiGA. It is illustrated that such methods required high n to achieve a satisfactory
performance when β � 1. The CG method achieves better performance over other methods and
is robust in realistic radio channels, while NS method, RI method and JA method did not achieve
satisfactory performance. However, such methods are not numerically robust and did not achieve
a satisfactory performance when the number of users is relatively high compared to the number
of antennas at the base station. In complexity analysis, the CG method achieves lowest number of
multiplications and has the best performance, while NS method and the OCD method have the highest
number of multiplication.
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