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Abstract: The increasing size of modern datasets combined with the difficulty of obtaining real 
label information (e.g., class) has made semi-supervised learning a problem of considerable 
practical importance in modern data analysis. Semi-supervised learning is supervised learning 
with additional information on the distribution of the examples or, simultaneously, an extension of 
unsupervised learning guided by some constraints. In this article we present a methodology that 
bridges between artificial neural network output vectors and logical constraints. In order to do this, 
we present a semantic loss function and a generalized entropy loss function (Rényi entropy) that 
capture how close the neural network is to satisfying the constraints on its output. Our methods are 
intended to be generally applicable and compatible with any feedforward neural network. 
Therefore, the semantic loss and generalized entropy loss are simply a regularization term that can 
be directly plugged into an existing loss function. We evaluate our methodology over an artificially 
simulated dataset and two commonly used benchmark datasets which are MNIST and 
Fashion-MNIST to assess the relation between the analyzed loss functions and the influence of the 
various input and tuning parameters on the classification accuracy. The experimental evaluation 
shows that both losses effectively guide the learner to achieve (near-) state-of-the-art results on 
semi-supervised multiclass classification. 

Keywords: deep learning; semantic loss; generalized entropy loss; machine learning. 
 

1. Introduction 

On the one hand, supervised learning uses labeled (marked) data to train a model that gives 
accurate forecasts of data that the model has never seen before, e.g., classification and regression 
[1,2]. On the other hand, unsupervised learning takes unlabeled data as an input and prepares a 
model based on the patterns or based on the dataset structure, e.g., dimensionality reduction, 
detecting outliers, and clustering [3,4]. Semi-supervised learning is halfway between unsupervised 
learning and supervised learning, i.e., there are both labeled and unlabeled data. Usually, it is 
assumed that unlabeled data constitute the majority of the dataset [5]. Semi-supervised learning is 
assumed to be supervised learning with additional information on the distribution of examples. 
Alternatively, it can be also be an extension of unsupervised learning guided by some limitations or 
constraints [6,7]. 

Deep learning has attracted considerable attention in recent years [8], a relatively broad class of 
machine learning (ML) techniques use (complex) artificial neural architectures for classification [9]. 
Such approaches encode nonlinear information through several hierarchical layers, thus, 
assimilating problems at different levels of abstraction. In practice, one is more likely than not to face 
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the curse of “overfitting”. This problem is usually solved using regularization which is the process of 
entering additional information to manage this inevitable gap between a training error and a test 
error [10]. Regularization is often carried out by augmenting the loss function (e.g., mean square 
error or cross-entropy error) by a so-called regularization term, which prevents the model from 
over-optimizing the loss function estimated at a finite set of sampling observations. From a statistical 
point of view, regularization is interpreted as a prior distribution that reflects our expert knowledge 
or belief regarding a model. For example, this knowledge can take the form of a constraint (or 
sentence) in Boolean logic. It can be as simple as an exactly-one constraint for one-hot output 
encodings, which is the way of converting categorical data to numerical data in multiclass 
classification problems [11]. 

This constraint is ubiquitous in the multiclass classification tasks. This means that for a given 
example exactly one binary class/label must be true. The ML community has made great progress in 
this task by inventing various representations and their associated regularization terms [12]. In order 
to maintain this progress and reduce the need for more labeled data, there is growing interest in 
using unlabeled data to increase the predictive power of classifiers by incorporating a semantic loss 
function for this task [6,7]. The semantic loss defined in this setting with respect to the exactly-one 
constraint obtains a learning signal from a huge amount of unmarked data. The main idea is that the 
semantic loss helps to improve classification of the unlabeled data. Therefore, the first main goal of 
this article is to verify whether this simple addition to the loss function of standard deep learning 
architectures provides significant improvements over if this new regularization term is not added 
(i.e., unlabeled data is not utilized). 

In the machine learning context, information and entropy are useful tools that serve as the basis 
for a number of applications including selecting features, building decision trees, training artificial 
neural networks and, more generally, fitting classification models [13]. Apart from the most 
commonly used entropy in this context which is the Shannon's entropy [14], one can distinguish the 
Rényi entropy [15]. The definition of the Rényi entropy consist of a 𝑄 parameter (also called the 
generalization parameter) which for special cases generalizes the Shannon's entropy, the Hartley 
entropy, the collision entropy, and the minimum entropy [16]. The Rényi entropy has found 
interesting applications [17,18] including the parametric weighting of the probabilities that endows 
data analysis with additional flexibility. In this context, the second main goal of this article is to 
examine, in the same spirit as the first question, whether the addition of the generalized entropy loss 
function to the loss function provides significant improvements over if this generalized 
regularization term is not added (i.e., unlabeled data is not utilized). 

To these two ends, we evaluate our proposed methods over an artificially created dataset and 
two commonly used benchmark datasets (i.e., MNIST [19] and Fashion-MNIST [20]) with the 
expectation that the following furthermore research questions can also be addressed: 

 If the two analyzed regularization terms prove to be effective in semi-supervised classification 
tasks, which loss function provides the best results? 

 What is the relation between semantic loss function and generalized entropy loss function? 
 What is the impact of the input and tuning parameter values on both proposed approaches on 

the final results? 

In summary, the goal of this article is to assess the performance of the generalized entropy and 
semantic losses, and to highlight their effects, not to achieve a state-of-the-art performance in 
relation to a specific problem. In order to do this, the adopted neural network architecture, in 
addition to the loss term, must set up the baseline points (please see Sections 4.3 and 4.5) to the 
performance of a semi-supervised method. In other words, to have a principled comparison, the 
adopted neural network architecture shall be identical with the recent state-of-the-art baseline. 

The remainder of this paper is organized as follows: Section 2 and 3 provide an overview of the 
similar research problems and the theoretical frameworks of the semi-supervised learning, the 
artificial neural networks, and the two loss functions used in this article; in Section 4, the research 
framework is outlined, including the details of numerical implementation, dataset characteristics, 
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and model performance measures; Section 5 outlines the experiments and presents the discussion of 
the results; and the paper ends with concluding remarks in Section 6. 

2. Preliminaries 

2.1. Semi-Supervised Learning 

In many situations, marked data is missing. Labels are difficult to obtain because they require 
human annotators, sophisticated devices, or expensive and lengthy experiments, and therefore 
semi-supervised learning is very useful. In particular, its application includes the following 
problems [3,5,21]: speech recognition, natural language parsing, spam filtering, video surveillance, 
and image categorization. The algorithms are divided into the following categories [3,5,21]: 
self-training, generative models, co-training, graph-based algorithms, and multi-view learning. In 
general, those algorithms assume the following data properties: 

 Manifold assumption, the data lie approximately on a manifold of much lower dimension than 
the input space. This assumption allows the use of distances and densities which are defined on 
a manifold; 

 Continuity assumption, the algorithm assumes that (after transformed to a lower dimension) 
the points which are closer to each other are more likely to have the same output label; 

 Cluster assumption, (after transformed to a lower dimension) the data is divided into discrete 
clusters and points in the same cluster are more likely to share an output label. 

In traditional supervised learning tasks, we are presented with an ordered set of 𝑙 marked 
observations 𝐷 = {(𝑥 , 𝑦 )} . Each observation (𝑥 , 𝑦 ) consists of an object 𝑥 ∈ 𝑋  from a given 
𝑝-dimensional input space 𝑋  and has an associated label 𝑦 , where 𝑦  is a real value for the 
regression or (as in this article) a category for the classification task, i.e., 𝑦 ∈ {1, … , 𝑘}. On the basis 
of a set of these observations, usually referred to as training data, supervised learning methods try to 
deduce a function that can successfully determine the label 𝑦∗ of some previously invisible input 
𝑥∗. However, in many real classification tasks we also have access to a set of 𝑢 observations, 𝐷 =

{(𝑥 )} , whose labels are unknown. 
Figure 1 provides further details on the use of unlabeled data for classification of an artificial 

problem with two classes. Any supervised learning algorithm is likely to obtain a line presented on 
the left-hand side of the figure as the decision boundary. However, this is far from the optimal 
decision boundary. As presented on the right-hand side of this figure, the clusters that we infer from 
unlabeled observations help significantly to determine the decision boundary. 

 

               
(a) Trained without unlabeled observations        (b) Trained with unlabeled observations 

Figure 1. A toy example of binary classification in the presence of unlabeled data. 

The primary objective of semi-supervised learning is to use unlabeled observations to develop 
better learning procedures. However, this is not always easy or even possible [22]. As mentioned 
earlier, unmarked observations are useful only if they contain relevant information for predicting 
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labels that are not included in the labeled data itself or cannot be easily extracted. To apply any 
semi-supervised learning method in practice, the algorithm must be able to extract such information. 

2.2. Deep Neural Networks 

Deep learning is a subfield of machine learning that are concerned with algorithms inspired by 
the structure and function of the brain, called artificial neural networks, along with representation 
learning. Deep neural networks (DNNs) such as deep multi-layer perceptrons (MLPs), deep belief 
networks (DBNs), long short-term memory neural networks (LSTMs), recurrent neural networks 
(RNNs), and convolutional neural networks (CNNs) [9,23,24] have been applied to a variety of fields 
including computer vision, speech recognition, natural language processing, audio recognition, 
social network filtering, machine translation, bioinformatics, drug design, medical image analysis, 
material inspection, and board game programs, where they have produced results comparable to, 
and in some cases surpassing, human expert performance [25,26]. 

Importantly, multiple deep learning architectures exist and, as interest and research in this area 
increases, the field will continue to flourish. However, fundamental to of all these methods is the 
feedforward multi-layer perceptron (MLP). Feedforward MLPs consist of densely connected layers, 
in which the input affects each subsequent layer up until the final output layer. Figure 2 presents an 
example of MLP with six input neurons (features), one output neuron (target), and three hidden 
layers consisting of nine, five, and two hidden neurons, respectively (with additional biases marked 
in blue). There is no well-defined approach to choose the number of hidden layers and nodes, and 
hence they effectively are the first of many hyper-parameters to tune. The choice of output layer is 
driven by the modeling task. For example, for a binary classification task the output layer contains 
only one node predicting the probability of success, while for a multiclass classification task the 
output layer consists of the same number of nodes as the number of classes being predicted. 

 

 
Figure 2. An exemplary feedforward deep multi-layer perceptron. 

A key element of a DNN is the activation process. In the human brain, a biological neuron 
receives inputs from many adjacent neurons and when these inputs exceed a certain threshold, the 
neuron is activated, which suggests there is a signal. The activation function is simply a 
mathematical function that determines whether there is enough information in a node to raise a 
signal to the next layer. There are many activation functions in DNN to choose from, for example, 
identity, sigmoid, softmax (please refer to Section 4.2), but, currently, the most popular is rectified 
linear unit (ReLU) [27]: 

𝑓(𝑥) =
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

, (1) 

especially for rectangular data, such as for image classification. 
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During training a DNN selects a batch of observations, randomly assigns weights to all node 
connections and predicts the results. The backpropagation process of the neural network is in place 
to assess its own accuracy and to adjust automatically the weights for all node connections to 
improve that accuracy. This process itself requires two things. First, one must establish a loss 
function 𝐿 to measure performance, i.e., this might be the mean square error (MSE) or cross entropy 
(please refer to Section 3.2) [1]. Secondly, on each forward pass, the DNN measures its performance 
based on the selected loss function. Then, the DNN works backwards through layers, calculates the 
gradients of the loss in relation to the network weights, adjusts the weights slightly in the opposite 
direction to the gradients, takes the next batch of observations to go through the model, flushes and 
repeats until the loss function is (locally) minimized [13]. This process is also known as mini-batch 
stochastic gradient descent with representatives such as adaptive gradient algorithm (AdaGrad), 
root mean square propagation (RMSProp), or adaptive moment estimation (Adam) [28]. 

It should be noted that DNNs require that all feature inputs are numerical, i.e., they have to be 
numerically encoded using, for example, one-hot encoded (target variable in our case) or integer 
label encoded. Due to the data transformation process performed by DNN, they are very sensitive to 
the individual scale of function values. Therefore, one should use normalized features in advance 
e.g., by standardization (i.e., zero mean and unit variance) or range normalization (i.e., all features 
are transformed to between [0,1]). Unfortunately, the scaling problem also arises in the intermediate 
layers, because the distribution of activations is constantly changing during the training. This slows 
down the training process, as each layer has to learn to adapt to the new distribution at each stage of 
the training. This problem is formally known as the internal shift of the covariable. Fortunately, in 
order to overcome this problem one can use batch normalization which is a method that normalizes 
the inputs of each layer [29]. 

DNNs can include local or global pooling layers to streamline the underlying computation. 
Pooling layers reduce data dimensions by combining the results of neuron clusters at one layer into a 
single neuron in the next layer. For example, max pooling uses the maximum value from each of a 
cluster of neurons at the prior layer. 

Finally, placing constraints on a model’s complexity (as a regularization) is a common way to 
mitigate overfitting [13]. There are two common approaches, both of them are applicable in DNNs in 
a similar manner to other methods such as Ridge or Lasso regression. One can use the L1 or L2 
penalty to add costs proportional to the size of the node weights. Regularizing the weights forces 
small signals (noise) to have weights almost equal to zero and allows only consistently strong signals 
to have relatively higher weights. More specifically, for some hyper-parameter 𝑤, the new overall 
loss becomes: 

Loss function = existing loss +  𝑤 ∗ regularization term. (2) 

In addition to the abovementioned methods, one can distinguish other commonly used 
regularization approaches such as dropout, data augmentation, or early stopping. 

2.3. Propositional Logic 

In order to formally define semantic loss (Section 3.1), first, the concept of propositional logic 
should be introduced. Let upper case letters (𝑋, 𝑌) denote Boolean variables and lowercase letters 
(𝑥, 𝑦) denote their realizations (𝑋 = 0 or 𝑋 = 1). Bold uppercase letters (𝑿, 𝒀) denote the sets of 
variables, and bold lowercase letters (𝒙, 𝒚) denote their joint realizations. A variable (𝑥) or its 
negation (¬𝑥) is a literal. A logical sentence (𝛼 or 𝛽) is constructed in the usual way, from variables 
and logical connectives (∧, ∨, etc.), and is also called a formula or constraint [6]. A state or world 𝒙 
is an instantiation to all variables 𝑿. A state 𝒙 satisfies a sentence 𝛼, denoted 𝒙 ⊨ 𝛼, if the sentence 
evaluates to be true in that world, as defined in the usual way [7]. A sentence 𝛼 entails another 
sentence 𝛽, denoted 𝛼 ⊨ 𝛽 if all worlds that satisfy 𝛼 also satisfy 𝛽. A sentence 𝛼 is logically 
equivalent to sentence 𝛽, denoted 𝛼 ≡ 𝛽, if both 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼 [6,7]. 
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3. Theoretical Framework of the Semantic and the Generalized Entropy Loss Functions 

3.1. Semantic Loss Function 

The purpose of the semantic loss function is to fill in the gap between the continuous world of 
feedforward DNNs and the symbolic world of propositional logic. The semantic loss 𝐿 (𝛼, 𝒑) is a 
function of the sentence 𝛼 in the sentence logic, defined by the variables 𝒀 = 𝑌 , … , 𝑌 , … , 𝑌  and 
probability vector 𝒑 for the same variables 𝒀 [7]. Element 𝑝  is the predicted probability of the 𝑌  
variable and corresponds to one node in the output layer of the neural network. For example, the 
semantic loss between exactly one constraint 𝛼 and the output vector 𝒑 of the neural network 
shows how close the prediction 𝒑 has exactly one output set to true (1) and all false (0), regardless of 
which output is correct [6]. 

In general, the semantic loss 𝐿 (𝛼, 𝒑)  should be proportional to the negative logarithmic 
probability of satisfying the constraint 𝛼 when sampling the values of the variables in 𝛼 according 
to 𝒑: 

𝐿 (𝛼, 𝒑) ∝ −𝑙𝑜𝑔 𝑝

:𝒚⊨𝒚⊨

(1 − 𝑝 )

:𝒚⊨¬

, (3) 

where 𝒚 ⊨ 𝛼 means that the assignment of 𝒚 to the 𝒀 variables meets the sentence 𝛼, and 𝒚 ⊨ 𝑌  
means that 𝑌 is set to true in the world 𝒚. In other words, this is the self-information about 
obtaining an assignment that meets the constraint [7]. 

When the constraint over the output space is simple (for example, there is a small number of 
solutions 𝒚 ⊨ α), the semantic loss can be directly computed from Equation (4). Concretely, for the 
exactly-one constraint used in 𝑘-class classification, the semantic loss reduces to: 

𝐿 (𝑒𝑥𝑎𝑐𝑡𝑙𝑦 − 𝑜𝑛𝑒, 𝒑) ∝ −𝑙𝑜𝑔 𝑝 (1 − 𝑝 )

,

, (4) 

where the value 𝑝  denotes the probability of class 𝑗 as predicted by the neural network. The 
semantic loss for the exactly-one constraint is efficient and imposes no noticeable computation 
overhead in this study [7]. In general, for any given semantic loss, complex or simple, to achieve 
efficient computation, one can first compile its constraint 𝛼 into a certain class of logical circuits [30], 
and then the time spent on computing the semantic loss is only linear in terms of the size of the 
circuit. 

3.2. Generalized Entropy Loss function 

Entropy is a well-known term in thermodynamics, statistical mechanics, and information 
theory. Although the concepts of entropy have deep interconnections, it took many years to develop 
the theory of statistical mechanics and information theory to make this connection visible. This 
article deals with information entropy, the theoretical formulation of information entropy. Entropy 
of information is sometimes called Shannon entropy in honor of Claude E. Shannon, who 
formulated many key ideas of information theory [14]. 

Entropy is a measure of unpredictability of the state, or equivalently, of its average information 
content. The intuition behind the quantification of information consists in measuring the amount of 
surprise in a given event. Those events that are rare (i.e., with low probability) are more surprising, 
and therefore have more information than those events that are common (i.e., with high probability). 
Rare events are more uncertain or more surprising and require more information to represent them 
than common events. In general, the concept of information entropy is defined as: 

𝐻 (𝒑) = − 𝑝 log 𝑝 , (5) 

where the above symbols are the same as for the semantic loss function. The value of the entropy 
depends on the following two parameters: (1) disorder (i.e., uncertainty), which is maximum when 
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the probability 𝑝  for every 𝑌  is equal and (2) the value of 𝑘. Shannon entropy assumes a tradeoff 
between contributions from the main mass of the distribution and the tail. To control both 
parameters, a generalization was proposed by Rényi [15] with the goal to provide a foundation for 
nonextensive statistical mechanics: 

𝐻 (𝒑) =
1

1 − 𝑄
log 𝑝 . (6) 

With Shannon entropy, events with high or low probability have equal weights in the entropy 
computation. However, using Rényi entropy, for 𝑄 > 1, events with high probability contribute 
more than low probabilities for the entropy value. Therefore, the higher the value of 𝑄, the higher 
the contribution of high probability events is in the final result. 

Each value of 𝑄 gives a possible entropy measure. All are additive for independent random 
variables and, for each discrete random variable, 𝐻  is a monotone nondecreasing function of 𝑄. 
Assuming that all the probabilities 𝑝  are positive, then, 𝐻  is known as the maximum entropy or 
Hartley entropy [31]. When 𝑄 = 1 we get the more familiar Shannon entropy (i.e., in this limit the 
Shannon entropy is computed using Equation (5)). When the order 𝑄 is not specified, the default 
value is 2. This case is also called collision entropy and is used in quantum information theory [32]. 
Finally, in the limit as 𝑄  goes to ∞ , the Rényi entropy converges to the negative log of the 
probability of the most probable outcome, i.e., minimum entropy. 

3.3. Relation between Generalized Entropy and Semantic Loss Functions 

With regards to the binary classification task, there are three commonly used loss functions in 
machine learning algorithms, i.e., (1) Shannon entropy (Equation (5)), (2) Gini index of the form 
Gini(𝒑) = 1 − ∑ 𝑝 , and (3) the miss/classification error of the form MissClass(𝒑) = 1 −

max(𝑝 , 𝑝 ). The entropy is 0 if one class has a probability of 0, while the other class is 1, and the 
entropy is maximal for uniform class distribution. Similar to entropy, the Gini index is maximal if 
the classes are perfectly mixed. In practice, both losses yield very similar results. Furthermore, the 
miss/classification error is less sensitive to changes in the class probabilities (see Figure 3). 

 

 
Figure 3. Relation between various classification errors for binary classification problem. 

In order to present the relation between various losses/errors for binary classification problem, 
Figure 3 is prepared. In this figure the horizontal axis presents the probability that for a particular 
observation the true value equals 1 (while having two classes 0 and 1). The vertical axis presents 
values of a particular error/loss function. For instance, in these settings the Shannon entropy can be 
calculated as follows (this approach holds for other errors as well). Let’s assume that the probability 
for the class 1 equals 0.7. Then, the probability for the class 0 equals 1−0.7. Finally, error value equals 
𝐻 = −(0.3 ∗ log 0.3 + 0.7 ∗ log 0.7) ≈ 0.88. The blue solid line presents misclassification error, the 



Entropy 2020, 22, 334 8 of 17 

 

green solid line denotes Gini error, and the black solid line represents standard entropy loss 
(Shannon, Equation (5)). The semantic loss is depicted by the red solid line while generalized 
entropy (Rényi) loss is presented by the yellow and purple dashed lines for 𝑄 equaling 0.5 and 2.5, 
respectively. It should be noted that the line for Rényi loss for 𝑄 = 1 would be the same as for 
Shannon entropy. The analysis of Figure 3 reveals, on the one hand, that the semantic loss is less 
sensitive to the class distribution than the standard Shannon entropy and the Gini index but, on the 
other hand, is more sensitive than the miss/classification error. It is important to note that as the 𝑄 
parameter for Rényi loss increases, its sensitivity to the class distribution decreases (from yellow to 
purple line). 

To obtain deeper insights into the relation between the semantic loss and the Rényi loss, we 
simulate an artificial dataset with the probabilities for a 10-class classification problem. A similar 
classification problem is analyzed in Section 5 where commonly used benchmark datasets with 10 
classes are used. Probabilities are simulated from uniform distribution (runif function in R [33]) and 
they sum to 1. The final table consists of 100,000 rows (observations) and 10 columns (each for one 
class). Then, for this table we calclate semantic loss (Equation (4)) and Rényi loss (Equation (6)). For 
Rényi loss, we set the 𝑄-parameter at 2, since according to Figure 3, for a two-class classification 
problem those two curves (points to be precise) would have almost the same relationship to the class 
probability distribution. The graphical relation between these two losses is presented in Figure 4. 

 
Figure 4. Relation between semantic and Rényi losses for a 10-class classification problem. 

The horizontal axis presents the index of a particular observation while the vertical axis depicts 
the Rényi and semantic loss values. Finally, the table with loss values is sorted in ascending order 
using semantic loss (blue). This results in increasing curves for both loss functions. Error values for 
both loss functions are relatively similar when both losses have relatively small values (up to 
approximately 0.5). Then, after this point both curves diverge from each other. Interestingly, the 
Rényi loss (red dotes) is bounded by the semantic loss, i.e., generalized entropy loss has values not 
less than semantic loss. 

Next, Figure 5 presents the relation between both losses, but right now having values of these 
errors on other axis.  
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Figure 5. Fitted polynomial regression for semantic and Rényi losses. 

To quantify this relation, we estimate the polynomial regression using lm and poly functions in 
R (red solid curve). After testing and fitting different degree polynomial regressions (we try order of 
the polynomial from 1 up to 6 and we record 𝑅  of each model) we select the one having the 
greatest 𝑅  determination coefficient (to be precise if we change the degree from 5 to 6 there is no 
improvement in accuracy). The ultimate model has the following formula (see also Figure 5): 

Rényi = 17.191 ∗ semantic − 29.84 ∗ semantic + 18.568 ∗ semantic − 4.561 ∗ semantic

+ 1.4592 ∗ semantic − 0.0101. 
(7) 

All estimated parameters are statistically significant at α = 0.05. Other liner models’ assumptions 
are met as well. In addition to uniform distribution, we also test normal distribution and the 
conclusions remain the same. Moreover, we run this simulation for number of classes equal to 1, 3, 
and 5, and since the conclusions are the same, we stay on this point. 

4. Research Framework and Settings 

4.1. Datasets Characteristics 

In this article, we use two benchmark datasets requiring similar data preparation. Since the two 
datasets are very similar, we are able to use the same structure for the deep network. The first 
dataset is the Modified National Institute of Standards and Technology (MNIST) digit dataset [19]. 
The MNIST dataset is divided into the following two subsets: The training dataset has 60,000 
examples and the test dataset has 10,000 examples. All examples are small square 28 × 28 pixel 
(values from 0 to 255) grayscale images of handwritten single digits between 0 and 9. 

The second dataset is Fashion-MNIST containing Zalando’s article images [20] which consists of 
a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28 × 28 pixels 
grayscale image associated with a label from 10 classes. It is intended to serve as a direct drop-in 
replacement of the original MNIST dataset, as it shares the same image size and structure of training 
and testing splits. Training and test examples are assigned to one of the following labels: 
0-T-shirt/top, 1-Trouser; 2-Pullover, 3-Dress; 4-Coat, 5-Sandal, 6-Shirt, 7-Sneaker, 8-Bag and 9-Ankle 
boot. 

4.2. Performance Measure 

A proper evaluation is crucial for models built with any statistical learning algorithm. When 
designing a model to perform a multiclass classification task, we want the model to choose only one 
answer, e.g., the digit “8”. At the end of a deep network classifier, we get a vector of “raw output 
values”, for example, 𝒙 = [−0.8, 1.2, −0.1] if a particular network has three outputs corresponding 
to each of the classes. However, we usually would like to convert these raw values into an 
understandable format, i.e., probabilities. In order to derive the probability of each class, 𝑝 , the 
softmax function of the form is applied: 
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𝑝 = softmax(𝑥 ) =
𝑒

∑ 𝑒
, (8) 

producing inter-related outputs which are always in the range [0,1] and add up to 1, and hence they 
form a probability distribution. This means, if we are using a softmax, in order for the probability of 
one class to increase, the probabilities of at least one of the other classes has to decrease by an 
equivalent amount. In order to assign the final class label for a given observation, a simple 
assumption is taken into account, i.e., the higher the probability the more likely the outcome: 

𝐶𝑙𝑎𝑠𝑠 = arg max 𝑝 , (9) 

where 𝑝  denotes the probability of class 𝑗 being predicted by the deep network. 
Eventually, to calculate the performance of any kind of predicting model for a multiclass 

classification problem, the following confusion matrix of 𝑘 × 𝑘 dimension is prepared: 
According to Table 1, the accuracy measure can be computed, which is the proportion of the 

total number of predictions that are correct: 

Accuracy =  
∑ True

∑ #
, (10) 

where True  denotes the number of correctly classified instances belonging to the class 𝑗, and #  
stands for the number of instances in class 𝑗. 

Table 1. A 𝑘 × 𝑘 confusion matrix for 𝑘-class classification problem. 

 
Predicted Value 

Class 1 Class 2 ⋯ Class 𝒌 

Real value 

Class 1 True1 False1 ⋯ False1 
Class 2 False2 True2 ⋯ False2 

⋮ ⋮ ⋮ ⋱ ⋮ 
Class k Falsek Falsek ⋯ Truek 

4.3. Numerical Implementation 

All the numerical experiments presented below are prepared using Python programming 
language and TensorFlow [34] which is an end-to-end open source platform for machine learning. 
For comparison, we add Rényi and semantic losses to the same base models used in ladder nets [35], 
which currently achieve the state-of-the-art results on semi-supervised MNIST. The base model for 
both datasets is a fully-connected multilayer perceptron (MLP), with layers of size 
784-1000-500-250-250-250-10 respectively. After every three layers, features are subject to a 2-by-2 
maxpool layer with strides of 2. Furthermore, we use rectified linear unit (ReLu) as an activation 
function [27], batch normalization to improve the speed, performance, and stability of the networks 
[29], and Adam optimization algorithm that has been designed specifically for training deep neural 
networks [28] with a learning rate of 0.002. Because MNIST and Fashion-MNIST share the same 
image size and structure, methods developed in MNIST should be able to directly perform on 
Fashion without heavy modifications [6,7]. 

For the purpose of parameter tuning, from both original training sets we separate an additional 
validation set containing randomly chosen 10,000 samples (i.e., training datasets have the remaining 
50,000 observations). Finally, the estimates for the performance measures for the training, validation, 
and test sets are produced with 10-fold cross-validation [1]. All further results are presented as an 
average over 10-folds. 

4.4. Tuning of the Parameters 

Our motivation in assessing the performance of the generalized entropy and semantic losses is 
not to achieve the state-of-the-art performance in relation to a specific problem, but rather to 
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highlight their effect. For this purpose, we evaluate our method taking into account the following: 
(1) the problem is difficult in terms of the output space where the model cannot be matched directly 
from the data, and (2) deliberately use simple DNNs for evaluation. To answer the question about 
the effect of tuning the investigated parameters in terms of the quality of predictions we perform a 
grid search checking various combinations of the following parameters:  

 𝑄-value ∈ {1 × 10 , 0.25, 0.5, 0.75, 1 + 1 × 10 , 1.25, 1.5, 1.75, 2}—from the Equation (6); 
 Weights ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, which is the hyper-parameter associated with the Rényi 

or semantic regularization term in Equation (2); 
 Batch size ∈ {20, 50, 100},which is the mini-batch size needed for adaptive stochastic gradient 

descent optimization algorithm; 
 Number of labeled examples ∈ {100, 1000, 50,000}, which is the number of randomly chosen 

labeled examples from the training set with the assumption that the final set is balanced, i.e., no 
particular class is overrepresented. 

It would purely be an explanatory analysis, giving an insight into the investigated phenomena. 

4.5. Benchmarking Models 

In order to compare and assess the quality of our proposed methods, the following benchmark 
algorithms are used in the experiment. The first one is the AtlasRBF algorithm, which uses 
manifold-based kernel for semi-supervised and supervised learning [36] and based on this a 
classifier learns from existing descriptions of manifolds that characterize the manifold as a set of 
piecewise affine charts, or an atlas. The second algorithm is the deep generative model, which 
employs rich parametric density estimators formed by the fusion of probabilistic modelling and 
deep neural networks [37]. The third algorithm is virtual adversarial training, which is a 
regularization method based on virtual adversarial loss measuring local smoothness of the 
conditional label distribution for a given input [10]. The fourth algorithm is the ladder net model, 
which is trained to simultaneously minimize the sum of supervised and unsupervised cost functions 
by backpropagation, avoiding the need for layer-wise pretraining [35]. The fifth algorithm is ResNet, 
where the authors explicitly reformulate the layers as learning residual functions with reference to 
the layer inputs, instead of learning unreferenced functions [38]. Finally, the last baseline is the base 
model (denoted later as MLP) described in Section 4.4 which is trained without additional 
regularization term. 

5. Empirical Analysis 

In this section, we describe several experiments to test and to compare the performance (using 
10-fold cross-validation) of DNNs with regard to semantic loss and generalized entropy loss 
functions in terms of different settings of the tuned parameters. The comparisons are depicted in 
Figures 6 and 7, for MNIST and Fashion-MNIST datasets, respectively, and these are prepared in the 
following manner. On the left-hand side of each figure there are three buckles that denote the 
number of labeled examples used for the supervised part of the learning. 
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Figure 6. Accuracy on the test set of the MNIST dataset in terms of different combinations of the 
tuned parameters. 

At the top of each chart there are three buckles pointing to the batch size used for stochastic 
gradient descent optimization algorithm. There are nine different tables (subfigures) inside the 
figure for each combination of the aforementioned parameters. Each table on the horizontal axes has 
the hyper-parameter value related to the regularization term (labels are at the top and values at the 
bottom of the subfigure). On the vertical axes, there are different values of the 𝑄-parameter used in 
the Rényi loss function (labels are on the left and values are on the right of the subfigure). At the 
intersection of the last two described parameters there are accuracy measures (Equation (10)) 
calculated for the testing sample. Finally, we introduce a color palette for easier identification of 
promising intersections. Dark gray denotes situations when accuracy is the highest while white 
indicates areas with the lowest accuracy. 

First, we consider Figure 6 with the results for the basic MNIST dataset. In terms of the 
hyper-parameter for the regularization term, it can be seen that the worst results are obtained when 
𝑤 equals 0.001. In general, while increasing this parameter, the accuracy is gradually improving, 
achieving the best results when 𝑤 is set to 0.1. This observation clearly supports our assumption 
that including Rényi loss as a regularization term for semi-supervised task results in improved 
classification accuracy. By comparing the 𝑤-parameter with the 𝑄-parameter, one can distinguish 
an upper triangular matrix (dark-gray color) with the highest possible accuracy results. This is 
observed in all nine subfigures for 𝑤 ranging between 0.0001 and 0.1 and 𝑄 ranging between 0.25 
and 0.75. In terms of sample and batch size, as one would expect, accuracy increases when both 
parameters increase. This means that the average accuracy for 100 labeled training examples with a 
batch size of 20 is just over 97 (right upper subchart), while that of 50,000 labeled examples with a 
batch size of 100 is above 98. 
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Figure 7. Accuracy on the test set of the Fashion-MNIST dataset in terms of different combinations of 
the tuned parameters. 

Accuracy results for the Fashion-MNIST dataset present very similar characteristics as for the 
basic MNIST dataset (please see Figure 7). However, there are two main differences. First, the 
accuracy results oscillate around 83 and 89, which means that this dataset is not yet sufficiently 
worked out. The second difference is that the results are more diverse with a larger range of 
variance. 

In order to compare results for the semantic loss and the Rényi loss, Tables 2 and 3 are prepared 
(together with results for other benchmark models described in Section 4.4). Both tables report the 
best accuracy results obtained by the following procedure: (1) We derive accuracy for all 
combinations of the tuning parameter for both losses, i.e., four parameters for the Rényi loss and 
three parameters for the semantic loss (without 𝑄 -parameter) and (2) since these results are 
computed for training, validation, and test sets, we chose the parameter combination having the best 
results for the validation sets to report the best mean accuracy for the testing sets (sixth column for 
both tables). Both tables report the mean accuracy obtained after 10-fold cross-validation together 
with the standard deviation error of the estimates in the brackets. 

As presented in Table 2, when labeled sample size is 100, the best results for both datasets are 
obtained using weight 𝑤 set at 0.005. In other situations, 𝑤 is tuned to 0.1 for both losses. Since 
using more samples in gradient computation usually gives better estimation, this parameter is tuned 
to 100 observations for all cases. According to the observations obtained after analyzing Figures 6 
and Figure 7 (regarding upper triangular matrix), the best results are associated with the 
𝑄-parameter set at 0.5 or 0.75. 
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Table 2. Comparison of the best results for Rényi and semantic losses, along with benchmark models 
on the MNIST dataset. 

Sample 
Size Loss 𝑸-Value Weight 

Batch 
Size 

Mean Validation 
Accuracy 

Mean Test 
Accuracy 

100 

Semantic  0.005 100 98.02 (∓ 0.04) 97.98 (∓ 0.04) 
Rényi 0.75 0.100 100 98.20 (∓ 0.02) 98.21 (∓ 0.03) 
MLP   100  78.46 (∓ 1.94) 

AtlasRBF     91.9 (∓ 0.95) 
Deep 

Generative 
    96.67 (∓ 0.14) 

Virtual 
Adversarial 

    97.67 

Ladder Net     98.94 (∓ 0.37) 

1000 

Semantic  0.100 100 97.95 (∓ 0.05) 98.02 (∓ 0.03) 
Rényi 0.50 0.100 100 98.27 (∓ 0.03) 98.25 (∓ 0.03) 
MLP   100  94.26 (∓ 0.31) 

AtlasRBF     96.32 (∓ 0.12) 
Deep 

Generative 
    97.60 (∓ 0.02) 

Virtual 
Adversarial 

    98.64 

Ladder Net     99.16 (∓ 0.08) 

50,000 

Semantic  0.100 100 98.13 (∓ 0.03) 98.15 (∓ 0.04) 
Rényi 0.50 0.100 100 98.29 (∓ 0.02) 98.29 (∓ 0.03) 
MLP   100  98.13 (∓ 0.04) 

AtlasRBF     98.69 
Deep 

Generative 
    99.04 

Virtual 
Adversarial 

    99.36 

Ladder Net     99.43 (∓ 0.02) 
 ResNet     99.40 

Table 3. Comparison of the best results for Rényi and semantic losses, along with benchmark models 
on the Fashion-MNIST dataset. 

Sample 
Size 

Loss 𝑸-Value Weight Batch 
Size 

Mean Validation 
Accuracy 

Mean Test 
Accuracy 

100 

Semantic  0.005 100 88.65 (∓ 0.11) 87.65 (∓ 0.07) 
Rényi 0.50 0.100 100 89.62 (∓ 0.07) 88.89 (∓ 0.10) 
MLP   100  69.45 (∓ 2.03) 

Ladder 
Net     81.46 (∓ 0.64) 

1000 

Semantic  0.100 100 88.71 (∓ 0.06) 87.83 (∓ 0.07) 
Rényi 0.75 0.100 100 89.54 (∓ 0.35) 88.80 (∓ 0.08) 
MLP   100  78.12 (∓ 1.41) 

Ladder 
Net     86.48 (∓ 0.15) 

50,000 

Semantic  0.100 100 89.26 (∓ 0.08) 88.49 (∓ 0.10) 
Rényi 0.50 0.100 100 89.90 (∓ 0.06) 89.03 (∓ 0.06) 
MLP   100  88.26 (∓ 0.18) 

Ladder 
Net 

    90.46 

 ResNet     92.00 
 
In line with the highlighted results in both tables (bolded values), we conclude that the Rényi 

loss outperforms results related to the semantic loss (there is only one exception for the validation 
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set for the Fashion-MNIST dataset). The biggest difference for basic MNIST is observed for labeled 
sample size equaling 100 and 1000, i.e., difference is 0.23. For the Fashion-MNIST dataset the biggest 
difference is noted for the 100 labeled sample size (difference is 1.24). 

Moreover, both tables compare both losses (i.e., Rényi and semantic loss) to a baseline MLP and 
the state-of-the-art results from the literature. The baseline, in this case, is a purely supervised 
multilayer perceptron, which makes no use of unlabeled data [6,7]. For example, given 100 labeled 
examples, the DNN with semantic loss gains around 25% (MNIST) and 26% (Fashion-MNIST) 
improvement over the purely supervised baseline. Finally, the DNN with Rényi loss function gains 
around 25% (MNIST) and 28% (Fashion-MNIST). Considering the only change is an additional loss 
term, these results are encouraging. 

6. Conclusions 

Semi-supervised learning is often considered to be a key challenge for future deep learning 
tasks. We have demonstrated that both semantic loss and Rényi loss provide significant benefits in 
semi-supervised classification. Application of both losses to the feedforward neural network 
architecture using unlabeled observations increase the predictive power of the classifiers. The main 
advantage of both losses is that they only require a simple additional loss term. Without changing 
the architecture of the DNN itself, it incurs almost no computational overhead. Conversely, this 
property makes the proposed methods sensitive to the underlying model’s performance. Without 
the basic predictive power of a strong supervised learning model, it is not expected to see the same 
benefits that has been seen in this article. 

With our analysis, we confirm that improving classification accuracy in semi-supervised 
classification tasks using semantic loss function and generalized entropy loss is feasible and can be 
achieved with reasonable accuracy as compared with the base models (first research question). This 
statement is supported by the results presented in Tables 2 and 3. Interestingly, applying Rényi loss 
provides classification improvement up to 28%. Our answers to the second research question 
regarding the relation between semantic loss and generalized entropy loss reveal that the semantic 
loss is less sensitive to the class distribution than the error measures (Shannon entropy and Gini 
index), but at the same time is more sensitive than the miss/classification error. Additionally, as the 
𝑄-parameter in Rényi loss increases, sensitivity to the class distribution decreases. After quantifying 
the relation between these two losses, it turns out that the relationship is functional and can be 
approximated by a fifth degree polynomial. We have also empirically confirmed that Rényi loss is 
bounded by the semantic loss. Finally, we have showed that proper tuning of the input parameters 
improves the final results. By intersecting the tuned parameters, we distinguish an upper triangular 
matrix with the highest possible accuracy results.  

Finally, we have chosen to investigate semantic loss and Rényi entropy in the same paper 
because of the following reasons: Semantic loss has its roots in knowledge representation, while 
Rényi entropy is more familiar to researchers doing statistical machine learning. In addition to 
functioning as a regularization term, on the one hand, semantic loss is not invented to be a 
regularization term. On the other hand, researchers almost always view Rényi entropy as a 
regularization term in the context of learning. It is a fascinating fact that those two seemingly 
orthogonal things have very similar effects as loss functions, achieving similar results in this setting. 

In future work, we plan to investigate whether applying semantic and Rényi losses on different 
DNN architectures would yield an even stronger performance improvement. 
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