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Abstract: As a matter of fact, the statistical literature lacks of general family of distributions based
on the truncated Cauchy distribution. In this paper, such a family is proposed, called the truncated
Cauchy power-G family. It stands out for the originality of the involved functions, its overall simplicity
and its desirable properties for modelling purposes. In particular, (i) only one parameter is added to
the baseline distribution avoiding the over-parametrization phenomenon, (ii) the related probability
functions (cumulative distribution, probability density, hazard rate, and quantile functions) have
tractable expressions, and (iii) thanks to the combined action of the arctangent and power functions,
the flexible properties of the baseline distribution (symmetry, skewness, kurtosis, etc.) can be really
enhanced. These aspects are discussed in detail, with the support of comprehensive numerical and
graphical results. Furthermore, important mathematical features of the new family are derived, such
as the moments, skewness and kurtosis, two kinds of entropy and order statistics. For the applied
side, new models can be created in view of fitting data sets with simple or complex structure. This
last point is illustrated by the consideration of the Weibull distribution as baseline, the maximum
likelihood method of estimation and two practical data sets wit different skewness properties. The
obtained results show that the truncated Cauchy power-G family is very competitive in comparison
to other well implanted general families.

Keywords: Cauchy distribution; truncated distribution; general family of distributions; entropy;
estimation; simple random sampling; ranked set sampling; data analysis.

MSC: 60E05, 62E15, 62F10.

1. Introduction

The general version of the truncated Cauchy distribution is defined by the following cumulative
distribution function (cdf):

F(a,b)(x; µ, θ) =
arctan[(x− µ)/θ]− arctan[(a− µ)/θ]

arctan[(b− µ)/θ]− arctan[(a− µ)/θ]
, x ∈ (a, b),
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where (a, b) ∈ R ∪ {−∞,+∞}, µ ∈ R and θ > 0 (including the so-called half-Cauchy distribution
defined with a = 0 and b = +∞). It was introduced by [1], with a discussion on the symmetric
standard case characterized by the following configuration: a = −b, µ = 0 and θ = 1. In comparison to
the well-known Cauchy distribution, it has finite moments when a and b are finite, and it offers a more
realistic alternative for modelling purposes since most of the practical data sets are defined on a finite
range of values, which can often be determined based on historical records. The main mathematical
properties of the truncated Cauchy distribution can be found in [2–4].The statistical features of the
related model can be found in [1,3,5], with applications as well (stock returns, exchange rate data. . . ).
Also, the computational aspects of the truncated Cauchy distribution via the R software are addressed
in [6,7].

By the use of well-known general families of distributions, one can extend the truncated Cauchy
distribution in multiple theoretical or applied directions. For instance, one can use the exp-G
family proposed by [8], the Kumaraswamy-G family introduced by [9], the beta-G family developed
by [10], the Marshall-Olkin-G family proposed by [11], the Weibull-G family developed by [12,13],
the transmuted-G family developed by [14], the gamma-G family proposed by [15], the inverse
exponential-G family proposed by [16], the sine-G family introduced by [17], and the truncated
inverted Kumaraswamy-G family proposed by [18]. The idea behind this general families is to
transform or add (one or several) parameters to a baseline distribution in order to improve its global
flexibility, with the aim to gain on the fitting of the resulting models. In the special case of the
half-Cauchy distribution, such extensions have been explored by [19] via the the Marshall-Olkin-G
family, by [20] via the beta-G family, by [21] via the Kumaraswamy-G family and by [22] via the
Weibull-G family and by [23] via the gamma-G family. However, to the best of our knowledge, the
extensions of the truncated Cauchy distribution with finite a and b can be performed in a similar
manner (but remains to study in an extensive way).

Another way to exploit the features of the truncated Cauchy distribution is to use it as a generator
of new families of distributions. In the special case of the half-Cauchy distribution, this is performed
by [24] which introduced the generalized odd half-Cauchy-G (GOHC-G) family defined by the
following cdf:

F(x; α, β) = F(0,+∞)

[
G(x; ξ)α

1− G(x; ξ)α

]
=

2
π

arctan
[

G(x; ξ)α

1− G(x; ξ)α

]
,

where α > 0 and G(x; ξ) denotes the cdf of a univariate continuous distributions with parameter vector
denoted by ξ. A twin family is given by the odd power Cauchy-G (OPC-G) introduced by [25] and
defined by the following cdf:

F∗(x; α, β) = F(0,+∞)

[(
G(x; ξ)

1− G(x; ξ)

)α]
=

2
π

arctan
[(

G(x; ξ)

1− G(x; ξ)

)α]
.

These two families show practical merits, producing skewness for symmetrical distributions,
constructing heavy-tailed distributions, generating distributions with various shapes on their
probability functions, providing better fits than other families of distributions under the same
baseline. . . . However, the study of their theoretical properties is not an easy task. One common
drawback remains in the complexity of the corresponding probability functions, which can afraid
the occasional practitioner, and the mathematical complexity of some related measures. In particular,
the corresponding probability density function has a linear decomposition with non-closed form
coefficients with sophisticated recurrence structures (mainly based on technical results in [26]). Thus,
to the best of our knowledge, the statistical literature lacks on simple general family of distributions
involving the arctangent function.
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In this paper, we offer a comprehensible alternative by introducing the truncated Cauchy power-G
(TCP-G) family. It is defined on the basis on the truncated Cauchy distribution on the interval (0, 1)
and the exp-G family. Indeed, the cdf of the TCP-G family is given by

F(x; α, ξ) = F(0,1)[G(x; ξ)α] =
4
π

arctan[G(x; ξ)α], x ∈ R, (1)

where α > 0 and, again, G(x; ξ) denotes the cdf of a univariate continuous distributions with parameter
vector denoted by ξ. As immediate remark, the cdf of the TCP-G family has a simple expression,
with an immediate series expansion, which is not the case for the GOHC-G or OPC-G families. The
related probability functions can be deduced easily, with tractable expressions and immediate series
expansions. Thus, the main properties of the TCP-G family can be derived, including the analyzes
of the shapes of the probability and hazard rate functions, as well as their asymptotic properties,
the quantile function, moments and related functions, several measures of skewness and kurtosis,
Rényi and q-entropies and order statistics. Then, the estimation of the TCP-G model parameters is
investigated by the maximum likelihood method, with an emphasis on the one defined with the
Weibull distribution as baseline. To evaluate the performance of the obtained estimates, two sampling
schemes are considered, namely the simple random sampling and the ranked set sampling. As
expected, nice numerical results are obtained for both. Then, two practical data sets are employed to
show the modelling ability of the TCP-G family. More precisely, with the consideration of the Weibull
distribution as baseline, we show that the TCP-G family generates very competitive models compared
with other widely known general families, such as the Kumaraswamy-G and beta-G families with
however one more parameter.

The rest of the paper is organized as follows. In Section 2, more mathematical backgrounds are
given on the TCP-G family. Its most notable properties are presented in Section 3. The estimation of the
model parameters is discussed in Section 4. Section 5 is devoted to the applied part. Some concluding
remarks and perspectives are communicated in Section 6.

2. The TCP-G Family

This section is devoted to the description of the main probability functions of the TCP-G family,
namely the probability density, hazard rate and quantile functions, with discussions on some of their
analytical properties. A special member of the family is presented as example.

2.1. Probability Density Function

The probability density function (pdf) of the TCP-G family can be obtained upon differentiation
the cdf given by (1). Thus, it is obtained as

f (x; α, ξ) =
4α

π

g(x; ξ)G(x; ξ)α−1

1 + G(x; ξ)2α
, x ∈ R, (2)

where g(x; ξ) denotes the corresponding pdf to G(x; ξ).
Some analytical properties of f (x; α, ξ) are as follows.
When G(x; ξ) → 0, we get f (x; α, ξ) ∼ (4α/π)g(x; ξ)G(x; ξ)α−1. We thus observe an effect of

the parameter α on the asymptotic properties of f (x; α, ξ). For instance, by assuming that g(x; ξ) is
bounded, if α > 1, we have f (x; α, ξ) → 0 and if α ∈ (0, 1), we have f (x; α, ξ) → +∞. Also, when
G(x; ξ)→ 1, we get f (x; α, ξ) ∼ (2α/π)g(x; ξ).
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The critical point(s) of f (x; α, ξ) is (are) of interest for the uni/multimodality analysis and, a
fortiori, modelling perspectives. Thus, a critical point xc of f (x; α, ξ) satisfies the non-linear equation
given by {log[ f (x; α, ξ)]}′ |x=xc= 0, i.e.,

g′(xc; ξ)

g(xc; ξ)
+ (α− 1)

g(xc; ξ)

G(xc; ξ)
− 2α

g(xc; ξ)G(xc; ξ)2α−1

1 + G(xc; ξ)2α
= 0.

The nature of xc depends on the position of the value of η = {log[ f (x; α, ξ)]}′′ |x=xc about 0, i.e.,

η =
g′′(xc; ξ)g(xc; ξ)− g′(xc; ξ)2

g(xc; ξ)2 + (α− 1)
g′(xc; ξ)G(xc; ξ)− g(xc; ξ)2

G(xc; ξ)2

+ 8α3 g′(xc; ξ)2G(xc; ξ)4α−2

[1 + G(xc; ξ)2α]2
− 4α2 g′′(xc; ξ)G(xc; ξ)2α−1

1 + G(xc; ξ)2α
− 4α2(2α− 1)

g′(xc; ξ)2G(xc; ξ)2α−2

1 + G(xc; ξ)2α
.

Hence, if η > 0, then xc is a local minimum, if η < 0 then xc is a local maximum and if η = 0, then xc is
an inflexion point. There is no closed-form for xc or η; mathematical softwares are required to provide
numerical evaluations for xc or η.

2.2. Hazard Rate Function

The hazard rate function (hrf) of the TCP-G family is defined by h(x; α, ξ) = f (x; α, ξ)/[1 −
F(x; α, ξ)], i.e.,

h(x; α, ξ) =
4α

π

g(x; ξ)G(x; ξ)α−1

[1 + G(x; ξ)2α] {1− (4/π) arctan[G(x; ξ)α]} , x ∈ R. (3)

We present some of its immediate analytical properties below.
When G(x; ξ) → 0, we get h(x; α, ξ) ∼ f (x; α, ξ) ∼ (4α/π)g(x; ξ)G(x; ξ)α−1. Hence, as for

f (x; α, ξ), the parameter α plays an important role on the asymptotic properties of h(x; α, ξ). When
G(x; ξ)→ 1, by using the following equivalence: when y→ 1, arctan(y) ∼ π/4− (1− y)/2, we get
h(x; α, ξ) ∼ αg(x; ξ)[1− G(x; ξ)]−1.

The possible shapes for h(x; α, ξ) are of interest from the modelling point of view. Here, we only
discuss the critical point(s) of this function. Thus, a critical point xo of h(x; α, ξ) satisfies the non-linear
equation given by {log[h(x; α, ξ)]}′ |x=xo= 0, i.e.,

g′(xo; ξ)

g(xo; ξ)
+ (α− 1)

g(xo; ξ)

G(xo; ξ)
− 2α

g(xo; ξ)G(xo; ξ)2α−1

1 + G(xo; ξ)2α

+
4α

π

g(xo; ξ)G(xo; ξ)α−1

[1 + G(xo; ξ)2α] {1− (4/π) arctan[G(xo; ξ)α]} = 0.

The nature of xo depends on the position of the value of υ = {log[h(x; α, ξ)]}′′ |x=xo about zero. We
omit to express it for the sake of place. Again, there is no closed-form for xo or υ, but the use of a
mathematical software can help to evaluate them.

2.3. Quantile Function

The quantile function (qf) of the TCP-G family is the functional solution Q(u; α, ξ) of the following
non-linear equation: F(Q(u; α, ξ); α, ξ) = u for any u ∈ (0, 1), i.e., (4/π) arctan[G(Q(u; α, ξ); ξ)α] = u.
After some algebra, we get

Q(u; α, ξ) = Q∗

{[
tan

(π

4
u
)]1/α

; ξ

}
, u ∈ (0, 1), (4)

where Q∗(u; ξ) denotes the qf corresponding to G(x; ξ).
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The standard quantiles can be deduced. Among them, the median defined by M(α, ξ) =

Q(1/2; α, ξ) plays an important role.
The quantile function is useful to simulate values from distributions belonging to the TCP-G

family. Indeed, for a given baseline cdf G(x; ξ), from n values u1, . . . , un randomly and independently
obtained from the uniform distribution over (0, 1), then x1, . . . , xn with xi = Q(ui; α, ξ) are n values
randomly and independently obtained from the corresponding TCP-G distribution.

Furthermore, the quantile function allows defining some skewness and kurtosis measures. They
have the advantage to always exist contrary to those defined with moments.

If Q∗(u; ξ) has not an analytical expression but can be expressed by a power expansion series
(such as the qf of the normal distribution), one can determine a power expansion series for Q(u; α, ξ)

by proceeding as in Section 3.4 of [25].

2.4. Example: The Truncated Cauchy Power Weibull Distribution

By construction, the TCP-G family is rich and contains numerous new distributions with a
potential interest from a statistical point of view (with different supports, numbers of parameters,
properties. . . ). Here, we focus our attention on the member of the TCP-G family defined with the
Weibull distribution as baseline. For the purpose of this paper, it is called the truncated Cauchy power
Weibull (TCPW) distribution.

In this study, the cdf of the Weibull distribution is defined by G(x; λ, θ) = 1− e−λxθ
, x > 0, where

λ, θ > 0, so ξ = (λ, θ), and the corresponding pdf is obtained as g(x; λ, θ) = λθxθ−1e−λxθ
, x > 0.

Hence, by substituting this cdf into (1), the TCPW distribution is defined by the following cdf:

F(x; α, λ, θ) =
4
π

arctan
[(

1− e−λxθ
)α]

, x > 0. (5)

Thus defined, α and θ are two positive shape parameters and λ is a positive scale parameter. Also, the
corresponding pdf is given by

f (x; α, λ, θ) =
4αλθ

π

xθ−1e−λxθ
(

1− e−λxθ
)α−1

1 +
(

1− e−λxθ
)2α

, x > 0, (6)

As immediate facts, the following asymptotic properties hold. When x → 0, we get f (x; α, λ, θ) ∼
(4αλαθ/π)xαθ−1. Hence, if αθ < 1, f (x; α, λ, θ) tends to +∞, if αθ = 1, f (x; α, λ, θ) tends to 4λα/π,
and if αθ > 1, f (x; α, λ, θ) tends to 0. When x → +∞, we have f (x; α, λ, θ) ∼ (2αλθ/π)xθ−1e−λxθ

,
which tends to 0 for all the values of the parameters. Numerical investigations of the critical points
show that the TCPW distribution is mainly unimodal: only one maximum is reached. Figure 1
illustrates the possible shapes for f (x; α, λ, θ) by considering the following four sets of parameters
as (α, λ, θ): (3, 2, 10), (2, 2, 1), (4, 1, 2) and (0.2, 1, 2). We see that f (x; α, λ, θ) can be left, right skewed,
near symmetrical and reverse J shaped.

The hrf of the TCPW distribution is obtained as

h(x; α, λ, θ) =
4αλθ

π

xθ−1
(

1− e−λxθ
)α−1[

1 +
(

1− e−λxθ
)2α
] {

1− (4/π) arctan
[(

1− e−λxθ
)α]} , x > 0. (7)

The following asymptotic properties hold. When x → 0, we get h(x; α, λ, θ) ∼ (4αλαθ/π)xαθ−1.
Therefore, if αθ < 1, h(x; α, λ, θ) tends to +∞, if αθ = 1, h(x; α, λ, θ) tends to 4λα/π, and if αθ > 1,
h(x; α, λ, θ) tends to 0.

Also, when x → +∞, we have h(x; α, λ, θ) ∼ αλθxθ−1. Hence, if θ < 1, h(x; α, λ, θ) tends to 0, if
θ = 1, h(x; α, λ, θ) tends to αλθ, and if θ > 1, h(x; α, λ, θ) tends to +∞.
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Figure 1. Plots of the pdf of the TCPW distribution for various values of the three parameters.

Numerical investigations of the critical points can be performed for h(x; α, ξ). For a visual
approach, Figure 2 illustrates the possible shapes for h(x; α, λ, θ) by considering the following five
sets of parameters as (α, λ, θ): (1.1, 2.5, 1), (5, 1.5, 2), (0.2, 1.2, 2.4), (0.5, 2, 0.5) and (1, 1.5, 1). We notice
again that the TCPW distribution is a very flexible distribution, having all possible monotonic and
non-monotonic hazard rate shapes, such as increasing, decreasing, decreasing-increasing-decreasing,
constant, bathtub and upside-down bathtub shapes.

0.0 0.5 1.0 1.5

0
1

2
3

4
5

x

hr
f

α = 1.1   λ = 2.5  θ = 1
α = 5      λ = 1.5  θ = 2
α = 0.2   λ = 1.2  θ = 2.4
α = 0.5   λ = 2     θ = 0.5
α = 1      λ = 1.5  θ = 1

Figure 2. Plots of the hrf of the TCPW distribution for various values of the three parameters.

After some algebra, the quantile function of the TCPW distribution is defined by

Q(u; α, λ, θ) =

[
− 1

λ
log
(

1−
[
tan

(π

4
u
)]1/α

)]1/θ

, u ∈ (0, 1). (8)
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This tractable expression is an undeniable plus to simulate values from the TCPW distribution and to
defined skewness and kurtosis measures, wherever the existence or not of moments. These points will
be discussed later.

3. Notable Properties

In this section, some notable properties of the TCP-G family, and of the TCPW distribution in
particular, are derived.

3.1. Linear Representations

Simple expansion series for the pdf and cdf of the TCP-G family are obtained according to
the cdf and pdf of the exponentiated-G family by [8] given by Gγ(x; ξ) = G(x; ξ)γ and gγ(x; ξ) =

γg(x; ξ)G(x; ξ)γ−1, where γ > 0. The interest of such expansions series is mainly for practical purposes:
the determination of some properties of the TCP-G family via such expansions can be more efficient
than computing those directly by numerical integration involving the corresponding pdf (which is
well-known to prone to rounding off errors).

Since G(x; ξ)α ∈ (0, 1), owing to the well-known series decomposition of the arctangent function,
we have the following series expansion for F(x; α, ξ):

F(x; α, ξ) =
4
π

+∞

∑
k=0

(−1)k

2k + 1
Gα(2k+1)(x; ξ). (9)

Upon differentiation of F(x; α, ξ), a series expansion for f (x; α, ξ) follows:

f (x; α, ξ) =
4
π

+∞

∑
k=0

(−1)k

2k + 1
gα(2k+1)(x; ξ). (10)

One can remark that the coefficients in these series expansions are readily computed numerically
using any standard mathematical software. Also, in any numerical calculations using these series
expansions, infinity should be substituted by a large integer number. In this sense, some properties of
the exponentiated-G family can be useful to determine those of the TCP-G family, as developed for the
moments and related functions in the next section.

In this study, we will use them to provide series expansions for the moments and related functions.
Also, for a given baseline cdf G(x; ξ), we can go further these series expansions with more specific
pdfs. For instance, for the TCPW distribution, owing to (9) and the generalized binomial formula
applied to Gα(2k+1)(x; ξ), we get

F(x; α, λ, θ) =
+∞

∑
k,`=0

uk,`S(x; `λ, θ), (11)

where uk,` = (4/π)(α(2k+1)
` )(−1)k+`/(2k + 1) and S(x; `λ, θ) = e−`λxθ

which is the survival function
of the Weibull distribution with parameters `λ and θ. Upon differentiation of F(x; α, λ, θ), we get

f (x; α, λ, θ) =
+∞

∑
k=0

+∞

∑
`=1

vk,`g(x; `λ, θ), (12)

where vk,` = −uk,` = (4/π)(α(2k+1)
` )(−1)k+`+1/(2k + 1) and g(x; `λ, θ) = `λθxθ−1e−`λxθ

which is the
pdf of the Weibull distribution with parameters `λ and θ.

3.2. On Moments and Related Functions

Now, let X be a random variable with the cdf given by (1), defined on a probability space (Ω,A, P).
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By virtue of (10), for any function ψ(x) such that all the introduced quantities are well-defined,
we have the following integral expression:

E[ψ(X)] =
∫ +∞

−∞
ψ(x) f (x; α, ξ)dx =

4
π

+∞

∑
k=0

(−1)k

2k + 1

∫ +∞

−∞
ψ(x)gα(2k+1)(x; ξ)dx.

For some configurations, the integral term can be calculated or, at least, evaluated numerically by any
mathematical software.

In particular, the s-th moment of X is obtained by choosing ψ(x) = xs, i.e., µ′s(α, ξ) = E(Xs).
Hence, by taking s = 1, we get the mean of X, i.e., µ(α, ξ) = µ′1(α, ξ). Furthermore, by taking s = 2,
we obtain µ′2(α, ξ) = E(X2), from which we can express the variance of X defined by σ2(α, ξ) =

µ′2(α, ξ)− µ(α, ξ)2. From the first s moments of X, the s-th central moment of X can be deduced as

µs(α, ξ) = E {[X− µ(α, ξ)]s} =
s

∑
k=0

(
s
k

)
(−1)kµ(α, ξ)kµ′s−k(α, ξ).

Then, some properties of the TCP-G family, as the skewness and kurtosis properties, can be investigated
by the study of the s-th general coefficient of X given by Cs(α, ξ) = µs(α, ξ)/σ(α, ξ)s.

The moment generation function of X according to t is obtained by choosing ψ(x) = ψt(x) = etX ,
i.e., M(t; α, ξ) = E(etX). Similarly, the characteristic function of X according to t is obtained by
choosing ψ(x) = ψit(x) = eitx, where i2 = −1, i.e., ϕ(t; α, ξ) = E(eitX).

Another important function is the s-th incomplete moment of X according to y which follows
from the choice ψ(x) = ψ∗y(x) = xs1{x≤y}, where 1A denotes the indicator function equal to one if A is
satisfied and 0 otherwise, i.e., µ′s(y; α, ξ) = E(Xs1{X≤y}). In particular, the first incomplete moment
allows us to define the mean deviation about the mean, i.e., δ1(α, ξ) = E[|X − µ(α, ξ)|], the mean
deviation about the median, i.e., δ2(α, ξ) = E[|X −M(α, ξ)|], as well as the Lorenz curve, the Gini
inequality index and the Zenga curve, which are of great importance in many applied fields. Further
details can be found in [27,28].

Let us now discuss some of the above properties in the context of the TCPW distribution, with
the use of (12). Thus, X is a random variable following the TCPW distribution, i.e., having the cdf
given by (5). Then, the s-th moment µ′s(α, λ, θ) exists. Owing to (12) and

∫ +∞
0 xsg(x; `λ, θ)dx =

(`λ)−s/θΓ(1 + s/θ), where Γ(x) =
∫ +∞

0 tx−1e−tdt, one can express it as

µ′s(α, λ, θ) = λ−s/θΓ
(

1 +
s
θ

) +∞

∑
k=0

+∞

∑
`=1

vk,``
−s/θ .

That is, we obtain the mean µ(α, λ, θ) and the variance σ2(α, λ, θ) of X proceeding as above. To
illustrate the effect of the parameters α, λ and θ on them, Figure 3 represents µ(α, λ, θ) and σ2(α, λ, θ)

under two different scenarios: (i) for fixed λ and θ and varying α and (ii) for fixed θ and α and varying
λ. Wee that the mean can increase with a near constant variance (see Figure 3a) whereas it can decrease
with high variations for the variance (Figure 3b). This illustrates the flexibility of these two measures
according to the distribution parameters.

We conclude this part by the description of the incomplete moments of X. By introducing the
lower incomplete gamma function defined by γ(x, y) =

∫ y
0 tx−1e−tdt, the s-th incomplete moment of

X is given by

µ′s(y; α, λ, θ) = λ−s/θ
+∞

∑
k=0

+∞

∑
`=1

vk,``
−s/θγ

(
1 +

s
θ

, `λyθ
)

.

Thus, the first incomplete moment can be derived, as well as the related important quantities and
functions (mean deviations, Lorenz curve. . . ).
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Figure 3. Plots of the mean and variance for the TCPW distribution: (a) for fixed λ and θ and varying α

and (b) for fixed θ and α and varying λ.

3.3. Skewness and Kurtosis Based on Quantiles

As previously mentioned, one can define measures of skewness and kurtosis based on quantiles.
In comparison to those defined with moments, they are more simple to calculate and not influenced by
the eventual extreme tails of the distribution. One of the most useful skewness based on quantile is the
MacGillivray skewness introduced by [29]. In the context of the TCP-G family, based on (4) and the
median, it is given by the following function:

ρ(u; α, ξ) =
Q(1− u; α, ξ) + Q(u; α, ξ)− 2M(α, ξ)

Q(1− u; α, ξ)−Q(u; α, ξ)
, u ∈ (0, 1).

We can use this robust function to describe efficiently the effect of the parameters (α, ξ) on the
skewness; more the shapes of the graphs of ρ(u; α, λ, θ) are varying according to the parameters, more
the skewness is flexible. One can notice that, for u = 1/4, it becomes the Galton skewness studied
by [30]. The sign of the Galton skewness is informative on the right or symmetric or left skewed nature
of the distribution; ρ(3/4; α, ξ) > 0 means that the distribution is right skewed, ρ(3/4; α, ξ) = 0 means
that the distribution is symmetrical and ρ(3/4; α, ξ) < 0 means that the distribution is left skewed.

Also, the kurtosis of the TCP-G family can be studied by considering the Moors kurtosis proposed
by [31]. It is defined by

K(α, ξ) =
Q(7/8; α, ξ)−Q(5/8; α, ξ) + Q(3/8; α, ξ)−Q(1/8; α, ξ)

Q(3/4; α, ξ)−Q(1/4; α, ξ)
.

A high value for K(α, ξ) means that the distribution has heavy tails and a small values for K(α, ξ)

means that the distribution has light tails.
We now investigate the skewness and kurtosis of the TCPW distribution. In this case, thanks

to (8), the MacGillivray skewness and Moors kurtosis have a closed-form. We now propose some
visual explorations of these measures. Figure 4 presents the MacGillivray skewness when (i) λ and
θ are constant, i.e., λ = 1.5 and θ = 0.3, and α increases and (ii) α and λ are constant, i.e., α = 1.5
and λ = 0.5, and θ increases. Moderate variations can be seen in the curves of Figure 4a, meaning
that the parameter α has a moderate effect on the skewness, whereas various wide variations on the
shapes of the curves are observed in Figure 4b, showing that the parameter θ strongly influenced the
skewness. Then, a similar visual approach is performed for the Galton skewness in Figure 5. For the
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selected values of the parameters, we see that the Galton skewness decreases. Also, it is observed that
it can be positive (see Figure 5a) or negative (see Figure 5b with λ = 2, α ∈ {0.4, 0.6, 1.2} and θ > 5
approximately), meaning that the TCPW distribution can be left or right skewed, respectively. Figure 6
displays the Moors kurtosis following the same scenarios. We see that the TCPW distribution can be of
different kurtosis nature, which small or high possible values. All these facts show the great skewness
and kurtosis flexibility of the TCPW distribution.
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Figure 4. Plots of the MacGillivray skewness for selected values of the parameters when (a) α increases
and (b) θ increases.
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Figure 5. Plots of Galton skewness for selected values of the parameters when (a) α varies and (b) θ

varies.
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Figure 6. Plots of Moors kurtosis for selected values of the parameters when (a) α varies and (b) θ

varies.

3.4. Rényi Entropy and q-Entropy

Entropy is a fundamental measure to quantify the amount of informations in a distribution, finding
applications in information science, thermodynamics and statistical physics. Here, we investigate
two different and complementary kinds of entropy arising from various physical experiments: Rényi
entropy and q-entropy, of the TCP-G family, as introduced by [32,33], respectively. As common
interpretation, the lower the entropy, the lower the randomness of the related system. For further
detail, we refer the reader to the survey of [34].

Rényi entropy is defined by

Iδ(α, ξ) =
1

1− δ
log
[∫ +∞

−∞
f (x; α, ξ)δdx

]
,

with δ ∈ (0,+∞)/{1}. Since it can be expressed analytically, we aims to provide a series expansion of
Iδ(α, ξ). Owing to (2) and the generalized binomial formula, we get

f (x; α, ξ)δ =
4δαδ

πδ

+∞

∑
k=0

(
−δ

k

) [
g(x; ξ)δG2αk+δ(α−1)(x; ξ)

]
.

Therefore, we can expressed Iδ(α, ξ) as:

Iδ(α, ξ) =

1
1− δ

{
δ log(4) + δ log(α)− δ log(π) + log

[
+∞

∑
k=0

(
−δ

k

) ∫ +∞

−∞
g(x; ξ)δG2αk+δ(α−1)(x; ξ)dx

]}
.

For given functions and parameters, mathematical software can be useful to evaluated numerically
this last integral.
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If we consider the case of the TCPW distribution, we can formulate Iδ(α, λ, θ) by the above
expression and the following series expansion:

∫ +∞

−∞
g(x; λ, θ)δG2αk+δ(α−1)(x; λ, θ)dx =

λ(δ−1)/θθδ−1
+∞

∑
k=0

(
2αk + δ(α− 1)

k

)
(−1)k(δ + k)−1−(1−1/θ)(δ−1)Γ

(
1 +

(θ − 1)(δ− 1)
θ

)
. (13)

In the general context of the TCP-G family, the q-entropy is defined by

Hq(α, ξ) =
1

1− q

[
1−

∫ +∞

−∞
f (x; α, ξ)qdx

]
,

with δ ∈ (0,+∞)/{1}. Proceeding as for the Rényi entropy, we can expressed it as:

Hq(α, ξ) =
1

1− q

[
1− 4qαq

πq

+∞

∑
k=0

(
−q
k

) ∫ +∞

−∞
g(x; ξ)qG2αk+q(α−1)(x; ξ)dx

]
.

For the the TCPW distribution, by replacing δ by q, we can express the integral term as in (13).

3.5. Order Statistics

We now present the main properties of the order statistics in the context of the TCP-G family. The
general theory can be found in [35].

Now, let X1, . . . , Xn be a random sample from the TCP-G family and Xi:n be the i-th order statistic,
i.e., its i-th smallest random variables (in the standard probabilistic ordering sense, i.e., X ≤ Y if and
only if P(X ≤ Y) = 1). Then, it is well-known that the cdf and pdf of Xi:n are, respectively, given by

Fi:n(x; α, ξ) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j 1

j + i
F(x; α, ξ)j+i, x ∈ R

and

fi:n(x; α, ξ) =
n!

(i− 1)!(n− i)!
F(x; α, ξ)i−1[1− F(x; α, ξ)]n−i f (x; α, ξ), x ∈ R. (14)

We now focus on the determination of a tractable series expansions for Fi:n(x; α, ξ) and fi:n(x; α, ξ).
In this regard, let us now present a result on the series expansion for the exponentiated arctangent
function with power integer. For any x ∈ [−1, 1] and any integer s, we have

[arctan(x)]s =
+∞

∑
k=0

cs,kx2k+s, (15)

where cs,0 = 1 and, for any m ≥ 1, cs,m is defined by the following relation:

cs,m =
1
m

m

∑
`=1

[`(s + 1)−m]
(−1)`

2`+ 1
cs,m−`,

(thus, for instance, cs,1 = −s/3 and cs,2 = s2/18 + 13s/90). The proof of this intermediary result is
discussed below. Owing to [26] (Point 0.314), for an integer s, a sequence of real numbers (ak)k∈N

and y ∈ R, by assuming that the introduced sums converge, we have
(

+∞
∑

k=0
akyk

)s
=

+∞
∑

k=0
cs,kyk, where

the coefficients (cs,k)k∈N are determined by the following relations: cs,0 = as
0 and, for any m ≥ 1,
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cs,m = (ma0)
−1

m
∑
`=1

[`(s + 1)−m]a`cs,m−`. Since, for any x ∈ [−1, 1], we have arctan(x) =
+∞
∑

k=0
akx2k+1,

with ak = (−1)k/(2k + 1) (so a0 = 1), the above result implies that

[arctan(x)]s = xs

(
+∞

∑
k=0

ak(x2)k

)s

= xs
+∞

∑
k=0

cs,k(x2)k =
+∞

∑
k=0

cs,kx2k+s.

Thus, it follows from (15) that

Fi:n(x; α, ξ) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j 1

j + i

{
4
π

arctan[G(x; ξ)α]

}j+i

=
n−i

∑
j=0

+∞

∑
k=0

dj,k;i:nGα(2k+j+i)(x; ξ),

where

di,j;i:n =
n!

(i− 1)!(n− i)!

(
n− i

j

)
(−1)j 1

j + i

(
4
π

)j+i
cj+i,k,

(cj+i,k is defined as in (15) with s = j + i). This shows that the cdf of the order statistics of the TCP-G
family can be expressed as an infinite mixture of cdfs of the exponentiated-G family by [8]. Therefore,
the well-established properties of the exponentiated-G family can be used to determine those of the
order statistics of the TCP-G family. Indeed, from Fi:n(x; α, ξ), one can deduce the corresponding pdf
by differentiation as follows:

fi:n(x; α, ξ) =
n−i

∑
j=0

+∞

∑
k=0

dj,k;i:ngα(2k+j+i)(x; ξ).

This expression allows determining moments, skewness, kurtosis, and other important measures and
functions.

In the case of the TCPW distribution, a refinement of these series expansions are possible. Indeed,
we can expend Gα(2k+j+i)(x; ξ) in a series expansion as in (11), which implies that

Fi:n(x; α, λ, θ) =
n−i

∑
j=0

+∞

∑
k,`=0

ej,k,`;i:nS(x; `λ, θ),

where ej,k,`;i:n = (α(2k+j+i)
` )(−1)`di,j;i:n and S(x; `λ, θ) = e−`λxθ

(we recall that it is the survival function
of the Weibull distribution with parameters `λ and θ).

Also, upon differentiation of Fi:n(x; α, λ, θ), the pdf of Xi:n is given by

fi:n(x; α, λ, θ) =
n−i

∑
j=0

+∞

∑
k=0

+∞

∑
`=1

ej,k,`;i:ng(x; `λ, θ),

where g(x; `λ, θ) = `λθxθ−1e−`λxθ
(we recall that it is the pdf of the Weibull distribution with

parameters `λ and θ). As a direct application, the r-th moment of Xi:n can be obtained as

µ′r,i:n(α, λ, θ) = E(Xr
i:n) = λ−s/θΓ

(
1 +

s
θ

) n−i

∑
j=0

+∞

∑
k=0

+∞

∑
`=1

ej,k,`;i:n`
−s/θ .
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4. Estimation of the TCP-G Model Parameters

This section is devoted to the inferential properties of the TCP-G model. The estimation of the
parameters α and ξ is performed by the maximum likelihood method. Two different sampling schemes
are considered: the simple random sampling (SRS) and the ranked set sampling (RSS). In what follows,
n denotes a positive integer measuring the size of the considered sample; it can be small or large.

4.1. Maximum Likelihood Method under SRS

Let x1, . . . , xn be a SRS from the TCP-G family, i.e., with the pdf given by (2). Then, the
corresponding likelihood function is defined by

L(α, ξ) =
n

∏
i=1

f (xi; α, ξ) =
4nαn

πn

n

∏
i=1

g(xi; ξ)G(xi; ξ)α−1

1 + G(xi; ξ)2α
.

Thus, the corresponding log-likelihood function is defined by

`(α, ξ) = log[L(α, ξ)] = n log(4) + n log(α)− n log(π)

+
n

∑
i=1

log[g(xi; ξ)] + (α− 1)
n

∑
i=1

log[G(xi; ξ)]−
n

∑
i=1

log[1 + G(xi; ξ)2α].

Then, the maximum likelihood estimates (MLEs) of α and ξ are defined by (α̂, ξ̂) =

argmax(α,ξ) L(α, ξ) = argmax(α,ξ) `(α, ξ). Assuming that `(α, ξ) is differentiable, the MLEs can
be obtained by solving the following non-linear equations simultaneously: ∂`(α̂, ξ̂)/∂α = 0 and
∂`(α̂, ξ̂)/∂ξ = 0, with

∂`(α, ξ)

∂α
=

n
α
+

n

∑
i=1

log[G(xi; ξ)]− 2
n

∑
i=1

G(xi; ξ)2α log[G(xi; ξ)]

1 + G(xi; ξ)2α

and, by setting g(xi; ξ)ξ = ∂g(xi; ξ)/∂ξ and G(xi; ξ)ξ = ∂G(xi; ξ)/∂ξ,

∂`(α, ξ)

∂ξ
=

n

∑
i=1

g(xi; ξ)ξ

g(xi; ξ)
+ (α− 1)

n

∑
i=1

G(xi; ξ)ξ

G(xi; ξ)
− 2α

n

∑
i=1

G(xi; ξ)ξ G(xi; ξ)2α−1

1 + G(xi; ξ)2α
.

In general, these non-linear equations cannot be solved explicitly. However, the corresponding MLEs
can be evaluated by using any well-know numerical numerical optimization technique. Thanks to the
well-established theory of the maximum likelihood maximum method, by assuming that n is large
enough and some regularity conditions hold, we can construct asymptotic confidence intervals of
the model parameters. In this regard, we need the approximate inverse of the observed information
matrix. By setting r be the number of components in the vector ξ and ξ = (ξ1, . . . , ξr), it is given by

I(α̂, ξ̂)−1 = −



∂2`(α,ξ)
∂α2

∂2`(α,ξ)
∂α∂ξ1

∂2`(α,ξ)
∂α∂ξ2

. . . ∂2`(α,ξ)
∂α∂ξr

. ∂2`(α,ξ)
∂ξ2

1

∂2`(α,ξ)
∂ξ1∂ξ2

. . . ∂2`(α,ξ)
∂ξ1∂ξr

. . ∂2`(α,ξ)
∂ξ2

2
. . . ∂2`(α,ξ)

∂ξ2∂ξr

. . . . . . .

. . . . . . .

. . . . . . ∂2`(α,ξ)
∂ξ2

r



−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(α,ξ)=(α̂,ξ̂)

. (16)
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Then, the asymptotic confidence intervals of α and ξi, for i = 1, . . . , r, at the level 100(1− ν)% are,
respectively, given by

CIα = [α̂− z1−ν/2
√

vα̂, α̂ + z1−ν/2
√

vα̂], CIξi = [ξ̂i − z1−ν/2
√

vξ̂i
, ξ̂i + z1−ν/2

√
vξ̂i

], (17)

where vα̂ and vξ̂i
are the first and i + 1-th elements of the main diagonal of I(α̂, ξ̂)−1, respectively, and

zγ is the quantile of the standard normal distribution taken at γ.
For the special case of the TCPW model, we recall that ξ = (λ, θ), G(x; λ, θ) = 1− e−λxθ

and
g(x; λ, θ) = λθxθ−1e−λxθ

. Thus, the equations to obtain the MLEs α̂, λ̂ and θ̂ of α, λ and θ, respectively,
can be expressed by using the following partial derivatives:

G(x; λ, θ)λ = xθe−λxθ
, G(x; λ, θ)θ = λxθ log(x)e−λxθ

,

g(x; λ, θ)λ = θxθ−1(1− λxθ)e−λxθ
, g(x; λ, θ)θ = θxθ−1[1 + θ log(x)− λθxθ log(x)]e−λxθ

.

The same for the approximate inverse of the observed information matrix, i.e., I(α̂, λ̂, θ̂)−1, but with
the determination of the second partial derivatives. Here, we omit them for the sake of place.

4.2. Maximum Likelihood Method under RSS

First of all, let us briefly present the considered RSS as introduced by [36] in our distributional
context and in the following simple scheme: it is supposed that the set size is n and that number of
cycles is n. In this scheme, let x1, . . . , xn2 be a SRS of size n2 from the TCP-G family, i.e., with the cdf
and pdf given by (1) and (2). Then, the obtained values are randomly divided into n sets of n units
each. On each set, we rank the n elements. In the first set, we select the element with the smallest
ranking, denoted by x1(1). In the second set, we select the element with the second smallest ranking,
denoted by x2(2). We follow this processes until we have ranked the elements in the n-th set and
selected the element with the largest ranking, denoted by xn(n).

Adopting the framework above, the corresponding likelihood function is defined by

L∗(α, ξ) =
n

∏
i=1

fi:n(xi(i); α, ξ) = τn

n

∏
i=1

{
F(xi(i); α, ξ)i−1[1− F(xi(i); α, ξ)]n−i f (xi(i); α, ξ)

}
= τn

4nαn

πn

n

∏
i=1

{{
4
π

arctan[G(xi(i); ξ)α]

}i−1 [
1− 4

π
arctan[G(xi(i); ξ)α]

]n−i g(xi(i); ξ)G(xi(i); ξ)α−1

1 + G(xi(i); ξ)2α

}
,

where τn =
n
∏
i=1

n!/[(i− 1)!(n− i)!].

Thus, the corresponding log-likelihood function is defined by

`∗(α, ξ) = log[L∗(α, ξ)] = log(τn) + n log(4) + n log(α)− n log(π)

+
n

∑
i=1

(i− 1) log
{

4
π

arctan[G(xi(i); ξ)α]

}
+

n

∑
i=1

(n− i) log
{

1− 4
π

arctan[G(xi(i); ξ)α]

}
+

n

∑
i=1

log[g(xi(i); ξ)] + (α− 1)
n

∑
i=1

log[G(xi(i); ξ)]−
n

∑
i=1

log[1 + G(xi(i); ξ)2α].

Then, the maximum likelihood estimates (MLEs) of α and ξ are defined by (α̃, ξ̃) =

argmax(α,ξ) L∗(α, ξ) = argmax(α,ξ) `∗(α, ξ). Assuming that `∗(α, ξ) is differentiable, the MLEs can
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be obtained by solving the following non-linear equations simultaneously: ∂`∗(α̃, ξ̃)/∂α = 0 and
∂`∗(α̃, ξ̃)/∂ξ = 0, with

∂`∗(α, ξ)

∂α
=

n
α
+

n

∑
i=1

(i− 1)
G(xi(i); ξ)α log[G(xi(i); ξ)]

[1 + G(xi(i); ξ)2α] arctan[G(xi(i); ξ)α]

− 4
π

n

∑
i=1

(n− i)
G(xi(i); ξ)α log[G(xi(i); ξ)]

[1 + G(xi(i); ξ)2α]
{

1− (4/π) arctan[G(xi(i); ξ)α]
}

+
n

∑
i=1

log[G(xi(i); ξ)]− 2
n

∑
i=1

G(xi(i); ξ)2α log[G(xi(i); ξ)]

1 + G(xi(i); ξ)2α
.

and, by setting g(xi(i); ξ)ξ = ∂g(xi(i); ξ)/∂ξ and G(xi(i); ξ)ξ = ∂G(xi(i); ξ)/∂ξ,

∂`∗(α, ξ)

∂ξ
= α

n

∑
i=1

(i− 1)
g(xi(i); ξ)ξ G(xi(i); ξ)α−1

[1 + G(xi(i); ξ)2α] arctan[G(xi(i); ξ)α]

− 4
π

α
n

∑
i=1

(n− i)
g(xi(i); ξ)ξ G(xi(i); ξ)α−1

[1 + G(xi(i); ξ)2α]
{

1− (4/π) arctan[G(xi(i); ξ)α]
}

+
n

∑
i=1

g(xi(i); ξ)ξ

g(xi(i); ξ)
+ (α− 1)

n

∑
i=1

G(xi(i); ξ)ξ

G(xi(i); ξ)
− 2α

n

∑
i=1

G(xi(i); ξ)ξ G(xi(i); ξ)2α−1

1 + G(xi(i); ξ)2α
.

In general, these non-linear equations cannot be solved explicitly, but the corresponding MLEs can be
obtained by using appropriated numerical technique. Also, the well-known theory of the maximum
likelihood method can be applied. In particular, one can construct asymptotic confidence intervals
of the model parameters as for the SRS case. In this regard, we need to defined the inverse of the
observed information matrix as (16) but with `∗(α, ξ) instead of `(α, ξ) and (α̃, ξ̃) instead of (α̂, ξ̂),
then the definition of the asymptotic confidence intervals are similar to those in (17) with this new
configuration. For the TCPW model, some of the quantities above can be expressed in a similar way to
the SRS case.

4.3. Simulation Study

As a logical sequel of the previous subsection, we provide a numerical study on the MLEs of the
TCPW model parameters based on simple random sampling (SRS) and ranked set sampling (RSS).
A comparison study between the estimates is performed by considering the mean squared errors
(MSEs) and relative efficients (REs) defined by RE = MSE(RSS)/MSE(SRS). Also, lower bounds (LBs),
upper bounds (UBs) of the related asymptotic confidence intervals, as well as their average lengths
(ALs) defined by AL = UB - LB at the levels 90% and 95%, are calculated based on RSS and SRS via
Mathematica 9. The simulation procedure follows the following six steps.

Step 1: We consider n = 100, 200 and 300.
Step 2: The parameters values are selected as

Set1: (α = 0.5, λ = 1.5, θ = 0.5),

Set2: (α = 1.2, λ = 1.5, θ = 0.5),

Set3: (α = 1.2, λ = 1.5, θ = 0.75),

Set4: (α = 0.5, λ = 1.5, θ = 0.75).
Step 3: For the chosen set of parameters and each sample of size n, the MLEs are computed under

SRS and RSS as described in the above subsection.
Step 4: Repeat the previous steps from 1 to 3, N times representing with different samples, where

N = 1000. Then, MSEs and REs are computed.
Step 5: The LB, UB and AL for selected values of parameters are calculated based on SRS and RSS.
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Step 6: Numerical outcomes are given in Tables 1 to 8.

Table 1. Estimates, mean squared errors (MSEs) and relative efficients (REs) for Set1: (α = 0.5, λ =

1.5, θ = 0.5).

n SRS RSS REMLE MSE MLE MSE

100
0.508 0.033 0.512 0.023 0.697
1.443 0.140 1.509 0.035 0.247
0.564 0.044 0.524 0.012 0.266

200
0.499 0.024 0.447 0.004 0.173
1.501 0.110 1.441 0.008 0.072
0.539 0.022 0.552 0.004 0.181

300
0.492 0.020 0.521 0.002 0.091
1.519 0.102 1.527 0.003 0.032
0.533 0.016 0.486 0.001 0.052

Table 2. Estimates, mean squared errors (MSEs) and relative efficients (REs) for Set2: (α = 1.2, λ =

1.5, θ = 0.5).

n SRS RSS REMLE MSE MLE MSE

100
1.846 2.534 1.115 0.047 0.019
1.747 0.645 1.428 0.028 0.044
0.481 0.027 0.541 0.005 0.198

200
1.201 0.158 1.225 0.030 0.190
1.371 0.123 1.509 0.016 0.128
0.519 0.008 0.500 0.002 0.242

300
1.179 0.054 1.224 0.012 0.215
1.449 0.034 1.517 0.007 0.203
0.521 0.004 0.498 0.001 0.151

Table 3. Estimates, mean squared errors (MSEs) and relative efficients (REs) for Set3: (α = 1.2, λ =

1.5, θ = 0.75).

n SRS RSS REMLE MSE MLE MSE

100
1.253 0.761 1.326 0.154 0.202
1.412 0.373 1.562 0.060 0.161
0.945 0.188 0.740 0.014 0.072

200
1.271 0.268 1.209 0.022 0.084
1.547 0.186 1.501 0.012 0.064
0.800 0.043 0.752 0.003 0.069

300
1.148 0.091 1.118 0.010 0.115
1.426 0.047 1.431 0.007 0.137
0.787 0.015 0.780 0.002 0.117
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Table 4. Estimates, mean squared errors (MSEs) and relative efficients (REs) for Set4: (α = 0.5, λ =

1.5, θ = 0.75).

n SRS RSS REMLE MSE MLE MSE

100
0.576 0.078 0.475 0.018 0.236
1.599 0.239 1.464 0.040 0.167
0.848 0.108 0.843 0.051 0.470

200
0.481 0.024 0.504 0.004 0.182
1.533 0.100 1.490 0.009 0.090
0.859 0.057 0.751 0.004 0.069

300
0.472 0.013 0.496 0.001 0.059
1.473 0.043 1.486 0.001 0.033
0.795 0.026 0.754 0.001 0.037

Table 5. Lower bounds (LBs), upper bounds (UBs), and average lengths (ALs) based on simple random
sampling (SRS) and ranked set sampling (RSS) for Set1: (α = 0.5, λ = 1.5, θ = 0.5).

n
SRS RSS

90% 95% 90% 95%
LB UB AL LB UB AL LB UB AL LB UB AL

100
0.124 0.892 0.768 0.050 0.965 0.915 0.141 0.882 0.742 0.070 0.953 0.884
0.649 2.237 1.588 0.497 2.389 1.892 0.733 2.284 1.551 0.585 2.433 1.848
0.205 0.923 0.718 0.136 0.992 0.856 0.233 0.816 0.583 0.177 0.871 0.695

200
0.228 0.770 0.542 0.177 0.822 0.646 0.219 0.676 0.457 0.175 0.720 0.545
0.939 2.064 1.125 0.831 2.172 1.341 0.897 1.984 1.087 0.793 2.088 1.295
0.317 0.761 0.444 0.274 0.804 0.530 0.338 0.766 0.429 0.297 0.807 0.511

300
0.284 0.700 0.416 0.244 0.740 0.496 0.313 0.729 0.416 0.273 0.769 0.496
1.073 1.965 0.892 0.987 2.051 1.063 1.098 1.955 0.858 1.016 2.037 1.022
0.362 0.704 0.341 0.330 0.736 0.407 0.344 0.627 0.284 0.317 0.654 0.338

Table 6. Lower bounds (LBs), upper bounds (UBs), and average lengths (ALs) based on simple random
sampling (SRS) and ranked set sampling (RSS) for Set2: (α = 1.2, λ = 1.5, θ = 0.5).

n
SRS RSS

90% 95% 90% 95%
LB UB AL LB UB AL LB UB AL LB UB AL

100
-0.097 3.789 3.886 -0.469 4.161 4.630 0.172 2.058 1.886 -0.008 2.239 2.247
0.848 2.646 1.798 0.676 2.818 2.142 0.600 2.257 1.657 0.441 2.416 1.974
0.235 0.726 0.491 0.188 0.774 0.585 0.261 0.820 0.559 0.208 0.874 0.666

200
0.524 1.879 1.355 0.394 2.008 1.614 0.544 1.906 1.362 0.414 2.037 1.623
0.835 1.908 1.073 0.732 2.011 1.279 0.953 2.065 1.112 0.847 2.172 1.325
0.346 0.692 0.346 0.312 0.725 0.413 0.333 0.666 0.333 0.301 0.698 0.397

300
0.626 1.733 1.108 0.520 1.839 1.320 0.663 1.784 1.122 0.555 1.892 1.337
0.986 1.912 0.926 0.897 2.001 1.104 1.059 1.975 0.916 0.971 2.063 1.092
0.373 0.669 0.296 0.345 0.697 0.352 0.362 0.634 0.272 0.336 0.660 0.324
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Table 7. Lower bounds (LBs), upper bounds (UBs), and average lengths (ALs) based on simple random
sampling (SRS) and ranked set sampling (RSS) for Set3: (α = 1.2, λ = 1.5, θ = 0.75).

n
SRS RSS

90% 95% 90% 95%
LB UB AL LB UB AL LB UB AL LB UB AL

100
0.138 2.368 2.231 -0.076 2.582 2.658 0.216 2.436 2.219 0.004 2.648 2.644
0.607 2.218 1.611 0.453 2.372 1.919 0.740 2.385 1.645 0.583 2.542 1.960
0.431 1.459 1.028 0.332 1.557 1.225 0.380 1.101 0.721 0.311 1.170 0.859

200
0.432 2.110 1.677 0.272 2.270 1.999 0.536 1.882 1.346 0.407 2.011 1.603
0.936 2.159 1.223 0.819 2.276 1.457 0.946 2.056 1.110 0.840 2.162 1.322
0.505 1.095 0.590 0.449 1.151 0.703 0.502 1.002 0.500 0.454 1.050 0.596

300
0.601 1.694 1.093 0.497 1.799 1.302 0.625 1.611 0.986 0.531 1.706 1.174
0.961 1.890 0.929 0.872 1.979 1.107 0.991 1.870 0.879 0.907 1.954 1.047
0.560 1.014 0.454 0.516 1.057 0.541 0.570 0.989 0.419 0.530 1.030 0.500

Table 8. Lower bounds (LBs), upper bounds (UBs), and average lengths (ALs) based on simple random
sampling (SRS) and ranked set sampling (RSS) for Set4: (α = 0.5, λ = 1.5, θ = 0.75).

n
SRS RSS

90% 95% 90% 95%
LB UB AL LB UB AL LB UB AL LB UB AL

100
0.137 1.014 0.877 0.053 1.098 1.045 0.115 0.834 0.719 0.046 0.903 0.856
0.812 2.386 1.575 0.661 2.537 1.876 0.657 2.271 1.615 0.502 2.426 1.924
0.359 1.337 0.978 0.266 1.431 1.165 0.329 1.357 1.028 0.231 1.455 1.225

200
0.247 0.715 0.469 0.202 0.760 0.558 0.251 0.757 0.507 0.202 0.806 0.604
1.004 2.063 1.059 0.902 2.164 1.262 0.956 2.025 1.070 0.853 2.128 1.275
0.538 1.181 0.643 0.477 1.242 0.766 0.472 1.031 0.559 0.418 1.084 0.666

300
0.270 0.674 0.404 0.232 0.713 0.481 0.293 0.700 0.407 0.254 0.739 0.485
1.019 1.927 0.908 0.932 2.014 1.081 1.050 1.923 0.873 0.966 2.006 1.040
0.535 1.056 0.522 0.485 1.106 0.622 0.526 0.983 0.458 0.482 1.027 0.545

From Tables 1 to 8, for most of the situations, the following comments can be formulated.

• For both of the sampling schemes, the MSEs decrease as n increases.
• For both of the sampling schemes, the AL of the CI become decreases as n increases.
• The estimates based on RSS have smaller MSE than the corresponding based on SRS. For this

reason, in case of a high level of precision is required, RSS is preferable.

5. Application to Two Practical Data Sets

The TCPW model finds a concrete interest in the precise modelling of real life data sets. Here, we
illustrate this aspect by considering the two following data sets.

The first data set is taken from tests on the endurance of deep-groove ball bearings. The
measurements represent the number of millions revolutions reached by each bearing before fatigue
failure (see [37]). The first data set is given by: 17.88, 45.60, 54.12, 68.88, 105.84, 28.92, 48.40, 55.56, 84.12,
127.92, 33.00, 51.84, 67.80, 93.12, 128.04, 41.52, 51.96, 68.64, 98.64, 173.40, 42.12, 54.12, 68.64, 105.12. A
basic statistical description of this data set is proposed in Table 9.

Table 9. Basic statistical description for the first data set.

n Mean Median Standard Deviation Skewness Kurtosis

24 71.47 61.68 36.85 0.94 0.35
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From Table 10, we observe that the data are right skewed with a moderate kurtosis, which
corresponds to a case covered by the TCPW model.

The second data set refers to a lifetime data set taken from [38] (p 105). The data are: 1.1, 1.4, 1.3,
1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. A first statistical description of this
data set is presented in Table 10.

Table 10. Basic statistical description for the second data set.

n Mean Median Standard Deviation Skewness Kurtosis

20 1.9 1.7 0.7 1.59 2.35

From Table 10, we see that the data are highly right skewed with a consequent kurtosis, which is
a case also covered by the TCPW model.

Then, we compare the TCPW model to the following well-established models: the
Kumaraswamy–Weibull-exponential (KwWE) model by [39], the Kumaraswamy–Weibull (Kw-W)
model by [9], the beta Weibull (BW) model by [40], and the standard Weibull (W) model. The results
are obtained using the R software.

By respecting the standard in the field, all the parameters will be estimated by the MLEs in the
SRS case, even if the simulation study is favorable to the RSS for the TCPW model (see the subsection
above). Then, standard measures are taken into account, namely: the Cramér-Von Mises (CVM)
statistic, the Anderson-Darling (AD) statistic and the Kolmogorov-Smirnov (KS) statistic along with
the corresponding p-value. The obtained results are summarized in Tables 11 and 12 for the first and
second data sets, respectively. We see that the TCPW model has the smallest CVM, AD, KS and the
greatest p-value (with p-value ≈ 0.94 and ≈ 0.97 for the first and second data sets, respectively, which
are quite close to the limit 1), attesting that it is the best model for these data sets.

To solidify this claim, we provide the minus estimated log-likelihood function (− ˆ̀), Akaike
information criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian information
criterion (BIC), and Hannan–Quinn information criterion (HQIC) in Tables 13 and 14 for the first and
second data sets, respectively. We observe that the TCPW model has the smallest AIC, CAIC, BIC
and HQIC, attesting its superiority in terms of modelling. To illustrate this, Figures 7 and 8 show the
fits of (i) the estimated pdfs over the corresponding histograms and (ii) cdfs over the corresponding
empirical cdfs of the related models, for the first and second data sets, respectively. As expected, nice
fits can be seen for the TCPW model.

Table 11. Goodness-of-fit measures, maximum likelihood estimates (MLEs) and standard errors (SEs)
(in parentheses) for the first data set.

Model CVM AD KS p-Value MLEs

TCPW 0.0384 0.2194 0.1078 0.9429 5.1975 0.0279 1.0104 - -
(α, λ, θ) (1.2660) (0.0483) (0.3225) - -
KwWE 0.0717 0.3868 0.1530 0.6272 7.8198 21.5152 1.4692 0.4015 0.0051
(a, b, α, β, λ) (3.9916) (0.0998) (1.0216) (0.3623) (0.0019)
KwW 0.0411 0.2305 0.1131 0.9145 12.8249 2.7789 0.2028 0.5722 -
(λ, c, a, b) (2.5960) (9.9083) (4.1252) (9.706634) -
BW 0.0402 0.2282 0.1106 0.9280 11.9919 3.4218 0.1125 0.6320 -
(α, β, c, γ) (19.5339) (20.2379) (0.4676) (1.1721) -
W 0.0615 0.3282 0.2437 0.1156 0.0021 1.4348 - - -
(λ, θ) (0.0004) (0.06016) - - -
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Table 12. Goodness-of-fit measures, maximum likelihood estimates (MLEs) and standard errors (SEs)
for the second data set.

Model CVM AD KS p-Value MLEs

TCPW 0.0337 0.1959 0.1086 0.9722 200.3272 3.7521 0.6613 - -
(α, λ, θ) (9.9442) (1.2310) (0.2927) - -
KwWE 0.0483 0.2819 0.1380 0.8408 57.5128 0.4407 34.5503 1.0974 0.0965
(a, b, α, β, λ) (7.3437) (0.4832) (7.2847) (0.5249) (0.1460)
KwW 0.0425 0.2458 0.1274 0.9012 68.9084 0.3396 2.9571 1.3003 -
(λ, c, a, b) (2.4681) (0.3679) (1.1769) (0.6407) -
BW 0.0407 0.2344 0.1265 0.9057 78.7504 0.3148 3.3232 1.2708 -
(α, β, c, γ) (19.5339) (20.2379) (0.4676) (1.1721) -
W 0.1857 1.0928 0.1849 0.5007 0.1215 2.7869 - - -
(λ, θ) (0.0562) (0.4272) - - -

Table 13. The − ˆ̀, Akaike information criterion (AIC), corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), and Hannan–Quinn information criterion (HQIC) for the first
data set.

Model − ˆ̀ AIC CAIC BIC HQIC

TCPW 117.2952 240.5904 241.7904 244.1246 241.5280
KwWE 117.9379 245.8759 249.2092 251.7662 247.4386
KwW 117.3225 242.6459 244.7502 247.3572 243.8951
BW 117.3125 242.6249 244.7302 247.3371 243.8751
W 120.9310 245.8621 246.4335 248.2182 246.4872

Table 14. The − ˆ̀, Akaike information criterion (AIC), corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), and Hannan–Quinn information criterion (HQIC) for the second
data set.

Model − ˆ̀ AIC CAIC BIC HQIC

TCPW 15.6075 37.2151 38.7151 40.2023 37.7982
KwWE 15.9309 41.8619 46.1476 46.8405 42.8337
KwW 15.7235 39.4471 42.11383 43.4300 40.2246
BW 15.6801 39.3603 42.0272 43.3432 40.1378
W 20.5864 45.1728 45.8786 47.1642 45.5615
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Figure 7. Estimated (a) pdfs and (b) cdfs of the considered models for the first data set.
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Figure 8. Estimated (a) pdfs and (b) cdfs of the considered models for the second data set.

6. Concluding Remarks and Perspectives

In this paper, we offered a new general family of distributions based on the truncated Cauchy
distribution and the exp-G family, called the truncated Cauchy power-G (TCP-G) family. A focus was
put on the special member of the family defined with the Weibull distribution as baseline, called the
TCPW distribution. Its cdf has the feature of being simply defined with the arctangent and power
functions, allowing tractable expressions for the other corresponding functions (pdf, hrf, qf. . . ). In
addition to its simplicity, we revealed the desirable properties of the family, such as very flexible shapes
for the pdf and hrf, skewness, kurtosis, moments, entropy. . . . By considering the special TCPW model,
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a full simulation study illustrates the nice performance of the maximum likelihood method in the
estimation of the model parameters. The deep analysis of two famous data sets shows all the potential
of the new family, with fair and favorable comparison to well-established models in the same setting.

From the perspective of this work, one can apply the TCP-G family in a regression model
framework (creating new possible distributions on the error term). Also, one can investigate some
natural (and not too complicated) extensions of the TCP-G family as those defined by

• the cdf given by

F(x; α, β, ξ) =

{
4
π

arctan[G(x; ξ)α]

}β

, x ∈ R,

where α, β > 0, which corresponds to the exponentiated cdf of the TCP-G family,
• the cdf given by

F(x; α, λ, ξ) =
1

arctan(λ)
arctan[λG(x; ξ)α], x ∈ R,

where α > 0, λ ∈ (0, 1] and G(x; ξ) denotes the cdf of a univariate continuous distributions with
parameter vector denoted by ξ.

These extensions needs further investigations; there is no guarantee as to their superior efficiency
over the former TCP-G family is provided at this stage, opening new work chapters for the future.
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