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Abstract: Condition monitoring and fault diagnosis of a rolling bearing is crucial to ensure the
reliability and safety of a mechanical system. When local faults happen in a rolling bearing,
the complexity of intrinsic oscillations of the vibration signals will change. Refined composite
multiscale dispersion entropy (RCMDE) can quantify the complexity of time series quickly and
effectively. To measure the complexity of intrinsic oscillations at different time scales, adaptive
sparest narrow-band decomposition (ASNBD), as an improved adaptive sparest time frequency
analysis (ASTFA), is introduced in this paper. Integrated, the ASNBD and RCMDE, a novel-fault
diagnosis-model is proposed for a rolling bearing. Firstly, a vibration signal collected is decomposed
into a number of intrinsic narrow-band components (INBCs) by the ASNBD to present the intrinsic
modes of a vibration signal, and several relevant INBCs are prepared for feature extraction. Secondly,
the RCMDE values are calculated as nonlinear measures to reveal the hidden fault-sensitive
information. Thirdly, a basic Multi-Class Support Vector Machine (multiSVM) serves as a classifier to
automatically identify the fault type and fault location. Finally, experimental analysis and comparison
are made to verify the effectiveness and superiority of the proposed model. The results show that the
RCMDE value lead to a larger difference between various states and the proposed model can achieve
reliable and accurate fault diagnosis for a rolling bearing.

Keywords: adaptive sparest narrow-band decomposition; multiscale analysis; refined composite
multiscale dispersion entropy; fault diagnosis

1. Introduction

The reliability of a rolling bearing plays a vital role in ensuring stable and reliable operation of a
mechanical system. If local failure of a rolling bearing is not detected as early as possible, it is likely to
cause a breakdown of a mechanical system or major production safety accidents, resulting in huge
economic losses. Therefore, condition monitoring and fault diagnosis fora rolling bearing have become
a prevalent topic in this scientific research field [1–7].

Due to the influence of nonlinear factors such as varying load, clearance, nonlinear stiffness,
friction, vibration signals of a rolling bearing present nonlinear and nonstationary characteristics.
Therefore, it is essential to adopt an adaptive signal analysis method to extract hidden patterns or
physical information. At present, various advanced signal processing techniques including wavelet
transform [2] (WT), empirical mode decomposition (EMD), and its improved version [8–11], local
mean decomposition (LMD) [3,12], variation mode decomposition (VMD) [13,14], matching pursuit
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(MP) [15,16], have been used to vibration signals analysis. WT and VMD are the most prevalent
techniques, but WT needs to have a pre-determined wavelet basis that will have a great influence on
the results. The effectiveness of the VMD algorithm depends on its parameters to some extent, which
may reduce the analysis capability of VMD. Empirical mode decomposition can adaptively decompose
a nonstationary signal into a series of intrinsic mode functions (IMFs). However, in EMD and its
improvements: ensemble empirical mode decomposition (EEMD) and complementary ensemble
empirical mode decomposition (CEEMD) [9], there are still some problems needing to be addressed,
such as mode mixing, and end-point effect. Matching pursuit (MP) based on compressive sensing
theoryis an excellent signal process method, which uses highly redundant dictionary to obtain the
sparsest representation of signals. Nevertheless, the decomposition results are usually lacking in
physical meaning. Inspired by EMD and compressive sensing theory, Hout Y and Shi ZQ proposed an
adaptive sparest time-frequency analysis (ASTFA)method in [17]. The main principle of the ASTFA
method is to search for the sparest components from a highly redundant dictionary library that includes
intrinsic mode functions (IMFs). Each component obtained by ASTFA is the product of an envelope
function and a cosine function. The constraint is that the envelope function is smoother than the
cosine function, so that the instantaneous frequency of each component has explicit physical meaning.
The ASTFA uses an optimization technique to derive the intrinsic components instead of fitting the
envelope of extreme points and their sifting progress in the EMD. Therefore, the ASTFA can tackle
limitations in EMD. Nevertheless, the ASTFA algorithm requires massive computational costs because
of the optimization process. The Gauss–Newton optimization technique is a fast technique that was
used in the literature [17]. However, the Gauss–Newton algorithm is sensitive to initial values, leading
to inaccurate results. To address these problems, Cheng proposed an improved ASTFA method, named
adaptive sparsest narrow-band decomposition method (ASNBD) [18]. A signal can be decomposed
into several intrinsic narrow-band components (INBCs). In addition, the simulation results show that
ASNBD not only inherits the advantages of ASTFA but also improves the decomposition accuracy
and stability.

On the other hand, when local failure exists in a rolling bearing, the complexity of the intrinsic
oscillation modes hidden in the vibration signals will differ from that under normal state. Many
nonlinear dynamic parameter estimations have been utilized as feature extraction approaches, among
which, correlation dimension, entropy-based measures are the most popular techniques. However, the
reliable estimation of correlation dimension requires long-term time series, which brings great limitation
when short-term vibration signals are analyzed. Entropy-based measures include sample entropy
(SampEn), fuzzy entropy (FE), permutation entropy (PE), and so on. However, initial entropy-based
measures only complete single-scale analysis, which generally assign the highest values to highly
unpredictable random signals but not structurally complex signals. Hence, single-scale entropy
measures cannot physically quantify the complexity of time series [19].The multiscale entropy (MSE)
algorithm was proposed by Costa in [19,20] and applied to rolling bearing fault diagnosis firstly in [21].
However, traditional multi-scale entropy algorithm would shorten the dataset and yield undefined
values for short-term data when big scale factors are adopted. To alleviate these deficiency, Wu et al.
proposed modified multiscale entropy [22], which employed a moving-average algorithm to acquire
more template vectors. However, this modified multiscale algorithm vastly increases computation
time. Later, composite multiscale sample entropy (CMSE) [23] and refined composite multiscale
sample entropy (RCMSE) [24] were developed for a new coarse-graining procedure, in which different
start points were utilized. As an improved version of sample entropy, fuzzy entropy was proved
more robust to noise and less sensitive to data length and parameters. Inspired by literature [23,24],
composite multiscale fuzzy entropy were introduced to extract the nonlinear features of vibration
signals of a rolling bearing [7]. Recently, Hamed Azami proposed refined composite multiscale
fuzzy entropy (RCMFE)based on standard deviation and successfully applied to biomedical signal
analysis [25]. However, both RCMSE and RCMFE may still produce undefined values for short-term
datasets. PE and multiscale permutation entropy (MPE) are based on the permutation patterns or the
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order relations of the amplitude of a signal, and have been used to fulfill machinery fault diagnosis
tasks [2,3,26,27]. Nevertheless, the mean of amplitudes and differences between amplitude values is
not considered [28,29]. Recently, refined composite multiscale dispersion entropy (RCMDE) has been
developed and the application results to synthetic datasets and real-world biomedical signals show
that the RCMDE is more stable than the RCMSE algorithm in [29].

By making use of the advantages of the ASNBD and the RCMDE, a novel-fault diagnosis-model
for a rolling bearing is proposed in this paper. Firstly, the vibration signal collected is decomposed into a
number of INBCs using ASNBD technique. Following that, several relevant INBCs including rich fault
information are used to extract RCMDE values as features. Lastly, basic Multi-Class Support Vector
Machine (multiSVM) is employed to fulfill the fault identification. Simultaneously, the effectiveness
and superiority of the proposed method is verified by experimental datasets. The remaining part
is organized as follows. In Section 2, the adaptive sparsest narrow-band decomposition method is
introduced. In Section 3, the algorithm of refined composite multiscale dispersion entropy is described.
A novel-fault diagnosis-model is presented in Section 4, and applied in Section 5. The conclusions are
given in Section 6.

2. Adaptive Sparsest Narrow-Band Decomposition Method

2.1. ASTFA Brief

Since the ASTFA method is the basis of ASNBD, the algorithm of ASTFA is summarized as
shown below:

Step 1: Construct a highly redundant dictionary Dic:

Dic = {a(n) cos(θ(n)) : θ′(n) ≥ 0, a(n) ∈ V(θ)} (1)

V(θ) = Span{cos(
kθ
n
), sin(

lθ
n
) : k = 0, · · ·λn, l = 1, · · ·λn}

where, θ′(n) ≥ 0 is to guarantee instantaneous frequencies of IMFs being physical meaning. a(n) ∈ V(θ)
can ensure that the envelop function a(n) is smoother than the cosine function.

Step 2: Search for the sparest decomposition of the original signal x(n) by iterative operation in
optimization process as follows:

(1) Set i = 1, r0(n) = x(n)
(2) Solve the optimization problem P1 with nonlinear constraint using Gauss–Newton algorithm.

P1: Minimize‖ri(n) − IMFi(n)‖
2
2 (2)

Subject to IMFi(n) ∈ Dic

(3) Set ri(n) = ri−1(n) − IMFi(n)
(4) If ‖ri(n)‖

2
2 ≤ ε is satisfied, stop the program and obtain the decomposition results; otherwise,

let i = i + 1 and return to sub-step (2) to repeat until termination condition is met.
From the above process, it can be seen that the ASTFA does not depend on the distribution of

extreme points. Hence, it can inhibit some deficiency caused by the fitting processing of extreme points
in EMD. Moreover, the ASTFA algorithm has a solid mathematical foundation. In the literature, the
Gauss–Newton algorithm was adopted to solve the optimization problem P1 to search for the sparest
represent components in the literature [17]. However, Gauss–Newton algorithm highly depends on
the initial values. If the initial values deviate too far from the real values, the solution often diverges
after iteration and the inaccurate components may appear.
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2.2. ASNBD Algorithm

To overcome the shortcomings of ASTFA method, the ASNBD algorithm is introduced to complete
nonstationary signal process in this paper. In the ASNBD, a filter with optimization parameters is
built by solving a nonlinear optimization problem, and a regulated differential operator is used as the
objective function so that each component is constrained to be a local narrow-band signal to generate
an intrinsic narrow-band component (INBC). Furthermore, the immune genetic algorithm [30] (IGA) is
utilized to address a nonlinear optimization instead of Gauss–Newton algorithm. In order to depict
the ASNBD method, the definition of intrinsic narrow-band signal is illustrated firstly as follow.

For a signal expressed as A(t) cos(ωt + φ(t)), if its phase function φ(t) varies slowly and its
amplitude function A(t) is band-limited, and the maximal frequency of A(t) is much smaller than ω, it
can be defined as a narrow-band signal. Furthermore, if a neighborhood interval exists at any point of
the signal, the signal can be regards as a local narrow-band signal. A singular local linear operator
will converted a local narrow-band signal to zero [31]. In this paper, a singular local linear operator T,
developed in the literature [31], will be adopted as shown below:

T = (
1
ω2

d2

dt2 + 1)
2

(3)

Similar to the ASTFA algorithm, after constructing a highly redundant dictionary Dic as Equation
(1), the ASNBD algorithm will search for the sparest INBCs by solving the optimization problem P2
with nonlinear constraint. The ASNBD algorithm is illustrated as shown below [18]:

(1) Set i = 1, r0(n) = x(n);
(2) Solve the following nonlinear constrained optimization problem P2:

Minimize ‖T(INBCi(n))‖
2
2 + λ‖D(ri(n) − INBCi(n))‖

2 (4)

Subject to x(n) =
M∑

i=1

INBCi(n) + residue, i = 1, . . . , M

where M is the number of INBCs; T is the differential operator as Equation (3); D is an operator that
regulates the residue; λ is the weight of ‖T(INBCi(n))‖

2
2 and ‖D(ri(n) − INBCi(n))‖

2, and, in general, λ
is set to 1.

(3) Set ri+1(n) = ri(n) − INBCi(n)
(4) If ‖ri+1(n)‖

2
2 ≤ ε, then stop; otherwise, set i = i + 1 and go to the step (2).

The optimization objective function is that INBC(n) is constrained to be a local narrow-band signal.
Thus, the obtained INBCs have explicit physical meaning in ASNBD. However, the optimization of all
data points requires a massive computational cost, especially when the dataset size is big. In order to
reduce the computational tension, in step (2), the optimization of all data points can be transformed
into the optimization of the parameter vector β of a filter χ [18]. In other words, the sparest INBCs can
be obtained by solving the optimization calculation P3 for the parameter vector β of a filter χ. IGA
is an improved genetic algorithm, which can effectively improve population diversity and restrain
premature convergence of traditional genetic algorithm due to the combination of biological immune
mechanism and genetic algorithm. On the one hand, in the immune system, antibodies promote
or inhibit each other to maintain population diversity. On the other hand, large-scale optimization
calculation is carried out through immune selection, immune variation, immune update, and new
dynamic adjustment operation. Moreover, IGA adopts immune memory function, which improves
the overall search ability and speeds up the search procedure. In addition, IGA is not sensitive to the
initial values. Accordingly, IGA is used to address the optimization problem P3 (as shown below)
for the parameter vector β of a filter χ. The procedure of the optimization calculation is depicted as
shown below.

(1) Calculate the fast Fourier transformation r̂i(k) of ri(n).
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(2) Design a filter χ(k|β) (β= [ω,ωb,ωc]):

χ(k|λ) =


sinω[k−ωc +ωb + π/(2ω)], ωc −ωb −π/(2ω) ≤ k < ωc −ωb
1, ωc −ωb ≤ k ≤ ωc +ωb
cosω(k−ωc −ωb), ωc +ωb < k ≤ ωc +ωb + π/(2ω)
0, else

(5)

(3) Solve the following nonlinear unconstrained optimization problem P3 to obtain parameter
vector β0 of a filter χ(k

∣∣∣β) by applying IGA algorithm. The initial values are created randomly in the
IGA algorithm, and the maximum number of generations is set to 200, and the termination tolerance is
e–6 and the population size is 500 in the IGA procedure. The flowchart of the ASNBD algorithm is
given in Figure 1.

P3: Minimize ‖T{i f f t[χ(k
∣∣∣β)r̂i(k)]}‖

2
2 + λ‖D(ri(t) − i f f t[χ(k

∣∣∣β)r̂i(k)])‖
2

(6)
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(4) Convert the filter with optimized parameter vector β0 to INBCi(n) using inverse fast Fourier
transformation. In fact, the INBCi(n) is obtained through the filtering process using the optimal filter
designed in step (3).

INBCi(n) = i f f t[χ(k
∣∣∣β0)r̂i(k)] (7)
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2.3. Simulation Analysis for ASNBD

A simulation signal x(t) is used to verify the effectiveness and superiority of the ASNBD technique.
x(t) includes a cosine signal x1(t) and an amplitude-modulated and frequency- modulated (AM–FM)
signal x2(t). The time domain waveforms of x(t) and its components are shown in Figure 2 and is
written as shown below.

x(t) = x1(t) + x2(t)
x1(t) = cos(120π)

x2(t) = [1 + 0.5 sin(20πt)] sin(180πt + cos(20πt2))

(8)
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For comparison, ASNBD, ASTFA, and CEEMD are utilized to analyze the signal x(t). The results
are shown in Figures 3–5, respectively. In Figure 3, the first two components are obviously false
high-frequency components with weak energy only at the two end-point part, which may be generated
due to the decomposition procedure, and the third component INBC3 and the fourth component INBC4

are consistent with the true components. Therefore, the two components are very useful component.
Although the obtained components using ASTFA technique also reflect the real components (shown as
C2,C3) in Figure 4, their energies reduce a lot and their waveforms exhibit a big deviation relative to the
true component. From Figure 5, it can be seen that the real component sare not successfully derived by
the CEEMD technique. At the same time, the further calculation shows that the correlation coefficient
of INBC3 and x1(t) is 0.9824, and correlation coefficient of INBC4 and x2(t) is 0.9875 by using ASNBD,
while correlation coefficient of C2 and x1(t) is 0.9452 and correlation coefficient of C4 and x2(t) is 0.8000
by using ASTFA. Therefore, it can be concluded that ASNBD can achieve more accurate decomposition
results than ASTFA and CEEMD method.
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3. Refined Composite Multiscale Dispersion Entropy

3.1. Dispersion Entropy

The complexity stands for meaningful structural richness. MSE and RCMSE are the most common
measures, but they are still challenges for short-term time series since the undefined values may be
generated when the scale factor is large. Furthermore, their computation is not quick enough for
real-time application. In [29], the refined composite multiscale dispersion entropy algorithm (RCMDE)
was proposed to overcome the deficiencies. In this subsection, the dispersion entropy (DisEn) is
depicted as follows.

(1) First, for a time series x = [x1, x2, . . . xN] with the length N, xi, i = 1, 2, . . .N are mapped to c
classes with integer indices from 1 to c using the normal cumulative distribution function (NCDF).
Assume the NCDF maps x to y = {y1, y2, . . . yN}, that is:

yi =
1

σ
√

2π

∫ xi

−∞

e−
(t−u)2

2σ2 dt (9)

where σ and u are the standard deviate and mean of time series x, respectively. Then, each yi is
converted into an integer from 1 to c by using a linear algorithm, which is written as:

zc
j = Round(c.yi + 0.5) (10)



Entropy 2020, 22, 375 9 of 20

where zc
j is the jth element of the classified time series. Round represents the rounding operation,

which means either increasing or decreasing a number to the next digit. As a result, the time series are
mapped into the class integer from 1 to c.

(2) Time series zm,c
i are reconstructed with embedding dimension m and time delay d.

zm,c
i = {zc

i , zc
i+d, . . . zc

i+(m−1)d} (11)

where i = 1, 2, . . . , N− (m− 1)d. Then, zm,c
i is mapped into a dispersion patternπv0v1...vm−1 , (v = 1, 2, . . . c,

zc
i = v0, zc

i+d = v1, zc
i+(m−1)d = vm−1). The number of possible dispersion patterns of each reconstructed

time series zm,c
i equals to cm. And each element in zm,c

i is an integer from 1 to c.
(3) For each cm potential dispersion patterns, the relative frequency is computed using the

equation as:

p(πv0v1...vm−1) =
number(πv0v1...vm−1)

N − (m− 1)d
(12)

Note that number(πv0v1...vm−1) refers to the number of dispersion patterns of πv0v1...vm−1 and
N − (m− 1)d is the total number of embedded signals with embedding dimension m.

(4) Finally, based on the definition of Shannon’s entropy, the DisEn value is calculated as follows:

DisEn(x, m, c, d) = −
cm∑
π=1

p(πv0...vm−1) ln(p(πv0...vm−1)) (13)

From the calculation process of DisEn, it can be found that when all possible dispersion patterns
have equal probability value, the irregularity degree of data is the highest, and the maximum DisEn
value ln cm is obtained. On the contrary, when the time series is regular or completely predictable,
there is only one πv0...vm−1 different from zero and the smallest DisEn value is achieved [28].

3.2. Refined Composite Multiscale Dispersion Entropy

The refined composite multiscale dispersion entropy algorithm includes four main steps.
(1) To obtain coarse-grained time series at scale factor τ, the coarse-graining procedure can be

demonstrated as shown in Figure 6, from which it can be seen that coarse-grained sequences are
obtained from different start points. The original time series x is divided into several segments and the
jth element of the kth coarse-grained time series yτk = {yτk,1, yτk,2, . . . yτk,p}, 1 ≤ k ≤ τ can be built by the
following equation:

yτk, j =
1
τ

∑ jτ+k−1

i=( j−1)τ+k
xi, 1 ≤ j ≤

N
τ

(14)

(2) For a scale factor τ, define the embedding dimension m and time delay d, then the relative
frequency set {pτk , , 1 <k ≤ τ} of all coarse-grained time series yτk are calculated as formula (12).

(3) The mean of pτk is calculated by:

p(πv0v1...vm−1) =
1
τ

∑τ

1
pτk (15)

(4) Finally, RCMDE value is achieved as follow:

RCMDE(x, m, c, d, τ) = −
cm∑
π=1

p(πv0v1...vm−1). ln(p(πv0v1...vm−1)) (16)
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Figure 6. Schematic illustration of the coarse-graining procedure.

3.3. Parameters Selection

It is an important issue to select appropriate parameters for entropy-based approach. There are
four parameters, including the embedding dimension m, the number of classes c, the time delay d and
the maximum scale factor τ. In general, it is recommended d = 1 because when d > 1 some important
information in terms of frequency may be discarded, which might lead to aliasing for practical work,
and the number of class c must be bigger than 1, because when c = 1, there is only one dispersion
pattern [28]. Moreover, in order to obtain reliable statistics, the number of potential dispersion patterns
cm should be smaller than the length of the signal (cm < N). When c is too large, a slight difference
between amplitudes would change their class to obtain different dispersion entropy values, which
may result in high sensitivity to noise. However, when c is too small, the amplitudes that are far from
each other may be regarded as the same class and thus cause inaccurate value. When the embedding
dimension m is too small, the dispersion entropy might not detect the dynamic changes. Although a
bigger m can capture more information, too large m might need a longer data. In general, the length
of data is between 10m and 30m. Moreover, too large a c or m may consume more computation time.
According to our research, when the parameter c is 4–10, similar results can be obtain. In addition,
when the parameters m and c changed under the condition of cm < N, the results were similar. For
more information about the parameters c, m, and d, please refer to the literature [28]. For the scale
factor τ, it needs to be set according to the actual situation. Simultaneously, for RCMDE, since the
coarse-graining process shorten the length of a signal to N

τ , the requirement cm < N
τ must be met.
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On the other hand, the length of datasets N will affect the estimation of the RCMDE value. Too
large an N may reduce the computing efficiency. While, when N is too small, in order to satisfy the
requirement that cm < N, we have to use a smaller m or c, which likely causes the limitations described
above. The capability and propriety of the RCMDE algorithm for measuring complexity was evaluated
and compared with RCMSE by synthetic signals and real biomedical datasets in [29]. In order to
evaluate the sensitivity of the RCMDE algorithm to the length of datasets, we employed synthetic
signals for a rolling bearing with fault, which is written as shown below:

x(t) = x1(t) + x2(t) + x3(t) + x4(t)
x1(t) = exp(−500t1) sin(2π f1t)
x2(t) = [1 + 0.5 cos(40πt)] sin[300πt + cos(30πt)]
x3(t) = 2 sin(800πt)
x4(t) = 0.6randn(1, N)

(17)

where N is the length of the synthetic signal and the sample frequency is fs = 12 KHz. We employed
x1(t) to simulate a signal of a faulty rolling bearing, in which, f1 = 4 KHz, f0 = 30 Hz and the periodical
impulse is expressed by t1 = mod(t, 1

fo
), t is simulation time. x2(t) indicates the AM–FM signal, x3(t)

is a sine signal, and x4(t) is white noise. According to the principle of parameter selection mentioned
above, considering the calculation time and information richness, we choose the parameters as c = 9,
m = 2, and d = 1. Figure 7a,b record the statistical property of the RCMDE value changes with N,
from which we can draw the following conclusion. Firstly, the entropy values have the similar trend
with time scales no matter how long the dataset is. Secondly, when N is more than 2K, the obtained
results are almost same. Lastly, from Figure 7b when the data length N ranges from 1K to 5K, the
standard deviation (Std) decreases with N increasing, but when the data length N is more than 5000,
the standard deviation goes up at some scales. Hence, based on the above analysis, we use N = 2048.
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with different working states, resulting in the variety of the complexity of times series. Here, a 
novel-fault diagnosis-model is developed by combining the ASNBD method with the RCMDE 
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deviation of a signal with different N.

4. Fault Diagnosis Model Proposed

When a variety of failures occur in mechanical system, the vibration signals acquired by sensors
represent the nonlinear and nonstationary characteristics and the energy distribution will change with
different working states, resulting in the variety of the complexity of times series. Here, a novel-fault
diagnosis-model is developed by combining the ASNBD method with the RCMDE algorithm in this
paper. Firstly, a nonlinear and nonstationary vibration signal is decomposed into a series of the INBCs.
Secondly, the RCMDE values from the relevant INBCs are extracted as fault features. In the end, of fault
diagnosis process, basic multiSVMis employed as class discrimination technique to identify different
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fault type and location. The proposed fault diagnosis scheme for rolling bearing is given in Figure 8.
The specific steps for the proposed scheme are given as follows.
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Step 1: Collect mi vibration signals for ith classes of working states. Thus, M =
∑k

i=1 mi vibration
signals are obtained in total for k classes.

Step 2: Decompose each vibration signal into several IBNCs and select the relevant INBCs, which
contain rich fault information for further feature extraction.

Step 3: Extract the RCMDE values from selected INBCs as fault features to construct feature
vectors. Suppose that n is the number of the selected INBCs, τmax is the maximum scale factor, then
n × τmax dimension of feature vectors can be achieved. Theoretically, more features are helpful to
quantity fault categories from different perspectives. However, too many features may lead to huge
computation cost and reduce the recognition rate. Thus, the number of INBCs used is usually set to
less than four; and the maximum scale factor τmax is less than 20. Here, we set τmax = 20.

Step 4: Divide the original datasets randomly into two groups, one as the training samples, and
the other for the testing samples. For an unknown test sample, failure patterns can be discriminated by
the output results of the multiSVM classifier.

5. Application to Fault Diagnosis for Rolling Bearing

5.1. Datasets Collection and Signal Decomposition

In order to verify the effectiveness, the proposed scheme is applied to the experimental datasets
shared by Case Western Reverse Bearing Data Center [32]. The datasets include vibration time series
collected by the accelerometer mounted on the driven-end bearings with inner race fault (IRF), ball fault
(BF), outer race fault (ORF), and normal state. The driven-end bearings were charged to single-point
failures with fault diameters of 0.007in to 0.021in. The sampling frequency fs equals to 12 KHz. The
motor load is 2hp, and the shaft rotation speed is fr = 1750rpm. Ten classes of vibration signals were
utilized in this paper. The datasets are divided into 55 segments as samples with the length N = 2048.
The more details of datasets and experimental rig are given on the Case Western Reserve University’s
website. Datasets used are listed in Table 1. The time-domain waveform of vibration signals under
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various conditions are shown in Figure 9, from which it can be found these vibration signals are
obviously nonlinear and nonstationary; and it is difficult to differ them from each other.

Table 1. Details of datasets for rolling bearing experiment.

Class Fault Size /in. Fault Severity Number of
Sample Data Length Class Label

Inner race fault
0.007 slight 55 2048 1-IRF1
0.014 moderate 55 2048 2-IRF2
0.021 severe 55 2048 3-IRF3

Ball fault
0.007 slight 55 2048 4-BF1
0.014 moderate 55 2048 5-BF2
0.021 severe 55 2048 6-BF3

Outer race fault
0.007 slight 55 2048 7-ORF1
0.014 moderate 55 2048 8-ORF2
0.0021 severe 55 2048 9-ORF3

Normal 55 2048 10-Norm

Entropy 2019, 21, x FOR PEER REVIEW 13 of 20 

 

vibration signals are obviously nonlinear and nonstationary; and it is difficult to differ them from 
each other. 

Table 1. Details of datasets for rolling bearing experiment. 

Class Fault Size 
/in. 

Fault 
Severity 

Number of 
Sample 

Data 
Length 

Class 
Label 

Inner race fault 
0.007 slight 55 2048 1-IRF1 
0.014 moderate 55 2048 2-IRF2 
0.021 severe 55 2048 3-IRF3 

Ball fault 
0.007 slight 55 2048 4-BF1 
0.014 moderate 55 2048 5-BF2 
0.021 severe 55 2048 6-BF3 

Outer race 
fault 

0.007 slight 55 2048 7-ORF1 
0.014 moderate 55 2048 8-ORF2 
0.0021 severe 55 2048 9-ORF3 

Normal   55 2048 10-Norm 

 
Figure 9. Time domain vibration signals for rolling bearing under: (a) normal state; (b) inner race 
fault (IRF)1; (c) ball fault (BF)1; (d) outer race fault (ORF)1; (e) IRF2; (f) BF2; (g) ORF2; (h) IRF3; (i) 
BF3; and (j) ORF3. 

5.2.Feature Extraction by RCMDE with ASNBD 

To quantify the complexity of intrinsic mode, the original vibration signal is decomposed into a 
number of INBCs using the ASNBD method. Simultaneously, correlation analysis is conducted 
between each INBC and the original signal to determine which ones are the false components. The 
components with small correlation coefficients are regarded as false components and removed. To 
the end, six–eight components are obtained as true INBCs for next analysis. Figure 10 and Figure 11, 

0 0.05 0.1
-0.2

0

0.2
(a)

0 0.05 0.1
-2

0

2
(b)

0 0.05 0.1
-0.5

0

0.5
(c)

0 0.05 0.1
-5

0

5
(d)

0 0.05 0.1
-5

0

5
(e)

0 0.05 0.1
-0.5

0

0.5
(f)

0 0.05 0.1
-10

0

10
(g)

0 0.05 0.1
-0.5

0

0.5
(h)

0 0.05 0.1
-1

0

1
(i)

0 0.05 0.1
-0.5

0

0.5
(j)

Figure 9. Time domain vibration signals for rolling bearing under: (a) normal state; (b) inner race fault
(IRF)1; (c) ball fault (BF)1; (d) outer race fault (ORF)1; (e) IRF2; (f) BF2; (g) ORF2; (h) IRF3; (i) BF3; and
(j) ORF3.

5.2. Feature Extraction by RCMDE with ASNBD

To quantify the complexity of intrinsic mode, the original vibration signal is decomposed into
a number of INBCs using the ASNBD method. Simultaneously, correlation analysis is conducted
between each INBC and the original signal to determine which ones are the false components. The
components with small correlation coefficients are regarded as false components and removed. To the
end, six–eight components are obtained as true INBCs for next analysis. Figures 10 and 11, respectively,
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show the decomposition results for the vibration signals of IRF (noted as No.1 signal) and BF (noted
as No.2 signal and please see Tables 1 and 2). After computation, the ball-fault feature-frequency is
fb = 136 Hz. Since it is most difficult to detection the ball faults, we draw the envelop spectrum for
the first component of BF signal in the Figure 12, in which the ball fault frequency fb can be found
more easily when using the ASNBD than the ASTFA and the CEEMD. This result illustrates the
superiority of the ASNBD. Besides, from the abovementioned figures, it can be also concluded that
fault information for rolling bearing mainly concentrates on the first several components because
they present modulation and impulse characteristics with larger energy. Moreover, it is found the
correlation coefficients R and kurtosis values K for the first three INBCs are bigger. Here, we list the
results of correlation analysis and kurtosis values for the INBCs of No.1 signal and No.2 signal in
Table 2 as an example to clarify the selecting process for better INBCs. Therefore, the first three INBCs
are selected to characterize the original signal.
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Table 2. Correlation coefficients and kurtosis values.

Index INBC1 INBC2 INBC3 INBC4 INBC5 INBC6

No.1
signal

R 0.7946 0.4991 0.3633 0.1792 0.1078 0.0920

K 5.5465 10.5904 3.8407 3.1361 2.8244 2.5232

No.2
signal

R 0.8452 0.3065 0.2180 0.1572 0.1270 0.1003

K 5.6063 10.5362 3.8404 2.5615 2.0487 2.1010

Note: R indicates the correlation coefficient between the INBCi and the original signal and K is the kurtosis value.
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Subsequently, the RCMDE values for the first three INBCs are computed via the aforementioned
procedure. The maximum scale is set τmax = 20 and the time delay d = 1. Besides, considering the
length of the data N = 2048, and the coarse-graining process which would greatly shorten the data
at large scales, the parameters c and m are set, c = 6 and m = 2. Accordingly, RCMDE values with
60 dimensions are achieved as fault-relevant features. For simplicity, the RCMDE values of the third
INBC are given in Figure 13, from which we draw a few conclusions as follows. First of all, the RCMDE
values of normal rolling bearing is much bigger in the major time scales than those under faulty states,
which is consistent with the fact that the vibration signals under normal state are most complex and
irregular. However, failures would change the system dynamics to become the excitation source,
which will cause periodic impulse, increase the self-similarity of vibration signals, and thus drive the
entropy values drop down. Secondly, the RCMDE values from vibration signals of rolling bearing



Entropy 2020, 22, 375 16 of 20

under ball fault state and inner race fault state are bigger than those under outer race fault state. This
phenomenon can be explained by the fact that when local failures occur in ball elements or inner race,
the vibration signals would pass through a long way to the sensors which are mounted on the bearing
basis, leading to more modulation components. While the outer race is fixed on the bearing basis, the
pathway is shortest to the sensor and the vibration signals contain little interference, so that they show
a more apparent periodical impulse and the entropy values are smaller. In addition, the RCMDE values
of faulty rolling bearing monotonically decrease with the time scale increasing. This can be due to the
fact than the multiscale coarse-graining procedure progressively eliminates the uncorrelated random
components such that the entropy monotonically decreases with the scale factors [20]. At the same
time, the RCMFE values of the third INBCs are given in Figure 14 in comparison with the RCMDE.
From Figure 14, it can be found that the results fluctuate greatly. Although when the scale factor
ranges from 6 to 12, the entropy values of normal rolling bearing are biggest, they have not clearly
regular patterns over all scales. Most important of all, by comparing Figure 13 with Figure 14, it can
be obviously shown that RCMDE leads to larger differences between various states than the RCMFE,
resulting in essentially improving the fault detection rate of rolling bearing, which would be verified
during the next class discrimination process.

As mentioned above, there are 55 samples for each state and there are 550 samples in total.
All these samples are randomly divided into two groups, in which 100 samples (10 samples per class)
are determined as training group to obtain the training matrix T100×60, and 450 samples are regarded
as the test group to achieve test matrix M450×60.
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5.3. Fault Diagnosis Results and Comparison

Support Vector Machine (SVM) has excellent classification performance for small-sample
recognition task. However, it is only a binary classifier and it is difficult to deal with multiple
class problem. Multi-class Support Vector Machine (MultiSVM) with linear kernel function, as SVM’s
extension technique, is employed in this paper. Simultaneously, to demonstrate the necessity of using
the ASNBD, the RCMDE values of the raw signals are extracted and the comparison analysis is done.
In addition, the RCMFEs are computed to validate the superiority of the proposed model in comparison
with the RCMDEs. The results are listed in Table 3. The first row illustrates the proposed method
outperforms the other approaches because it acquires the highest accuracy and the smallest standard
deviation. The method shown in second row employs the RCMFE values as features instead of the
RCMDE values. The third row and the fourth row use raw signals instead of INBCs to extract the
RCMDE values or the RCMFE values as feature vectors. Noted that these techniques use the same
class recognition method—MultiSVM to make the comparison fair. Compared the first\the third row
with the second\the fourth row, it can be observed that the fault identification rate is higher and the
standard deviation is lower when using the RCMDE values as input feature vectors for multiSVM
classifier than using the RCMFE values. This is because RCMDE values lead to bigger difference
between the bearing working states as shown in Figure 13. On the other hand, the features extracted
from INBCs are more effective than those derived from raw signals from the first\second row against
the third\fourth. In other words, the application of signal decomposition method is necessary to obtain
more fault-sensitive features to improve the classifier’s performance.
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Table 3. Fault diagnosis results.

No. Method Classified
States

Number of
Test Samples

Identification Rate (%) Time
Cost (s)Maximum Minimum Mean Std

1
ASNBD + RCMDE
(proposed model) 10 450 100.00 100.00 100.00 0 0.20

2 ASNBD + RCMFE 10 450 100.00 97.14 99.73 0.20 0.25

3 Raw + RCMDE 10 450 100.00 96.86 99.46 0.81 0.37

4 Raw + RCMFE 10 450 96.86 81.43 89.10 3.84 0.38

5 ASTFA + RCMDE 10 450 100.00 99.78 99.89 0.16 0.13

6 ASTFA + RCMFE 10 450 100.00 96.67 98.73 1.23 0.25

7 CEEMD + RCMDE 10 450 100.00 97.78 98.90 0.64 0.28

8 CEEMD + RCMFE 10 450 99.78 95.56 98.72 1.57 0.25

In order to further verify the effectiveness and superiority of the ASNBD technique, we utilized
the CEEMD and the ASTFA to complete signal decomposition. Similar to the proposed model, the
first three intrinsic mode functions (IMFs) were used to extract the RCMDE values as features and
the fault diagnosis results were listed from the fifth to the eighth rows in Table 3. In these techniques,
the CEEMD or the ASTFA method was employed to preprocess the signals. No matter which signal
process technique served, the entropy-based measures are effective features to fault diagnosis and
can yield satisfactory results even when basic multiSVM was used. However, it is no doubt that the
proposed model is best among them. At the same time, a few currently-developed techniques are listed
in Table 4, from which, it can be observed that our proposed model is a promising alternative. Here,
note that a satisfying classification was achieved when the moving-average based multiscale fuzzy
entropy (MAMFE) combined partly ensemble local characteristic scale decomposition (PELCD)in
the literature [33], but the procedure of feature extraction and selection is relatively complex and
time-consuming because the MAMFE algorithm employ too many template vectors.

Table 4. Comparison with a few techniques developed currently.

Method Classified
States

Number of Test
Samples

Identification Rate (%) Time Cost
(s)Maximum Minimum Mean Std

WT + MPE [2] 4 120 / / 94.2 /

LMD + MPE [3] 4 80 100.00 / / / /

EEMD + PE [1] 11 330 / / 97.56–99.64 0.15–0.25 /

PELCD +
MAMFE [33] 10 450 100.00 100.00 100.00 0 0.28

ASNBD +
RCMDE

(Proposed
method)

10 450 100.00 100.00 100.00 0 0.20

6. Conclusions

When local faults happen, the complexity of intrinsic oscillations of a vibration signal of rolling
bearing will change. In order to utilize the RCMDE value to quantify the complexity of the intrinsic
oscillations at different time scales, a novel-feature extraction-technique integrated the ASNBD and the
RCMDE algorithm is proposed at first in this article. Furthermore, a fault diagnosis model is built
with basic multiSVM as classifier and applied to fault diagnosis for rolling bearing. We can draw the
following conclusions. Firstly, since the INBCs can reveal inherent characteristics hidden in complex
vibration signals, the proposed model achieves more reliable and accurate results. Secondly, when the
length of dataset N ranges from 2K to 5K, the varying trend of the entropy values with time scales is
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almost the same, and smaller standard deviations can be obtained, which is beneficial to analyze the
real-world time series in fault diagnosis practice. Thirdly, the results of the experimental analysis show
the RCMDE algorithm can extract features that have bigger differences under various states than the
RCMFE values, which leads to higher identification rate. Finally, the comparisons results with other
existing techniques indicate that the proposed technique is feasible and effective. Simultaneously, it is
worth pointing out that the proposed model can be extend to other fault diagnosis area.
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