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Abstract: In this paper, a new 4D hyperchaotic system is generated. The dynamic properties of
attractor phase space, local stability, poincare section, periodic attractor, quasi-periodic attractor,
chaotic attractor, bifurcation diagram, and Lyapunov index are analyzed. The hyperchaotic system is
normalized and binary serialized, and the binary hyperchaotic stream generated by the system is
statistically tested and entropy analyzed. Finally, the hyperchaotic binary stream is applied to the
gray image encryption. The histogram, correlation coefficient, entropy test, and security analysis
show that the hyperchaotic system has good random characteristics and can be applied to the gray
image encryption.
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1. Introduction

Since Lorenz [1] discovered the first three-dimensional chaos model, chaos theory has grown with
the development of computer science. Chaos is an unpredictable and random motion in deterministic
dynamical systems due to its sensitivity to initial values. The certainty of a dynamic system is a concept
defined in mathematics, which means that the state of the system at any time can be determined by
the initial state of the system. Although the motion state of the deterministic dynamic system at any
time can be calculated according to the initial state and motion law, the measurement of the initial
state and data cannot be completely accurate. Even a slight difference will lead to a very large error
in the predicted results, to an unpredictable degree. In recent years, as chaotic systems have many
advantages in encryption, such as ergodicity, unpredictability, pseudo-randomicity, and high sensitivity
to parameters and initial values [2], image encryption based on chaos has become a research hotspot.
Aside from image encryption based on chaotic systems, there are many representative methods such as:
based on one-time keys, bit-level permutation, DNA rule, matrix, and semi-tensor product theory [3,4].

At present, research on 1D chaos, such as Logistic mapping [5–7]; 2D chaos, such as Henon
mapping [8–10]; and 3D chaos, such as Rossler chaotic attractor [11–13], Chua [14–16], and Chen [17–19],
have been very extensive and mature. With the development of chaos theory, many people began
to study high-dimensional chaotic attractors, such as 4D chaotic attractor subsystems [20–23], 5D
chaotic attractor subsystems [24–27], and 6D chaotic attractor subsystems [28]. In recent years,
fractional-order chaotic systems [29–31], hidden attractors [32–34], and chaotic systems with co-existing
attractors [35,36] have also been extensively studied. In ordinary three-dimensional chaotic attractors,
linear or nonlinear state feedback controllers can generate different kinds of four-dimensional chaotic
systems. The 4D hyperchaotic system has better computational complexity and two or more positive
Lyapunov exponents [37,38].
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Recently, many scholars have generated many new chaotic systems on the basis of studying the
Lorenz chaotic system, which are collectively referred to as Lorenz type hyperchaotic systems [39,40].
These new systems are applied to many aspects, such as chaotic synchronization [41], image
encryption [8,12,13,19], stream cryptography [42,43], and so on.

The chaos-based image encryption systems are usually applied to generate chaotic stream ciphers
for exchanging the positions or values of the pixels in the original images. A 2D chaotic Arnold cat
map was used to generate a 3D cat map, which then was used in image encryption [44]. The results
show that the scheme is fast and safe. The authors of [45] applied Henon mapping to the image
encryption scheme, and proved that the encryption method could resist selective plaintext attack, etc.
The authors of [46] proposed an image encryption scheme based on Logistic mapping, and the authors
of [47] proposed an image encryption scheme based on the 3D chaotic system. The above image
encryption methods using chaotic systems are based on low-dimensional chaotic systems with at most
one positive Lyapunov exponent, which have many advantages, such as simple format, few control
parameters, and ease of implementation. However, low-dimensional chaotic systems are vulnerable to
attack. If low-dimensional chaotic systems are changed into high-dimensional chaotic systems, the
encryption will be more effective. Lyapunov exponent (LE) is an effective method to measure chaotic
systems. If a chaotic system has two or more positive LEs, it can be called a hyperchaotic system,
which usually has a larger key space and much higher security in encryption schemes [37,38]. As the
chaotic systems with four dimensions or more have two or more Lyapunov exponents and better
dynamic characteristics, the application to image encryption will have better practical effects [37,38].
The authors of [48] presented a novel approach that uses a hyperchaotic system, Pixel-level, and
DNA-level diffusion. The authors of [49] proposed a new image encryption method based on matrix
semi-tensor product theory and hyperchaotic Lorenz. The research above shows that the application of
hyperchaotic system encryption has become an important trend.

The main contributions of this paper are shown as follows: (1) A new 4D hyperchaotic system is
generated, and the dynamic properties of the attractor such as phase space, local stability, poincare
section, periodic attractor, quasi-periodic attractor, chaotic attractor, bifurcation diagram, and Lyapunov
index are analyzed; (2) Then the new hyperchaotic system is normalized and binary serialized, and the
binary hyperchaotic stream generated by the system is statistically tested and entropy analyzed; (3) The
hyperchaotic binary stream is applied to the gray image encryption; (4) The histogram, correlation
coefficient, entropy test, and security analysis show that the hyperchaotic system has good random
characteristics and can be applied to the gray image encryption.

The main advantages of this paper are shown as follows: (1) A new 4D hyperchaotic system
based on Lorenz is proposed and analyzed; (2) The hyperchaotic system with two positive LEs is much
more random, which is then used to generate sequences for the encryption operations; (3) The new
hyperchaotic system in this paper is obtained by adding a new variable, w, and a feedback controller,
−dx3, to the classical Lorenz chaotic attractor system. In this way, an equilibrium point curve exists in
the system which is a new phenomenon in the system.

In this paper, a new 4D hyperchaotic system is proposed by studying Lorenz-type hyperchaotic
system, and the corresponding dynamic properties, such as Lyapunov exponent, phase space diagram,
poincare section diagram, and local stability are studied. The method of normalization and binarization
is applied to the encryption of gray image. Finally, the entropy test and security analysis of image
encryption are carried out.

The rest of this paper is organized as follows: Section 2 introduces a new 4D hyperchaotic
system based on Lorenz system with two positive LEs. In Section 3, analyses of the dynamic
properties are done, such as judgment of local stability, Poincare section diagram, periodic attractor, etc.
In Section 4, normalization and quantization are done. Furthermore, NIST tests, permutation entropy,
and approximate entropy are completed to test the time series of the hyperchaotic system. In Section 5,
the hyperchaotic system is used in image encryption. Then, the encryption effect and security are
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tested by correlation coefficient analysis, information entropy, differential attack, etc. Finally, the paper
is summarized in Section 6.

2. A New Hyperchaotic System

In 1963, a representative Lorenz equation in chaotic attractors was proposed [1]. The differential
expression of this equation is shown as follows Equation (1):

.
x = σ(y− x),

.
y = αx− y− xz, (1)

.
z = xy− βz.

The equation set is a third-order system of ordinary differential equations, and each variable in
the equations does not obviously contain time t, so the equation set is called an autonomous system.
Its parameters, σ, α, and β, are all constants greater than zero. When the parameters of this equation are
taken as σ = 10, α = 28, and β = 8/3, the system presents chaotic attractor state, namely the classical
Lorenz attractor, and its phase space is shown in Figure 1. The numeric computation method used to
compute the chaotic system or hyperchaotic system is the 4th order Runge–Kutta method.
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Figure 1. Chaotic Lorenz attractor and its phase diagrams with σ = 10, α = 28, and β = 8/3: (a) Lorenz
attractor; (b) Lorenz attractor on y–z plane; (c) Lorenz attractor on x–z plane; and (d) Lorenz attractor
on x–y plane.

The new hyperchaotic system in this paper is obtained by adding a new variable, w, and a feedback
controller, −dx3, to the classical Lorenz chaotic attractor system. The new hyperchaotic system is
expressed as follows in Equation (2):

.
x = a(y− x),

.
y = bx− y− xz + w,

.
z = x2

− cz, (2)
.

w = w− dx3.
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Where a, b, c, and d are all constants greater than zero. Let a ∈ [20, 30]. There are two positive
LEs over a wide range of parameters, which implies that the system here is hyperchaotic, as shown in
Figure 9b. Fix the parameter a = 24, then set the parameters of the system with a = 24, b = 25, c = 3,
d = 0.5, and initial condition (1, 1, 1, 1). The system can present the state of a hyperchaotic system,
as shown in Figure 2. The Lyapunov exponent corresponding to the hyperchaotic system is shown
as follows:

λ1 = 0,λ2 = 2.5274,λ3 = 2.1036,λ4 = −16.3014.

The divergence of the hyperchaotic system can be expressed as Equation (3):

∇V =
∂

.
x

x
+
∂

.
y

y
+
∂

.
z

z
+
∂

.
w

w
= −(a + c) < 0, (3)

According to Equation (3), when a + c > 0, the hyperchaotic system is a dissipative system.
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seen that the sequences have good randomness. 

Figure 2. Hyperchaotic attractors and the phase diagrams with parameters a = 24, b = 25, c = 3, and
d = 0.5: (a) hyperchaotic attractor; (b) hyperchaotic attractor on y–w plane; (c) hyperchaotic attractor
on x–y plane; and (d) hyperchaotic attractor on y–z plane.

Figure 2 shows the new hyperchaotic attractors and the phase diagrams with parameters a = 24,
b = 25, c = 3, and d = 0.5. (a) shows the hyperchaotic attractor, (b) shows the hyperchaotic attractor on
y–w plane, (c) shows the hyperchaotic attractor on x–y plane, (c) shows the hyperchaotic attractor on
y–z plane. The time series diagrams of the phases x, y, z, and w of the hyperchaotic system is shown in
Figure 3. Figure 3 shows the time series diagrams of the hyperchaotic system, and it can be seen that
the sequences have good randomness.
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Figure 3. Time series diagrams of a hyperchaotic system with parameters a = 24, b = 25, c = 3, and
d = 0.5: (a) time series x; (b) time series y; (c) time series z; and (d) time series w.

3. Analysis of Dynamic Properties

3.1. Subsection Equilibrium Curve

Obviously, according to system (2), an equilibrium point curve exists in the system, and the
equation of the equilibrium point curve can be expressed as Equation (4):{

(x, y, z, w) ∈ R4
∣∣∣∣∣y = x, z =

1
c

x2, w = dx3
}
, (4)

The position relationship between this curve and system (1) is shown in Figure 4, which shows
the hyperchaotic system attractor and its equilibrium curve in red.
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Figure 4. Hyperchaotic attractor and its equilibrium curve with parameters a = 24, b = 25, c = 3, and
d = 0.5.

3.2. Judgment of Local Stability

It is easy to know from Equation (2) that when c(1−b)
dc−1 < 0 there is only one equilibrium point,

O(0, 0, 0, 0), for the system. When c(1−b)
dc−1 ≥ 0, the system has three balance points: O(0, 0, 0, 0) and

O1,2(±
c(1−b)
dc−1 ,± c(1−b)

dc−1 , c( 1−b
dc−1 )

2
,±dc2( 1−b

dc−1 )
3
).

Let k ∈ R, according to Equation (2), the point A = (k, k, k2/3, 0.2k3) is on the equilibrium point
curve. Therefore, the Jacobian matrix at the equilibrium point, A, of the hyperchaotic system can be
obtained as follows:
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J =


−a a 0 0

b− k2/3 −1 −k 1
2k 0 −c 0
−3dk2 0 0 1

, (5)

Then the characteristic equation can be obtained:

λ4 + g1λ
3 + g2λ

2 + g3λ
1 + g4 = 0, (6)

The coefficients in the equation are:
g1 = a + c,

g2 = ac− ab + ak3/3− 1

g3 = −a− c + ab− abc +
5
3

ak2 +
1
3

ack2 + 3adk2 (7)

g4 = −ac + abc + 3acdk2
−

1
3

ack2
− 2ak2

According to the Routh–Hurwitz criterion, if the coefficients of the first column in the Routh
array table are all positive, the system is stable. That is, all the roots of the characteristic equation
are located in the left half plane of the root plane and have negative real parts. From the criterion, it
can be known that the four coefficients g1, g2, g3, and g4 should be positive, and g1g2 − g3 > 0 and
g1g2g3 − g3

2
− g4g1

2 > 0.

3.3. Poincare Section Diagram

The complex motion of a chaotic system is described by the Poincare section method proposed in
the 19th century. It can be known from the section diagram that if only one fixed point or relatively
few discrete points are shown on the section, the motion can be judged as periodic motion. When
the Poincare section shows a closed curve, the motion can be judged as quasi-periodic motion. When
there are dense points in the section, the motion can be judged as complex chaotic motion. For this
hyperchaotic system, the Poincare section is also used to observe its motion, which is shown in Figure 5.
Figure 5 shows the Poincare section of the hyperchaotic system. It can be seen that the Poincare section
presents dense spots in patches, which means the system is chaotic.
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Figure 5. Poincare section of hyperchaotic system attractors with parameters a = 24, b = 25, c = 3, and
d = 0.5: (a) Poincare section on z–y plane; (b) Poincare section on x–y plane; and (c) Poincare section
on z–x plane.

3.4. Periodic Attractor

When the hyperchaotic system (2) has the parameters a = 4, b = 5, c = 3, and d = 0.5, and its
initial conditions are defined as (1, 1, 1, 1), the periodic attractor appears in the phase space of the
system. Its 3D phase space projection diagram and the corresponding Poincare section diagram are
shown in Figure 6. Figure 6 shows the Poincare section of the hyperchaotic system. It can be seen that
the Poincare section presents a few discrete points, which means the system is periodic.
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Figure 6. Poincare section of periodic attractor for hyperchaotic systems with a = 4, b = 5, c = 3, and
d = 0.5: (a) Periodic attractor, and (b) Poincare section.

3.5. Quasi-Periodic Attractors

When the hyperchaotic system (2) selects parameters a = 7, b = 25, c = 3, and d = 0.5, and its
initial conditions are defined as (1, 1, 1, 1), the quasi-periodic attractor appears in the phase space of the
system, and its 3D phase space projection diagram and the corresponding Poincare section diagram
are shown in Figure 7. Figure 7 shows the Poincare section of the hyperchaotic system. It can be seen
that the Poincare section presents closed circles, which means the system is quasi-periodic.
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3.6. Chaotic Attractor

When system (2) selects parameters a = 14, b = 25, c = 3, d = 0.5 and its initial conditions are
defined as (1, 1, 1, 1), then the chaotic attractor appears in the phase space of the system. Its 3D phase
space projection diagram and the corresponding Poincare section diagram are shown in Figure 8. The
Lyapunov exponents corresponding to the chaotic attractor are shown below. Figure 8 shows the
Poincare section of the chaotic state of the new hyperchaotic system.Entropy 2020, 22, x 8 of 20 
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3.7. Bifurcation and Lyapunov Exponent

When a ∈ [20, 30], the change of the bifurcation diagram and Lyapunov exponent spectrum of the
system with changes of parameter a are shown in Figure 9. Figure 9 shows the bifurcation diagram and
Lyapunov exponent spectrum of the hyperchaotic system. It can be seen that bifurcation diagram is in a
chaotic state in a ∈ [20, 30], and there are two positive LEs, which means that it is a hyperchaotic system.
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4. Normalization and Quantization

In order to put the hyperchaotic system into use, normalization and quantization are done. The
time series after normalization and quantization are tested.

4.1. Normalization Treatment

In order to facilitate the data processing of the hyperchaotic system, the normalization is carried
out first. In this paper, the time series data of four output signals, x, y, z, and w, are mapped to the
interval [−1, 1] and then quantified. The stream of the normalized hyperchaotic system is shown in
Figure 10. Figure 10 shows the time series are normalized into the interval [−1, 1].Entropy 2020, 22, x 9 of 20 
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4.2. Quantization

For the above hyperchaotic system, it must be converted into binary stream. Here, the quantization
function expression is set as Q[x, y, z, w], and the definition is shown as follows:

Q[x, y, z, w] =

{
0 x, y, z, w < Tv
1 x, y, z, w ≥ Tv

, (8)

Here Tv = 0, Q[·] is the quantized binary stream. The conversion value falls within the
corresponding interval of the quantization function and gets 0 or 1, respectively. As chaotic signals
[x, y, z, w] have good random statistical properties, the quantized stream (Q[·]) should have excellent
statistical properties of equilibrium 0-1 ratio in theory. The streams after quantization of the time series
x, y, z, and w are shown in Figure 11. Figure 11 shows the time series of the hyperchaotic system are
quantized into 0-1 sequences.
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4.3. NIST Test

The NIST SP 800-22 [50] random test package for stream cryptography (NIST random test) was
provided by the National Institute of Standards and Technology. In order to verify the statistical
performance of the quantized streams of the hyperchaotic system, NIST tests are carried out by using
the test programs. The test package includes frequency test within a block, binary matrix rank test,
non-overlapping template matching test, etc. These tests can be used to test binary sequences of an
arbitrary length, generated by the pseudo-random number generator, which can be used to determine
the non-randomness hidden in the stream. All of the test results are determined by P− value. If P < 0.01,
then the stream is not random. If P ≥ 0.01, then the stream is considered random. In order to make
the system get better randomness, this paper carries out NIST tests to prove that the random streams
generated by the system can be used in the encryption application. Table 1 shows the test results.
It can be seen that the quantized streams have good statistical characteristics and have passed the
tests. Table 1 shows that the sequences generated by the new hypersystem have passed all the tests in
statistical NIST tests.
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Table 1. NIST statistical tests.

Test P−Valuex P−Valuey P−Valuez P−Valuew Result

Frequency Test 0.110561 0.251486 0.528546 0.228145 Success
Frequency Test within a Block 0.835247 0.142578 0.512879 0.627428 Success

Runs Test 0.759814 0.521473 0.715854 0.452842 Success
Test for the Longest Run of Ones in a

Block 0.214189 0.204144 0.158728 0.157569 Success

Binary Matrix Rank Test 0.352471 0.521632 0.428745 0.638175 Success
Discrete Fourier Transform Test 0.644782 0.472575 0.284784 0.258741 Success

Non-Overlapping Template Matching
Test 0.652417 0.418622 0.157525 0.784452 Success

Overlapping Template Matching Test 0.524718 0.514832 0.527865 0.518653 Success
Maurer’s “Universal Statistical” Test 0.195748 0.147258 0.285954 0.287695 Success

Linear Complexity Test 0.652149 0.625411 0.528765 0.318528 Success
Serial Test 0.058472 0.052148 0.078458 0.052145 Success

Approximation Entropy Test 0.024187 0.021458 0.025481 0.011285 Success
Cumulative Sums Test 0.421863 0.565281 0.627854 0.458654 Success

Random Excursions Test 0.524862 0.442389 0.458745 0.514865 Success
Random Excursions Variant Test 0.352874 0.328489 0.257841 0.258145 Success

4.4. Permutation Entropy

The permutation entropy can be used to measure the complexity of time series. Permutation
entropy is obtained by adding the permutation idea into the calculation of the complexity of
sub-sequences. The algorithm is described as follows:

1. Define a time series x(1), x(2), . . . , x(N), m is the embedded dimension, τ is time delay.
2. Reconstruct the time series as X(i) = x(i), x(i + τ), . . . , x(i + (m− 1)τ).
3. Increase and rearrange X(i). When x(i + ( j1 − 1)τ) ≤ x(i + ( j2 − 1)τ) ≤ . . . ≤ x(i + ( jm − 1)τ),

if the two values are equal, rearrange by subscript.
4. X(i) is redefined to ( j1, j2, . . . , jm). Therefore, there will be m! permutations.
5. Define the probability distribution of all symbols as p1, p2, . . . , pk, k ≤ m!.
6. The permutation entropy of the time series can be calculated by the following formula:

H(m) = −
k∑

j=1

p j ln p j, (9)

pk = 1/m!, that is to say that when the probability of each symbol is equal, then the stream has
the maximum permutation entropy. To facilitate data analysis, H(m) will be normalized.

0 ≤ H(m)/ ln(m!) ≤ 1, (10)

The results of the permutation entropy test are shown in Table 2.

Table 2. Permutation entropy value.

Time Series m τ PE

x 3 1 0.6201
y 3 1 0.6548
z 3 1 0.5724
w 3 1 0.6017

4.5. Approximate Entropy

Approximate entropy (ApEn) is used to measure the law of motion and unpredictability of a
quantized time series, which is often used in nonlinear dynamics. It is characterized by the use of a
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non-negative number to represent the complexity of a time stream, which can reflect the possibility
of new information in the stream. Therefore, the higher the approximate entropy is, the higher the
complexity of the time series is. The algorithm description is shown as follows:

1. Define a time series U(1), U(2), . . . , U(N).
2. m is the length of the comparison vector.
3. r is the measure of similarity.
4. Reconstruct the m dimension vector Y(1), Y(2), . . . ,Y(N −m + 1), and Y(i) = [U(i), U(i +

1), . . . , U(i + m− 1)].
5. When 1 ≤ i ≤ N −m + 1, calculate the number of vectors satisfying the following conditions:

Cm
i (r) =

1
N −m + 1

SUM[d(i, j) ≤ r], (11)

6. The function is defined as:

Φm(r) =
1

N −m + 1

∑N−m+1

i=1
log(Cm

i (r)), (12)

Here,d(i, j) = max
a

∣∣∣U(a) −U∗(a)
∣∣∣. ∣∣∣U(a)

∣∣∣ represents the element of the vector Y; d represents the

distance between Y(i) and Y( j), whose value is determined by the maximum difference value of the
corresponding element; j ∈ [1, N −m + 1], j and i is allowed to exist in the case of equality.

From the above, the definition of Approximate Entropy (ApEn) can be obtained. In general,
the value of the parameter m = 2 or m = 3 and r are determined by the actual application. Here
r = 0.2 ∗ std, and std represents the standard deviation of the original time series. Normally, d(i, j) ≤ r.
The more complex the time series is, the greater the corresponding approximate entropy is. The ApEn
here is shown in Table 3, which means that the time series are of good unpredictability and can be used
in nonlinear dynamics.

Table 3. Approximate entropy value.

Time Series m r=0.2std N ApEn

x 2 0.1172 2048 0.7824
y 2 0.1036 2048 0.7653
z 2 0.1284 2048 0.7906
w 2 0.1165 2048 0.7819

5. Application in Image Encryption

5.1. Image Encryption Scheme

A digital image is represented by a two-dimensional matrix. Each element of the two-dimensional
matrix represents the pixel value, and the coordinates of each element represent the location of the
pixel. Permutation refers to taking the row and column of each element in the two-dimensional
matrix of the image as the coordinate value of the pixel value, then using the encryption function to
change the coordinate value of the pixel, thus changing the position of the individual pixel so that the
original plaintext image cannot be recognized. Diffusion is to change the value of the pixels in the
image, so as to change the statistical characteristics of the original image. Based on the principle of
permutation and diffusion, the image encryption scheme here uses a low-dimensional chaotic system
to obtain permutation, and high-dimensional hyperchaotic system to obtain diffusion, and generally
achieves the effect of a two-step chaotic image encryption. Firstly, the sequence generated by the 1D
Logistic chaotic system is used to construct the replacement table to transform the position of the
original image to complete the permutation operation. Secondly, the stream cipher generated by the
4D hyperchaotic system proposed in this paper is used for diffusion operation to further ensure the
security of image encryption.
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Here, the hyperchaotic system stream is used to encrypt 256×256 Lena image, Cameraman image,
Cake image, and Seaside image, respectively. The results of image encryption and security analysis
are shown in Figure 12. Variance analysis can be used for testing the uniformity of the ciphered
images. Through calculation, the histogram variance of the original Lena image is 6.2993× 104, and
the histogram variance of the ciphered Lena image is 771.7529; the histogram variance of original
Cameraman image is 1.1141× 105, and the histogram variance of the ciphered Cameraman image is
825.4153. It can be concluded that the histogram variances of the ciphered images are much smaller
than those of the original images.
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It can be seen that the histograms of the plain images in Figure 12 are very different. The different
histograms mean that the distributions of the plain images are totally different. From the cipher images,
it can be found that they are all random-like. The histograms of all the encrypted images are relatively
flat and are very close to uniform distributions.
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5.2. Correlation Coefficient Analysis

The correlation coefficient can be used to measure the degree of the correlation between two
variables, with a value between −1 and 1. The Pearson correlation coefficient between two variables is
defined as the quotient of covariance and standard deviation between two variables. The correlation
coefficient, rxy, is defined as follows:

rxy =
cov(x, y)√
D(x) ·D(y)

, (13)

Here

cov(x, y) =
1
N

N∑
i=1

(xi − E(x))(yi − E(y)), (14)

E(x) =
1
N

N∑
i=1

xi, (15)

D(x) =
1
N

N∑
i=1

(xi − E(x))2, (16)

where x and y are two different image pixel values, N represents the number of all pixels, cov(x, y)
represents the covariance, D(x) represents the variance of variable x, and E(x) represents the mean.
The more observed variables are, the less the correlation coefficient is affected by the sampling error,
and the more reliable the results are. The value range of the correlation coefficient is rxy ∈ [−1, 1],
and the closer

∣∣∣rxy
∣∣∣ is to 1, the higher the correlation between the two variables is, and the closer

the relationship between them is. rxy > 0 stands for positive correlation, rxy < 0 stands for negative
correlation, and rxy = 0 stands for zero correlation for no correlation.

In this paper, the Lena image and its encrypted image are selected as the observation data, and a total
of 5000 pairs of sampling points are used. The experimental results of correlation coefficients are shown in
the Figures 13 and 14. The comparison and analysis of the two groups of data are listed in Table 4.

Entropy 2020, 22, x 14 of 20 

 

)()(
),cov(
yDxD

yxrxy ⋅
=

, 
(13)

Here 

                          


=

−−=
N

i
ii yEyxEx

N
yx

1
))())(((1),cov(

, (14)


=

=
N

i
ixN

xE
1

1)(
, 

(15)


=

−=
N

i
i xEx

N
xD

1

2))((1)(
, 

(16)

where x  and y  are two different image pixel values, N represents the number of all pixels, 
),cov( yx  represents the covariance, )(xD  represents the variance of variable x , and )(xE  

represents the mean. The more observed variables are, the less the correlation coefficient is affected 
by the sampling error, and the more reliable the results are. The value range of the correlation 
coefficient is [ ]1,1-∈xyr , and the closer xyr  is to 1, the higher the correlation between the two 

variables is, and the closer the relationship between them is. 0>xyr  stands for positive correlation, 

0<xyr  stands for negative correlation, and 0=xyr  stands for zero correlation for no correlation.  

In this paper, the Lena image and its encrypted image are selected as the observation data, and 
a total of 5000 pairs of sampling points are used. The experimental results of correlation coefficients 
are shown in the Figures 13 and 14. The comparison and analysis of the two groups of data are listed 
in Table 4.  

           

(a)                           (b)                          (c) 

Figure 13. The Lena image correlation coefficient diagram before encryption: (a) horizontal 
correlation; (b) vertical correlation; and (c) diagonal correlation. 

               

(a)                          (b)                           (c) 

Figure 14. The Lena image correlation coefficient diagram after encryption: (a) horizontal correlation; 
(b) vertical correlation; and (c) diagonal correlation. 

Figure 13. The Lena image correlation coefficient diagram before encryption: (a) horizontal correlation;
(b) vertical correlation; and (c) diagonal correlation.

Entropy 2020, 22, x 14 of 20 

 

)()(
),cov(
yDxD

yxrxy ⋅
=

, 
(13)

Here 

                          


=

−−=
N

i
ii yEyxEx

N
yx

1
))())(((1),cov(

, (14)


=

=
N

i
ixN

xE
1

1)(
, 

(15)


=

−=
N

i
i xEx

N
xD

1

2))((1)(
, 

(16)

where x  and y  are two different image pixel values, N represents the number of all pixels, 
),cov( yx  represents the covariance, )(xD  represents the variance of variable x , and )(xE  

represents the mean. The more observed variables are, the less the correlation coefficient is affected 
by the sampling error, and the more reliable the results are. The value range of the correlation 
coefficient is [ ]1,1-∈xyr , and the closer xyr  is to 1, the higher the correlation between the two 

variables is, and the closer the relationship between them is. 0>xyr  stands for positive correlation, 

0<xyr  stands for negative correlation, and 0=xyr  stands for zero correlation for no correlation.  

In this paper, the Lena image and its encrypted image are selected as the observation data, and 
a total of 5000 pairs of sampling points are used. The experimental results of correlation coefficients 
are shown in the Figures 13 and 14. The comparison and analysis of the two groups of data are listed 
in Table 4.  

           

(a)                           (b)                          (c) 

Figure 13. The Lena image correlation coefficient diagram before encryption: (a) horizontal 
correlation; (b) vertical correlation; and (c) diagonal correlation. 

               

(a)                          (b)                           (c) 

Figure 14. The Lena image correlation coefficient diagram after encryption: (a) horizontal correlation; 
(b) vertical correlation; and (c) diagonal correlation. 

Figure 14. The Lena image correlation coefficient diagram after encryption: (a) horizontal correlation;
(b) vertical correlation; and (c) diagonal correlation.



Entropy 2020, 22, 310 14 of 19

Table 4. Correlation coefficient analysis of Lena Image and photographer image.

Direction Horizontal Vertical Diagonal

Lena image before encryption 0.9842 0.6160 0.1969
Lena image after encryption 0.0043 −0.0230 −0.0027

[2] before encryption 0.9144 0.9545 0.9562
[2] after encryption −0.0014 0.0028 0.0080

[38] before encryption 0.9254 0.9438 0.9325
[38] after encryption 0.0045 0.0012 0.0001

[45] before encryption 0.9577 0.9440 0.9126
[45] after encryption −0.0082 0.0027 0.0030

[51] before encryption 0.9249 0.9593 0.9026
[51] after encryption −0.0042 −0.0011 0.0029

As can be seen from Figures 13 and 14, the correlation coefficient diagrams before and after
encryption are quite different. The correlation coefficient diagrams before encryption are of great
correlation, and the diagrams after encryption are almost of no correlation.

In Table 4, the correlation coefficient of the Lena image before encryption is close to 1, which has a
high correlation. The correlation coefficient of the encrypted graph is close to 0, indicating that there is
almost no correlation, so it can well resist the corresponding statistical attack.

5.3. The Information Entropy

Information entropy can be used to measure the uncertainty of the randomly distributed gray
value in an image. The definition of information entropy is shown as follows:

H(m) =
N∑

i=1

p(mi) ∗ log
1

p(mi)
, (17)

where p(mi) represents the probability of the sign mi occurring, and N represents the total number of
mi. Since the state of 256 grayscale images can reach 28, the maximum value of information entropy,
H(m), can be 8. In this paper, the information entropy of the Lena image and the photographer image
is calculated and compared. The results can be seen in Table 5, which found that the entropy value of
the encrypted image here is closer to the theoretical value 8. Therefore, the encryption scheme can
effectively resist an information entropy attack.

Table 5. Information entropy value.

Image InEn

Lena image 7.9978
[38] 7.9971
[52] 7.9965
[53] 7.9971
[54] 7.9851

5.4. Analysis of Differential Attack

The attacker adds a small change to the system by changing some pixels in the image, so that
the association between plaintext and ciphertext can be detected by observing the changes in the
pre-encrypted and post-encrypted images. In general, to test the above, you can use the following
two metrics to evaluate the encryption effect. One is pixel change rate (NPCR) [55], and the other is
normalized mean change intensity (UACI) [55]. The two indicators are defined as follows:
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NPCR =

∑
i, j

M(i, j)

L1 × L2
× 100%, (18)

UACI =
1

L1 × L2

∑
i, j

C1(i, j) −C2(i, j)
255

× 100%, (19)

where, C1 and C2 are the values before and after the change of the pixel in the same position, and
C1(i, j) and C2(i, j) represents the pixel intensity of the image (i, j) before and after the change. M(i, j)
is a binary matrix of the same size as C1 and C2. If C1(i, j) , C2(i, j), then M(i, j) = 1, otherwise
M(i, j) = 0. In this paper, only one pixel value is changed, and the simulation results are shown in
Table 6. The results showed that the NPCR value was close to 1, and the UACI value was close to
33.5% [38]. It shows that the encryption effect can resist some differential attacks. The test results are
shown as follows:

Table 6. NPCR and UACI.

Image NPCR UACI%

Lena image 0.9961 33.42

5.5. Analysis of Plaintext Attack and Ciphertext Attack

There are four typical types of attacks in an image encryption system, namely ciphertext only
attack, chosen ciphertext attack, known plaintext attack, and chosen plaintext attack. The chosen
plaintext attack is regarded as the most powerful attack among these attacks. If an image encryption
system can resist chosen plaintext attack, it can be regarded to have the ability to resist the other three
attacks [55]. From the differential attack analysis above, it is known that any small changes in the
plain image will lead to a totally different cipher image. It means that the encryption system in this
paper can resist differential attack, which is a typically chosen plaintext attack. The new hyperchaotic
system has four parameters and presents different chaotic states and output sequences, with different
initial values. The ciphered images are noise-like, and the corresponding histograms are close to
uniform distributions. Therefore, the proposed image encryption scheme can resist against plaintext
and ciphertext attacks.

5.6. Analysis of Noise Attack

The ciphered image is often changed by noise attack during the transmission process of the
channel, making the receiver unable to decrypt correctly. Therefore, the anti-noise attack capability
of an image encryption system is one of the criteria for measuring the anti-interference capability
of the system. In order to test the anti-noise attack capability of the system, before decrypting the
ciphered image, pepper and salt noises of different intensities were added to the ciphered image,
and then the ciphered image with the noise was decrypted with the correct key. The ciphered image
with pepper and salt noise and the decrypted image were respectively shown in Figure 15. Through
comparative analysis, it can be seen that the encryption algorithm in this paper has better ability to
resist anti-noise attacks.
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5.7. Analysis of Exhaustive Attack

In the analysis of exhaustive attack, the key space and key sensitivity can be analyzed, respectively.
Firstly, the analysis of anti-exhaustive attack from the perspective of key space is discussed. The
encryption key in this paper consists of two parts, one is the four system parameters of the hyperchaotic
system a, b, c, and d; the other part is the four initial values of the hyperchaotic system x0, y0, z0, and w0.
For the above four parameters and four initial values, if the calculation accuracy is 10−15, the total key
space of the image encryption system is not less than 10120, so the encryption algorithm has enough
key space to resist exhaustive attacks. Secondly, it discusses the analysis of anti-exhaustive attack from
the perspective of key sensitivity. In order to test the key sensitivity of the image encryption system
for the hyperchaotic system, four initial values of x0, y0, z0, and w0 were increased respectively, and
the corresponding decrypted images were shown in Figure 16, under the condition that other keys
do not change. It can be seen from the figure that the original image cannot be decrypted correctly
even if the key is changed very slightly, so the image encryption algorithm has strong key sensitivity.
In conclusion, the image encryption system has a good ability to resist exhaustive attacks.
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6. Conclusions

In this paper, a new 4D hyperchaotic system was generated based on the Lorenz chaotic system.
Through numerical calculation and computer simulation, the equilibrium point, local stability, and
Poincare section of the hyperchaotic system were studied. It was found that there were periodic
attractors, quasi-periodic attractors, and low-dimensional chaotic attractors in the hyperchaotic system.
Then, the hyperchaotic system was normalized and discretized into binary random stream ciphers.
Through NIST statistical test, permutation entropy, and approximate entropy analysis, it was found
that this binary stream has good statistical performance. Finally, the binary stream generated by
the hyperchaotic system was applied to the grayscale image encryption. It was concluded that the
encryption scheme can resist statistical attack by the correlation coefficient and the information entropy
analysis. From the analysis of differential attack, plaintext attack, ciphertext attack, noise attack, and
exhaustive attack, it can be concluded that the encryption scheme can resist those attacks, which shows
that the image encryption scheme in this paper can achieve a better encryption effect and resist most
typical attacks.

Author Contributions: L.D. conceived and wrote the paper. Q.D. gave some theoretical guidance. All authors
have read and agreed to the published version of the manuscript.

Funding: The Natural Science Foundation of China: No. 61471158.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lorenz, E.N. Deterministic non-periodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
2. Li, X.; Xie, Z.; Wu, J.; Li, T. Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations.

Complexity 2019, 2019, 7485621. [CrossRef]
3. Wang, X.; Gao, S. Image encryption algorithm for synchronously updating Boolean networks based on

matrix semi-tensor product theory. Inf. Sci. 2020, 507, 16–36. [CrossRef]
4. Wang, X.; Feng, L.; Zhao, H. Fast image encryption algorithm based on parallel computing system. Inf. Sci.

2019, 486, 340–358. [CrossRef]
5. Ai, B.-Q.; Wang, X.-J.; Liu, G.-T.; Liu, L.-G. Correlated noise in a logistic growth model. Phys. Rev. E 2003, 67,

022903. [CrossRef]
6. Wang, L.Y.; Cheng, H. Pseudo-Random Number Generator Based on Logistic Chaotic System. Entropy 2019,

21, 960. [CrossRef]
7. Rubens, R. Quantum-chaotic key distribution in optical networks: From secrecy to implementation with

logistic map. Quantum Inf. Process. 2018, 17, 329.
8. Sheela, S.J. Image encryption based on modified Henon map using hybrid chaotic shift transform. Multimed.

Tools. Appl. 2018, 77, 25223–25251. [CrossRef]
9. Roy, A. Audio signal encryption using chaotic Henon map and lifting wavelet transforms. Eur. Phys. J. 2017,

132, 524. [CrossRef]
10. Balibrea-Iniesta, F.; Lopesino, C.; Wiggins, S.; Mancho, A.M. Chaotic Dynamics in Nonautonomous Maps:

Application to the Nonautonomous Henon Map. Int. J. Bifurcat. Chaos 2015, 25, 1550172. [CrossRef]
11. Jamal, R.K. Secure Communication Coupled Laser Based on Chaotic Rossler Circuits, Nonlinear Optics.

Quantum Optics 2019, 51, 79–91.
12. Girdhar, A. A RGB image encryption technique using Lorenz and Rossler chaotic system on DNA sequences.

Multimed Tools Appl. 2018, 77, 27017–27039. [CrossRef]
13. Mandal, M.K. Symmetric key image encryption using chaotic Rossler system. Secur. Commun. Netw. 2014, 7,

2145–2152. [CrossRef]
14. Mishra, J. Modified Chua chaotic attractor with differential operators with non-singular kernels. Chaos

Solitons Fractals 2019, 125, 64–72. [CrossRef]
15. Freud, S. On the Influence of the Coupling Strength among Chua’s Circuits on the Structure of Their

Hyper-Chaotic Attractors. Int. J. Bifurcat. Chaos 2016, 26, 1650115. [CrossRef]

http://dx.doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
http://dx.doi.org/10.1155/2019/7485621
http://dx.doi.org/10.1016/j.ins.2019.08.041
http://dx.doi.org/10.1016/j.ins.2019.02.049
http://dx.doi.org/10.1103/PhysRevE.67.022903
http://dx.doi.org/10.3390/e21100960
http://dx.doi.org/10.1007/s11042-018-5782-2
http://dx.doi.org/10.1140/epjp/i2017-11808-x
http://dx.doi.org/10.1142/S0218127415501722
http://dx.doi.org/10.1007/s11042-018-5902-z
http://dx.doi.org/10.1002/sec.927
http://dx.doi.org/10.1016/j.chaos.2019.05.013
http://dx.doi.org/10.1142/S0218127416501157


Entropy 2020, 22, 310 18 of 19

16. Korneta, W.; Garcia-Moreno, E.; Sena, A.L. Noise activated dc signal sensor based on chaotic Chua circuit.
Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 145–152. [CrossRef]

17. Sathiyamurthi, P.; Ramakrishnan, S. Testing and Analysis of Chen Chaotic Mapping for Speech Cryptography.
J. Test. Eval. 2019, 47, 3028–3040. [CrossRef]

18. Huang, X.; Liu, L.F.; Li, X.J.; Yu, M.R.; Wu, Z.J. A New Pseudorandom Bit Generator Based on Mixing
Three-Dimensional Chen Chaotic System with a Chaotic Tactics. Complexity 2019, 2019, 6567198. [CrossRef]

19. Ozkaynak, F.; Celik, V.; Ozer, A.B. A new S-box construction method based on the fractional-order chaotic
Chen system. Signal Image Video P 2017, 11, 659–664. [CrossRef]

20. Liu, L.C.; Du, C.H.; Zhang, X.F.; Li, J.; Shi, S.S. Dynamics and Entropy Analysis for a New 4-D Hyperchaotic
System with Coexisting Hidden Attractors. Entropy 2019, 21, 287. [CrossRef]

21. Ma, J.; Chen, Z.; Wang, Z.; Zhang, Q. A four-wing hyper-chaotic attractor generated from a 4-D memristive
system with a line equilibrium. Nonlinear Dyn. 2015, 81, 1275–1288. [CrossRef]

22. Singh, J.P.; Roy, B.K.; Jafari, S. New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of
equilibria. Chaos Solitons Fractals 2018, 106, 243–257. [CrossRef]

23. Vaidyanathan, S. Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk
system via backstepping control method. Arch. Control.Sci. 2016, 26, 311–338. [CrossRef]

24. Koyuncu, I.; Alcin, M.; Tuna, M.; Pehlivan, I.; Varan, M.; Vaidyanathan, S. Real-time high-speed 5-D
hyperchaotic Lorenz system on FPGA. Int. J. Comput. Appl. Technol. 2019, 61, 152–165.

25. Bonyah, E. Chaos in a 5-D hyperchaotic system with four wings in the light of non-local and non-singular
fractional derivatives. Chaos Solitons Fractals 2018, 116, 316–331. [CrossRef]

26. Zhang, L.M.; Sun, K.H.; He, S.B.; Wang, H.H.; Xu, Y.X. Solution and dynamics of a fractional-order 5-D
hyperchaotic system with four wings. Eur. Phys. J. Plus 2017, 132, 31. [CrossRef]

27. Vaidyanathan, S.; Volos, C.; Pham, V.T. Hyperchaos, adaptive control and synchronization of a novel 5-D
hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch. Control
Sci. 2014, 24, 409–446. [CrossRef]

28. Hu, Z.Y.; Chan, C.K. A 7-D Hyperchaotic System-Based Encryption Scheme for Secure Fast-OFDM-PON.
J. Lightwave. Technol. 2018, 36, 3373–3381. [CrossRef]

29. Liu, J.; Tong, X.J.; Wang, Z.; Ma, J.; Yi, L.T. An Improved Rao-Nam Cryptosystem Based on Fractional Order
Hyperchaotic System and EDF-QC-LDPC. Int. J. Bifurcat. Chaos 2019, 29, 1950122. [CrossRef]

30. Lassoued, A.; Boubaker, O. Dynamic Analysis and Circuit Design of a Novel Hyperchaotic System with
Fractional-Order Terms. Complexity 2019, 2019, 1564573. [CrossRef]

31. Boraha, M.; Roy, B.K. Design of fractional-order hyperchaotic systems with maximum number of positive
Lyapunov exponents and their antisynchronisation using adaptive control. Int. J. Control 2018, 91, 2615–2630.
[CrossRef]

32. Goufo, E.F.D. On chaotic models with hidden attractors in fractional calculus above power law. Chaos Solitons
Fractals 2019, 127, 24–30. [CrossRef]

33. Bayani, A.; Rajagopal, K.; Khalaf, A.J.M.; Jafari, S.; Leutcho, G.D.; Kengne, J. Dynamical analysis of a new
multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset
boosting. Phys. Lett. A 2019, 383, 1450–1456. [CrossRef]

34. Pham, V.T.; Volos, C.; Jafari, S.; Kapitaniak, T. A Novel Cubic-Equilibrium Chaotic System with Coexisting
Hidden Attractors: Analysis, and Circuit Implementation. J. Circuit Syst. Comp. 2018, 27, 1850066. [CrossRef]

35. Wang, N.; Zhang, G.S.; Bao, H. Bursting oscillations and coexisting attractors in a simple memristor-capacitor-
based chaotic circuit. Nonlinear Dyn. 2019, 97, 1477–1494. [CrossRef]

36. Lai, Q.; Nestor, T.; Kengne, J.; Zhao, X.W. Coexisting attractors and circuit implementation of a new 4D
chaotic system with two equilibria. Chaos Solitons Fractals 2018, 107, 92–102. [CrossRef]

37. Li, T.; Yang, M.; Wu, J.; Jing, X. A Novel Image Encryption Algorithm Based on a Fractional-Order
Hyperchaotic System and DNA Computing. Complexity 2017, 2017, 9010251. [CrossRef]

38. Li, T.; Shi, J.; Li, X.; Wu, J.; Pan, F. Image Encryption Based on Pixel-Level Diffusion with Dynamic Filtering
and DNA-Level Permutation with 3D Latin Cubes. Entropy 2019, 21, 319. [CrossRef]

39. Molteni, F.; Kucharski, F. A heuristic dynamical model of the North Atlantic Oscillation with a Lorenz-type
chaotic attractor. Clim. Dyn. 2019, 52, 6173–6193. [CrossRef]

40. Mallory, K.; van Gorder, R.A. Competitive Modes for the Detection of Chaotic Parameter Regimes in the
General Chaotic Bilinear System of Lorenz Type. Int. J. Bifurcat. Chaos 2015, 25, 1530012. [CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2014.12.010
http://dx.doi.org/10.1520/JTE20170283
http://dx.doi.org/10.1155/2019/6567198
http://dx.doi.org/10.1007/s11760-016-1007-1
http://dx.doi.org/10.3390/e21030287
http://dx.doi.org/10.1007/s11071-015-2067-4
http://dx.doi.org/10.1016/j.chaos.2017.11.030
http://dx.doi.org/10.1515/acsc-2016-0018
http://dx.doi.org/10.1016/j.chaos.2018.09.034
http://dx.doi.org/10.1140/epjp/i2017-11310-7
http://dx.doi.org/10.2478/acsc-2014-0023
http://dx.doi.org/10.1109/JLT.2018.2841042
http://dx.doi.org/10.1142/S0218127419501220
http://dx.doi.org/10.1155/2019/1564573
http://dx.doi.org/10.1080/00207179.2016.1269948
http://dx.doi.org/10.1016/j.chaos.2019.06.025
http://dx.doi.org/10.1016/j.physleta.2019.02.005
http://dx.doi.org/10.1142/S0218126618500664
http://dx.doi.org/10.1007/s11071-019-05067-6
http://dx.doi.org/10.1016/j.chaos.2017.12.023
http://dx.doi.org/10.1155/2017/9010251
http://dx.doi.org/10.3390/e21030319
http://dx.doi.org/10.1007/s00382-018-4509-4
http://dx.doi.org/10.1142/S0218127415300128


Entropy 2020, 22, 310 19 of 19

41. Yan, W.H.; Ding, Q. A New Matrix Projective Synchronization and Its Application in Secure Communication.
IEEE Access 2019, 7, 112977–112984. [CrossRef]

42. Ding, L.N.; Liu, C.Y.; Zhang, Y.P. A New Lightweight Stream Cipher Based on Chaos. Symmetry 2019, 11, 853.
[CrossRef]

43. Garcia-Bosque, M.; Diez-Senorans, G.; Perez-Resa, A. A 1 Gbps Chaos-Based Stream Cipher Implemented in
0.18 mu m CMOS Technology. Electronics 2019, 8, 623. [CrossRef]

44. Li, X.; Li, T.; Wu, J.; Xie, Z.; Shi, J. Joint image compression and encryption based on sparse Bayesian learning
and bit-level 3D Arnold cat maps. PLoS ONE 2019, 14, e0224382. [CrossRef] [PubMed]

45. Ping, P.; Xu, F.; Mao, Y.C.; Wang, Z.J. Designing permutation-substitution image encryption networks with
Henon map. Neurocomputing 2018, 283, 53–63. [CrossRef]

46. Ye, G.D.; Huang, X.L. An efficient symmetric image encryption algorithm based on an intertwining logistic
map. Neurocomputing 2017, 251, 45–53. [CrossRef]

47. Haroun, M.F.; Gulliver, T.A. Real-time image encryption using a low-complexity discrete 3D dual chaotic
cipher. Nonlinear Dyn. 2015, 82, 1523–1535. [CrossRef]

48. Wu, J.; Shi, J.; Li, T. A Novel Image Encryption Approach Based on a Hyperchaotic System, Pixel-Level
Filtering with Variable Kernels, and DNA-Level Diffusion. Entropy 2020, 22, 5. [CrossRef]

49. Wang, X.; Gao, S. Application of matrix semi-tensor product in chaotic image encryption. J. Frankin. Inst.
2019, 18, 11638–11667. [CrossRef]

50. Rukhin, A.; Soto, J.; Nechvatal, J.; Miles, S.; Barker, E. A statistical test suite for random and pseudorandom
number generators for cryptographic applications. Appl. Phys. Lett. 2015, 22, 1645–1776.

51. Zhu, C.; Hu, Y.; Sun, K. New image encryption algorithm based on hyperchaotic system and ciphertext
diffusion in crisscross pattern. J. Electron. Inf. Technol. 2012, 34, 1735–1743. [CrossRef]

52. Fan, C.L.; Ding, Q. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher
and Wavelet Transform. Entropy 2018, 20, 445. [CrossRef]

53. Li, P.; Xu, J.; Mou, J.; Yang, F.F. Fractional-order 4D hyperchaotic memristive system and application in color
image encryption. EURASIP J. Image 2019, 2019, 22. [CrossRef]

54. Chai, X.; Gan, Z.; Lu, Y.; Chen, Y.; Han, D. A novel image encryption algorithm based on the chaotic system
and DNA computing. Int. J. Mod. Phys. C 2017, 28, 1750069. [CrossRef]

55. Zhan, K.; Wei, D.; Shi, J.; Yu, J. Cross-utilizing hyperchaotic and DNA sequences for image encryption.
J. Electron. Imaging 2017, 26, 013021. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2935304
http://dx.doi.org/10.3390/sym11070853
http://dx.doi.org/10.3390/electronics8060623
http://dx.doi.org/10.1371/journal.pone.0224382
http://www.ncbi.nlm.nih.gov/pubmed/31738772
http://dx.doi.org/10.1016/j.neucom.2017.12.048
http://dx.doi.org/10.1016/j.neucom.2017.04.016
http://dx.doi.org/10.1007/s11071-015-2258-z
http://dx.doi.org/10.3390/e22010005
http://dx.doi.org/10.1016/j.jfranklin.2019.10.006
http://dx.doi.org/10.3724/SP.J.1146.2011.01004
http://dx.doi.org/10.3390/e20060445
http://dx.doi.org/10.1186/s13640-018-0402-7
http://dx.doi.org/10.1142/S0129183117500693
http://dx.doi.org/10.1117/1.JEI.26.1.013021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	A New Hyperchaotic System 
	Analysis of Dynamic Properties 
	Subsection Equilibrium Curve 
	Judgment of Local Stability 
	Poincare Section Diagram 
	Periodic Attractor 
	Quasi-Periodic Attractors 
	Chaotic Attractor 
	Bifurcation and Lyapunov Exponent 

	Normalization and Quantization 
	Normalization Treatment 
	Quantization 
	NIST Test 
	Permutation Entropy 
	Approximate Entropy 

	Application in Image Encryption 
	Image Encryption Scheme 
	Correlation Coefficient Analysis 
	The Information Entropy 
	Analysis of Differential Attack 
	Analysis of Plaintext Attack and Ciphertext Attack 
	Analysis of Noise Attack 
	Analysis of Exhaustive Attack 

	Conclusions 
	References

