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Abstract: This paper is concerned with the formulation and computation of average problems on
the multinomial and negative multinomial models. It can be deduced that the multinomial and
negative multinomial models admit complementary geometric structures. Firstly, we investigate
these geometric structures by providing various useful pre-derived expressions of some fundamental
geometric quantities, such as Fisher-Riemannian metrics, α-connections and α-curvatures. Then,
we proceed to consider some average methods based on these geometric structures. Specifically,
we study the formulation and computation of the midpoint of two points and the Karcher mean of
multiple points. In conclusion, we find some parallel results for the average problems on these two
complementary models.

Keywords: structure characterization; average problem; geometric midpoints; Karcher mean

1. Introduction

The concept of an average of a set of points within a given geometric structure abounds in
various mathematical research. Significant development has been produced since the conception of the
Karcher mean [1]. Among the various structure to be studied, the standard simplex presents itself as an
interesting framework since it can be directly connected to the parameter spaces of various probability
distributions, such as the two to-be-discussed models—the multinomial and negative multinomial
models. There are already some recent works involving the statistical modeling of the probability
simplex [2]. In the present work, we provide alternative modelings by considering the multinomial
and negative multinomial models with classical methods of information geometry.

As a newly developed theory, information geometry has supplied us with various measures of
the discrepancy between any two probability distributions. In addition to some standard distance
functions, divergence functions are intended for measuring the asymmetric proximity of probability
distributions on an appropriate statistical model. Some geometric quantities, such as Riemannian
metric and pair of dual connections, can be readily induced from a divergence function by its higher
order derivatives [3,4]. In this way, the geometric structures of various parametric statistical models can
be studied specifically [5–7], and the investigation about some particular parametric models can also be
found in [8,9]. Among these models, we find the multinomial model and negative multinomial model
especially interesting, in the sense that they can be seen as a pair of complementary model spaces.
The multinomial model is well known as a spherical space of positive constant curvature [10], while
the negative multinomial model is found to be a hyperbolic space of negative constant curvature [11].

To be more specific, the motivation of the present paper is twofold. Firstly, we aim at clarifying the
complementary geometric structures of the multinomial and negative multinomial models. The main
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results about these geometric structures involving geometric quantities, such as Fisher-Riemannian
metrics, α-connections and α-curvatures, are collected in Section 3, most of which can be derived
in a standard way. In particular, this paper extends the isometric representation results about the
multinomial model to those about the negative multinomial model, obtaining new insight into the
complementary structures of these two models as illustrated by Table 1. Secondly, the original
purpose of the formulation and computation of average problems is approached by utilizing these
geometric structures. To this end, we propose a generalized concept of midpoints for two points and
a computation scheme of Karcher mean for multiple points. For the midpoints, we generalize the
Chernoff points in the literature [12] to some wider parametrized classes. For the Karcher mean, as
there are many algorithmic results [13,14] for general manifolds, this paper mainly contributes to
addressing some practical issues, such as initial point choice and iteration computation, which yields
effective solving methods via the geometric structures within the multinomial model and negative
multinomial model. The results about these average methods are presented in Section 4.

2. Preliminaries

For the sake of clarity, we summarize some preliminary knowledge about information divergence
functions in this section (more details can be found in [15]).

Given a particular parametric statistical modelM = {pθ | θ ∈ Θ}, for our purpose, here we mainly
consider invariant divergences that satisfy the property of information monotonicity, as mentioned
in [15]. A typical kind of invariant divergence is given in the form of the well-defined f -divergence as

D f (pθ ‖ pξ) =
∫

x∈X
pθ(x) f

(
pξ(x)
pθ(x)

)
dx,

where f is a convex function satisfying f (1) = 0 and f ′′(1) = 1.
A commonly used class of f -divergences is given by the α-divergence D(α), with

f (u) =


4

1−α2

(
1− u

1+α
2

)
, α 6= ±1,

− log u, α = −1,
u log u, α = 1.

Particularly, for α = −1, the divergence D(−1) is usually called Kullback–Leibler divergence,
which we denote by DKL; for α = 0, D(0) is usually called squared Hellinger distance, which we denote
by H2; and for α = 3, D(3) is often related to the chi-square statistic.

While our later results are mainly related to the α-divergence, for comparison, we briefly mention
another f -divergence called exponential divergence (see [6] §12.3.6), which we denote by E with
f (u) = 1

2 log2 u.
For any divergence function D on a statistical manifold, we can construct another divergence

function D∗ called dual divergence by swapping the arguments as ([16])

D∗(pθ ‖ pξ) = D(pξ ‖ pθ).

The dual divergence of an f -divergence D f is again an f -divergence D∗f = D f ∗ , with f ∗(u) =

u f ( 1
u ). Particularly, the dual divergence of the α-divergence D(α) just is D(−α).
To be mentioned, as a divergence is generally not symmetric, a symmetric divergence Ds can be

constructed from an asymmetric D by averaging it with its dual:

Ds =
1
2
(D + D∗).
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A Riemannian metric g can be induced by a divergence D as

g
(

∂
∂θi

, ∂
∂θj

)
= gij(θ) =

∂2

∂ξi∂ξ j

∣∣∣∣∣
ξ=θ

D(pθ ‖ pξ), (1)

which is equivalent to the usual Fisher-Riemannian metric in the case when D is an f -divergence.
Furthermore, an affine connection ∇ is induced by the divergence D with connection coefficients

g
(
∇ ∂

∂θi

∂
∂θj

, ∂
∂θk

)
= Γijk(θ) = −

∂3

∂θi∂θj∂ξk

∣∣∣∣∣
ξ=θ

D(pθ ‖ pξ). (2)

Similarly, another affine connection ∇∗ can be obtained by replacing D with the dual divergence
D∗ in the above formula. Thus, with the primal connection ∇ and dual connection ∇∗, the statistical
manifold admits a dual structure (M, g,∇,∇∗). Furthermore, the structure (M, g,∇,∇∗) is called
dually flat if both ∇ and ∇∗ are flat.

As a well known result [15], the primal connection induced by an f -divergence D f is the same
as the usual α-connection ∇(α) with α = 3 + 2 f ′′′(1), while the induced dual connection is ∇(−α).
Particularly, one can check that the primal connection induced by the α-divergence D(α) is exactly the
α-connection ∇(α).

3. Geometric Structure of Multinomial and Negative Multinomial Models

3.1. Basic Information Geometric Structure

In this subsection, we present the parametric formulation of the multinomial and negative
multinomial model, respectively. Then some basic results about divergences and geometric structures
are derived for both models.

3.1.1. Multinomial Model

Consider the multinomial n-dimensional modelMN consisting of (n+1)-nominal distributions
with probability mass function given by

pθ(x0, x1, . . . , xn) =
N!

x0!x1! · · · xn!
θx0

0 θx1
1 · · · θ

xn
n , (3)

where ∑n
i=0 xi = N and the parametrization is given by θ = (θ1, . . . , θn) with θ0 = 1−∑n

i=1 θi.
We can rewrite Equation (3) as

pθ(x0, x1, . . . , xn) =
N!

x0!x1! · · · xn!
exp

(
n

∑
i=1

xi log
θi
θ0

+ N log θ0

)
.

By some general knowledge about exponential distribution families [17], we see that the multinomial
modelMN admits the natural parameters

ηi = log
θi
θ0

, i = 1, . . . , n, (4)

and the potential function

ψ(θ) = −N log θ0 = N log

(
1 +

n

∑
i=1

exp ηi

)
,
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from which we also obtain the expectation parameters

∂ψ/∂ηi = N

(
1 +

n

∑
i=1

exp ηi

)−1

exp ηi = Nθi, i = 1, . . . , n. (5)

Next, we have the following result by direct calculation.

Proposition 1. The divergences introduced in Section 2 are obtained forMN as follows:
the Kullback–Leibler divergence

DKL(pθ ‖ pξ) = N
n

∑
i=0

θi log
θi
ξi

,

the squared Hellinger distance

H2(pθ , pξ) = 4

1−
(

n

∑
i=0

√
θi ξi

)N
 ,

the α-divergence

D(α)(pθ ‖ pξ) =
4

1− α2

1−
(

n

∑
i=0

θ
1−α

2
i ξ

1+α
2

i

)N


and the exponential divergence

E(pθ ‖ pξ) =
N(N − 1)

2

(
n

∑
i=0

θi log
θi
ξi

)2

+
N
2

n

∑
i=0

θi log2 θi
ξi

.

From any one of these expressions, by using Equation (1), we obtain the Fisher-Riemannian metric
matrix as

gij(θ) =
N
θ0

+
N
θi

δij, (6)

where δij = 1 if i = j and 0 otherwise. Then, the inverse matrix of g can also be obtained as

gij(θ) =
θi
N

δij −
θiθj

N
. (7)

Furthermore, by direct verification with the metric expression of Equation (6), we have the
following well-known result.

Theorem 1 ([18]). An isometry is established between the multinomial modelMN and the n-sphere within the
non-negative orthant of the Euclidean space Rn+1 by the parametric mapping:

(θ0, θ1, . . . , θn) 7→ 2
√

N
(

θ1/2
0 , θ1/2

1 , . . . , θ1/2
n

)
. (8)

Consequently, via this isometry, the Fisher-Riemannian geodesic distance between two parameters θ and ξ of
MN is given by

d(θ, ξ) = 2
√

N arccos

(
n

∑
i=0

√
θi ξi

)
. (9)

Referring to some basic differential geometrical concepts (see [19]), we can derive some further
consequent results as follows.



Entropy 2020, 22, 306 5 of 16

Corollary 1. The multinomial n-dimensional modelMN with the Fisher-Riemannian metric is a Riemannian
manifold of constant sectional curvature K = 1

4 N and scalar curvature S = n(n−1)
4 N . Furthermore, for a unit

speed geodesic γ inMN , the normal Jacobi fields along γ are precisely linear combinations of the vector fields,
which are in the form of J(t) = sin(2

√
N t)E(t) or J(t) = cos(2

√
N t)E(t), where E is any parallel normal

vector field along γ.

3.1.2. Negative Multinomial Model

Consider the negative multinomial n-dimensional model NMM consisting of negative
(n+1)-nominal distributions with probability mass function given by

pθ(x1, . . . , xn) =
Γ(M + x1 + · · ·+ xn)

Γ(M) x1! · · · xn!
θM

0 θx1
1 · · · θ

xn
n , (10)

where M > 0, x1, . . . , xn ≥ 0 and the parametrization is given by θ = (θ1, . . . , θn) with θ0 = 1−∑n
i=1 θi.

With the rewritten form of Equation (10) as

pθ(x1, . . . , xn) =
Γ(M + x1 + · · ·+ xn)

Γ(M) x1! · · · xn!
exp

(
n

∑
i=1

xi log θi + M log θ0

)
,

we find that the negative multinomial model NMM admits the natural parameters

ηi = log θi, i = 1, . . . , n, (11)

and the potential function

ψ(θ) = −M log θ0 = −M log

(
1−

n

∑
i=1

exp ηi

)
,

from which we also obtain the expectation parameters

∂ψ/∂ηi = M

(
1−

n

∑
i=1

exp ηi

)−1

exp ηi = M
θi
θ0

. (12)

Again, we derive the following result by direct calculation.

Proposition 2. The divergences introduced in Section 2 are obtained for NMM as follows:
the Kullback–Leibler divergence

DKL(pθ ‖ pξ) = M log
θ0

ξ0
+ M

n

∑
i=1

θi
θ0

log
θi
ξi

,

the squared Hellinger distance

H2(pθ , pξ) = 4

[
1−

( √
θ0ξ0

1−∑n
i=1
√

θiξi

)M
]

,

the α-divergence

D(α)(pθ ‖ pξ) =
4

1− α2

1−

 θ
1−α

2
0 ξ

1+α
2

0

1−∑n
i=1 θ

1−α
2

i ξ
1+α

2
i

M
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and the exponential divergence

E(pθ ‖ pξ) =
M2

2

(
log

θ0

ξ0
+

n

∑
i=1

θi
θ0

log
θi
ξi

)2

+
M
2

 n

∑
i=1

θi
θ0

log2 θi
ξi

+

(
n

∑
i=1

θi
θ0

log
θi
ξi

)2
 .

Next, applying Equation (1) to the divergences in the foregoing proposition, we obtain the
Fisher-Riemannian metric matrix as

gij =
M
θ2

0
+

M
θ0θi

δij, (13)

and its inverse matrix as
gij =

θ0

M
(
θiδij − θiθj

)
. (14)

Furthermore, by direct verification with the metric expression of Equation (13), we have the
following result parallel to Theorem 1.

Theorem 2. An isometry is established between the negative multinomial model NMM and the n-hyperbola
within the nonnegative orthant of the Minkowski space R1,n by the parametric mapping:

(θ0, θ1, . . . , θn) 7→ 2
√

Mθ−1/2
0

(
1, θ1/2

1 , . . . , θ1/2
n

)
. (15)

Consequently, via this isometry, the Fisher-Riemannian geodesic distance between two parameters θ and ξ

of NMM is given by

d(θ, ξ) = 2
√

M arcosh
(

1−∑n
i=1
√

θi ξi√
θ0ξ0

)
. (16)

Again, some further consequent results are obtained as follows.

Corollary 2. The negative multinomial n-dimensional model NMM with the Fisher-Riemannian metric
is a Riemannian manifold of constant sectional curvature K = − 1

4 M and scalar curvature S = − n(n−1)
4 M .

Furthermore, for a unit speed geodesic γ in NMM, the normal Jacobi fields along γ are precisely
linear combinations of the vector fields, which are in the form of J(t) = sinh(2

√
M t)E(t) or J(t) =

cosh(2
√

M t)E(t), where E is any parallel normal vector field along γ.

3.2. Dual Structures

In this section, we derive the α-connection coefficients and curvatures of the multinomial and
negative multinomial model. While some basic results are equivalent to those in [11], our calculation
is performed directly with the original parameters in order to give a clear presentation of the results.

The α-connection coefficients can be obtained by applying the calculation of Equation (2) to the
α-divergence D(α), as mentioned in Section 2. However, an easier derivation of the α-connection∇(α) is
given in the form of a linear combination of the mixture connection∇(m) = ∇(−1) and the exponential
connection ∇(e) = ∇(1). With the mixture connection coefficients obtained from the Kullback–Leibler
divergence as

Γ(m)
ijk (θ) = − ∂3

∂θi∂θj∂ξk

∣∣∣∣∣
ξ=θ

DKL(pθ ‖ pξ), (17)

and the exponential connection coefficients obtained from the dual Kullback–Leibler divergence as

Γ(e)
ijk (θ) = −

∂3

∂θi∂θj∂ξk

∣∣∣∣∣
ξ=θ

D∗KL(pθ ‖ pξ), (18)
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the α-connection coefficients are given by

Γ(α)
ijk (θ) =

1 + α

2
Γ(e)

ijk (θ) +
1− α

2
Γ(m)

ijk (θ). (19)

Next, the α-curvature tensor R(α) is defined by

R(α)(X, Y)Z = ∇(α)
X ∇

(α)
Y Z−∇(α)

Y ∇
(α)
X Z−∇(α)

[X,Y]Z,

where [X, Y] denotes the Lie bracket of X and Y. By the duality condition (see [20])

Xg(Y, Z) = g(∇(α)
X Y, Z) + g(Y,∇(−α)

X Z),

one can check that the following identity holds:

g
(

R(α)(∂i, ∂j)∂j, ∂i

)
= ∂iΓ

(α)
jji − ∂jΓ

(α)
iji + ∑

k,l
gkl
(

Γ(α)
ijk Γ(−α)

jil − Γ(α)
jjk Γ(−α)

iil

)
, (20)

where ∂
∂θi

is shortened as ∂i.
At last, the α-sectional curvature spanned by two tangent vectors ∂i and ∂j (i 6= j) is determined by

K(α)(∂i, ∂j) =
g
(

R(α)(∂i, ∂j)∂j, ∂i

)
giigjj − g2

ij
. (21)

3.2.1. Multinomial Model

For the multinomial model MN , by applying Equations (17)–(19) with the Kullback–Leibler
divergence in Propositon 1, we have the mixture connection coefficients

Γ(m)
ijk (θ) = 0,

the exponential connection coefficients

Γ(e)
ijk (θ) =

N
θ2

0
− N

θ2
i

δijk

and the α-connection coefficients
Γ(α)

ijk (θ) =
1 + α

2
Γ(e)

ijk (θ).

Furthermore, by Equations (6), (7) and (20), we obtain

g
(

R(α)(∂i, ∂j)∂j, ∂i

)
=

(1− α2)N
4

(
1

θ0θi
+

1
θ0θj

+
1

θiθj

)
,

giigjj − g2
ij = N2

(
1

θ0θi
+

1
θ0θj

+
1

θiθj

)
.

Thus, via Equation (21), we recover the following result.

Theorem 3 ([11]). The multinomial modelMN admits constant α-sectional curvature

K(α) =
1− α2

4 N
. (22)
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3.2.2. Negative Multinomial Model

For the negative multinomial model NMM, by applying Equations(17)–(19) with the
Kullback–Leibler divergence in Propositon 2, we have the mixture connection coefficients

Γ(m)
ijk (θ) =

M
θ2

0

(
2
θ0

+
δik + δjk

θk

)
= (gik + gjk)/θ0,

the exponential connection coefficients

Γ(e)
ijk (θ) = −

M
θ0θ2

i
δijk −

M
θ2

0θi
δij = −gikδij/θi

and the α-connection coefficients

Γ(α)
ijk (θ) =

1 + α

2
Γ(e)

ijk (θ) +
1− α

2
Γ(m)

ijk (θ).

Furthermore, by Equations (13), (14) and (20), we have

g
(

R(α)(∂i, ∂j)∂j, ∂i

)
= − (1− α2)M

4 θ2
0

(
1

θ0θi
+

1
θ0θj

+
1

θiθj

)
,

giigjj − g2
ij =

M2

θ2
0

(
1

θ0θi
+

1
θ0θj

+
1

θiθj

)
.

Again, via Equation (21), we recover another parallel result.

Theorem 4 ([11]). The negative multinomial model NMM admits constant α-sectional curvature

K(α) = −1− α2

4 M
. (23)

For clarity, we summarize these results about the complementary geometric structures of the
multinomial and negative multinomial models in Table 1.

Table 1. Complementary geometric structures.

Model Isometric Space Sectional Curvature α-Sectional Curvature

MN n-sphere within nonnegative orthant 1
4 N

1−α2

4 N
NMM n-hyperbola within nonnegative orthant − 1

4 M − 1−α2

4 M

4. Geometric Average Methods on Multinomial and Negative Multinomial Models

In this section, we present some average methods induced by the geometry of the multinomial
and negative multinomial models.

Firstly, we consider the particular case when the to-be-averaged set consists of only two points. In
this case, the problem is to find a method of computing a midpoint in some geometric sense. Next,
via some techniques related to the Karcher mean, we consider the general case with a set of multiple
points.

4.1. Midpoints of Two Points

In this subsection, again within the multinomial and negative multinomial model, we study
a particular class of midpoints named Chernoff points. The original Chernoff point, which is
motivated by the application of computing the best error exponent for the Bayesian hypothesis
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testing problem, is determined as the intersection point of an exponential geodesic and a mixture
bisector [21]. Furthermore, there are three other generalized Chernoff points proposed by [12].

To present a further generalization, here we formulate the concepts of α-geodesic and α-bisector
determined by two probability distributions pθ′ and pθ′′ of a parametric statistical modelM.

Definition 1. The α-geodesic is determined by the geodesic equation of the α-connection ∇(α) as

G(α)(pθ′ , pθ′′) =
{

pθ(t) ∈ M
∣∣∣ θ(0) = θ′, θ(1) = θ′′, ∇(α)

θ̇(t)
θ̇(t) = 0, t ∈ [0, 1]

}
,

where θ̇(t) denotes the velocity vector of a curve θ(t).

Particularly, since an exponential family model is ±1-flat, as can be directly seen from
Equations (22) and (23) for our case, the exponential geodesic for α = 1 can be determined by
the linear interpolation of the natural parameters, while the mixture geodesic for α = −1 can be
determined by the linear interpolation of the expectation parameters.

Definition 2. The α-bisector is determined by the equi-divergence identity of the α-divergence D(α) as

Bi(α)(pθ′ , pθ′′) =
{

pθ ∈ M
∣∣∣D(α)(pθ ‖ pθ′) = D(α)(pθ ‖ pθ′′)

}
. (24)

Particularly, the exponential bisector for α = 1 is determined in terms of the dual Kullback–Leibler
divergence, while the mixture bisector for α = −1 is determined in terms of the Kullback–Leibler
divergence.

Then, we can generalize the notion of Chernoff points suggested by [12] as follows.

Definition 3. Two types of generalized Chernoff points are given by the intersection points with parameter α:

CP(α)
I (pθ′ , pθ′′) = G(α)(pθ′ , pθ′′) ∩ Bi(−α)(pθ′ , pθ′′),

CP(α)
II (pθ′ , pθ′′) = G(α)(pθ′ , pθ′′) ∩ Bi(α)(pθ′ , pθ′′).

Thus, the Chernoff points already proposed in previous works can be recovered by setting α = ±1
in Definition 3.

The existence of these intersection points is assured by the intermediate value property of the
determining Equation (24), since replacing θ by θ′ and θ′′, respectively, we get two opposite inequalities
due to the non-negativity of the α-divergence.

While the uniqueness can be proven for an exponential family model if α = ±1 (see [12]), we
conjecture it still holds for general cases but this is not pursued in the present paper.

To elucidate what we have mentioned earlier about the application of the original Chernoff point
(CP(1)

I in our notation) to the binary Bayesian hypothesis testing problem, we present here the upper
bound of the probability of error of the Bayesian decision suggested by [21] as

exp (−DKL(pθ∗ ‖ pθ′)) = exp (−DKL(pθ∗ ‖ pθ′′)) , (25)

where pθ∗ denotes the Chernoff point CP(1)
I (pθ′ , pθ′′).

The overlapping case of the two classes of generalized Chernoff points is given by α = 0. For the
multinomial and negative multinomial model, by comparing the 0-divergence, i.e., squared Hellinger
distance, with the Fisher-Riemannian geodesic distance presented in Section 3.1, we find that the
generalized Chernoff point CP(0)

I (pθ′ , pθ′′) = CP(0)
II (pθ′ , pθ′′) is exactly the unique Fisher-Riemannian

geodesic midpoint between pθ′ and pθ′′ within both models.
Next, we summarize some specific results about Chernoff points for both models as follows.
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4.1.1. Multinomial Model

For the multinomial modelMN , although the geodesic equation of the α-geodesic can be explicitly
given in general cases, there are simple closed-form geodesic expressions at least for α = ±1.

Proposition 3. The exponential and mixture geodesics connecting two probability distributions pθ′ and pθ′′ of
the multinomial modelMN are given by

G(1)(pθ′ , pθ′′) =

{
pθ(t) ∈ MN

∣∣∣∣∣ θi(t) =
(
θ′i
)1−t (

θ′′i
)t

∑n
i=0
(
θ′i
)1−t (

θ′′i
)t , i = 0, . . . , n, t ∈ [0, 1]

}
,

G(−1)(pθ′ , pθ′′) =
{

pθ(t) ∈ MN
∣∣ θi(t) = (1− t) θ′i + t θ′′i , i = 0, . . . , n, t ∈ [0, 1]

}
.

Proof. As already mentioned, the exponential and mixture geodesics can be easily obtained by the
linear interpolation of the natural and expectation parameters by Equations (4) and (5), respectively.

By using the expressions of α-divergences presented in Proposition 1, the α-bisectors are directly
obtained as follows.

Proposition 4. The α-bisectors between pθ′ and pθ′′ within the multinomial model MN are given by the
following equations:

Bi(α)(pθ′ , pθ′′) =

{
pθ ∈ MN

∣∣∣∣∣ n

∑
i=0

θ
1−α

2
i

[
(θ′i)

1+α
2 − (θ′′i )

1+α
2

]
= 0

}
, α 6= ±1,

Bi(1)(pθ′ , pθ′′) =

{
pθ ∈ MN

∣∣∣∣∣ n

∑
i=0

(
θ′i − θ′′i

)
log θi =

n

∑
i=0

(
θ′i log θ′i − θ′′i log θ′′i

)}
,

Bi(−1)(pθ′ , pθ′′) =

{
pθ ∈ MN

∣∣∣∣∣ n

∑
i=0

θi log
θ′i
θ′′i

= 0

}
.

Combining the previous two propositions, we have the following result about the determining
equations for the four particular Chernoff points with α = ±1.

Theorem 5. The determining equations for the Chernoff points with α = ±1 of pθ′ and pθ′′ within the
multinomial model MN are expressed in terms of the argument t ∈ [0, 1] of the corresponding geodesics
as follows:

1. For CP(1)
I (pθ′ , pθ′′),

n

∑
i=0

(
θ′i
)1−t (

θ′′i
)t log

θ′i
θ′′i

= 0;

2. For CP(−1)
I (pθ′ , pθ′′),

n

∑
i=0

(
θ′i − θ′′i

)
log
[
(1− t) θ′i + t θ′′i

]
=

n

∑
i=0

(
θ′i log θ′i − θ′′i log θ′′i

)
;

3. For CP(1)
II (pθ′ , pθ′′),

t =
DKL(pθ′′ ‖ pθ′)

DKL(pθ′ ‖ pθ′′) + DKL(pθ′′ ‖ pθ′)
;

4. For CP(−1)
II (pθ′ , pθ′′),

t =
DKL(pθ′ ‖ pθ′′)

DKL(pθ′ ‖ pθ′′) + DKL(pθ′′ ‖ pθ′)
.



Entropy 2020, 22, 306 11 of 16

With the Kullback–Leibler divergence DKL given by Propositon 1, the two points of second type
CP(1)

II and CP(−1)
II are already in an explicit form. Whereas, the two points of first type CP(1)

I and

CP(−1)
I are to be solved by using some numerical methods such as simple bisection as suggested

in [12].
For the Fisher-Riemannian geodesic midpoint, we have the following result.

Theorem 6. The Fisher-Riemannian geodesic midpoint pθ∗ between pθ′ and pθ′′ in the multinomial modelMN
is determined by

θ∗i =

(√
θ′i +

√
θ′′i

)2

2 + 2 ∑n
i=0

√
θ′i θ
′′
i

, i = 0, . . . , n.

Proof. Let F be the isometry given by Equation (8). Denote the linear midpoint of the two image
points F(θ′)+F(θ′′)

2 by x∗ ∈ Rn+1. Then we normalize x∗ to the n-sphere as u∗ = 2
√

N x∗/‖ x∗‖e, where
the Euclidean norm ‖x‖e = (∑n

i=0 x2
i )

1/2 is used. At last, the required midpoint is obtained as the
inverse image point θ∗ = F−1(u∗).

To illustrate these notions for the multinomial modelMN , we present a numerical example as
follows. The two parameters θ′ and θ′′ are taken as the empirical probability vectors of the first and
second 100 decimal digits of π, respectively. The parameters of these two points and the resulting
Chernoff points are summarized in Table 2.

Table 2. Chernoff points of multinomial model (%).

0 1 2 3 4 5 6 7 8 9

θ′ 8.00 8.00 12.00 11.00 10.00 8.00 9.00 8.00 12.00 14.00
θ′′ 11.00 12.00 12.00 8.00 12.00 12.00 7.00 4.00 13.00 9.00
CP(1)

I 9.49 9.91 12.17 9.53 11.10 9.91 8.06 5.76 12.66 11.41
CP(−1)

I 9.52 10.02 12.00 9.48 11.01 10.02 7.99 5.98 12.51 11.47
CP(1)

II 9.48 9.89 12.17 9.55 11.08 9.89 8.07 5.78 12.65 11.44
CP(−1)

II 9.54 10.05 12.00 9.46 11.02 10.05 7.98 5.95 12.51 11.44
CP(0) 9.51 9.97 12.08 9.51 11.05 9.97 8.02 5.87 12.58 11.44

As we can see, the pair of points CP(1)
I and CP(1)

II admits a certain similarity between them as

both of them lie on the same exponential geodesic, and so does the pair of points CP(−1)
I and CP(−1)

II
as both of them lie on the same mixture geodesic. Whereas, the Fisher-Riemannian geodesic midpoint
CP(0) can be considered as a medium version among these Chernoff points.

To be mentioned particularly, the upper bound of the probability of error given by Equation (25)
is obtained via CP(1)

I as being equal to 0.9862N . Thus, we can choose sufficiently large N so that the
probability of error is less than some threshold value.

4.1.2. Negative Multinomial Model

For the negative multinomial model NMM, again we can give the geodesic expressions for the
exponential and mixture cases.

Proposition 5. The exponential and mixture geodesics connecting two probability distributions pθ′ and pθ′′ of
the negative multinomial model NMM are given by

G(1)(pθ′ , pθ′′) =
{

pθ(t) ∈ NMM

∣∣∣ θi(t) =
(
θ′i
)1−t (

θ′′i
)t , i = 1, . . . , n, t ∈ [0, 1]

}
,
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G(−1)(pθ′ , pθ′′) =

pθ(t) ∈ NMM

∣∣∣∣∣∣∣ θi(t) =
(1− t) θ′i

θ′0
+ t θ′′i

θ′′0
1−t
θ′0

+ t
θ′′0

, i = 1, . . . , n, t ∈ [0, 1]

 .

Proof. By using Equations (11) and (12), the exponential and mixture geodesics can be easily obtained
by the linear interpolation of the natural and expectation parameters, respectively.

By using the expressions of α-divergences presented in Proposition 2, the α-bisectors are directly
obtained as follows.

Proposition 6. The α-bisectors between pθ′ and pθ′′ within the negative multinomial model NMM are given
by the following equations:

Bi(α)(pθ′ , pθ′′) =

{
pθ ∈ MN

∣∣∣∣∣ n

∑
i=1

θ
1−α

2
i [(

θ′i
θ′0
)

1+α
2 − (

θ′′i
θ′′0
)

1+α
2 ] = (θ′0)

− 1+α
2 − (θ′′0 )

− 1+α
2

}
,

Bi(1)(pθ′ , pθ′′) =

{
pθ ∈ NMM

∣∣∣∣∣ n

∑
i=1

(
θ′i
θ′0
− θ′′i

θ′′0
) log θi =

n

∑
i=0

(
θ′i
θ′0

log θ′i −
θ′′i
θ′′0

log θ′′i )

}
,

Bi(−1)(pθ′ , pθ′′) =

{
pθ ∈ NMM

∣∣∣∣∣ n

∑
i=0

θi log
θ′i
θ′′i

= 0

}
.

Combining the previous two propositions, we have the following result about the determining
equations for the four particular Chernoff points with α = ±1.

Theorem 7. The determining equations for the Chernoff points with α = ±1 of pθ′ and pθ′′ within the negative
multinomial model NMM are expressed in terms of the argument t ∈ [0, 1] of the corresponding geodesics as
follows:

1. For CP(1)
I (pθ′ , pθ′′),

log
θ′0
θ′′0

+
n

∑
i=1

(
θ′i
)1−t (

θ′′i
)t
(

log
θ′i
θ′′i
− log

θ′0
θ′′0

)
= 0;

2. For CP(−1)
I (pθ′ , pθ′′),

n

∑
i=1

(
θ′i
θ′0
− θ′′i

θ′′0
) log

(1− t) θ′i
θ′0
+ t θ′′i

θ′′0
1−t
θ′0

+ t
θ′′0

=
n

∑
i=0

(
θ′i
θ′0

log θ′i −
θ′′i
θ′′0

log θ′′i );

3. For CP(1)
II (pθ′ , pθ′′),

t =
DKL(pθ′′ ‖ pθ′)

DKL(pθ′ ‖ pθ′′) + DKL(pθ′′ ‖ pθ′)
;

4. For CP(−1)
II (pθ′ , pθ′′),

t =
DKL(pθ′ ‖ pθ′′)

DKL(pθ′ ‖ pθ′′) + DKL(pθ′′ ‖ pθ′)
.

As can be seen, the two points of second type CP(1)
II and CP(−1)

II are in the same explicit form as
before, except that the Kullback–Leibler divergence DKL is given by Proposition 2. And again, the two
points of first type CP(1)

I and CP(−1)
I can be solved by using numerical methods.

For the Fisher-Riemannian geodesic midpoint, we have the following result being complementary
to the previous one.
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Theorem 8. The Fisher-Riemannian geodesic midpoint pθ∗ between pθ′ and pθ′′ in the negative multinomial
model NMM is determined by

θ∗i =

[
(θ′0)

−1/2 (
θ′i
)1/2

+ (θ′′0 )
−1/2 (

θ′′i
)1/2(

θ′0
)−1/2

+
(
θ′′0
)−1/2

]2

, i = 1, . . . , n.

Proof. Let F be the isometry given by Equation (15). Denote the linear midpoint of the two image
points F(θ′)+F(θ′′)

2 by x∗ ∈ R1,n. Then we normalize x∗ to the n-hyperbola as u∗ = 2
√

M x∗/‖ x∗‖m,
where the Minkowski norm ‖x‖m = (x2

0 − ∑n
i=1 x2

i )
1/2 is used. At last, the required midpoint is

obtained as the inverse image point θ∗ = F−1(u∗).

A numerical illustration for the negative multinomial model NMM is presented as follows. The
two parameters θ′ and θ′′ are taken as the empirical probability vectors of the decimal digits of π

within the first and second 10 appearances of “0”, respectively. The parameters of these two points
and the resulting Chernoff points are summarized in Table 3.

Table 3. Chernoff points of negative multinomial model (%).

0 1 2 3 4 5 6 7 8 9

θ′ 8.62 8.62 12.93 11.21 9.48 7.76 8.62 6.90 13.79 12.07
θ′′ 10.99 12.09 10.99 6.59 14.29 12.09 6.59 4.40 12.09 9.89
CP(1)

I 10.99 10.11 11.98 8.73 11.50 9.56 7.60 5.58 12.96 10.99
CP(−1)

I 9.73 10.25 12.02 9.04 11.74 9.79 7.67 5.72 12.99 11.05
CP(1)

II 10.91 10.00 12.04 8.87 11.36 9.43 7.66 5.66 13.01 11.06
CP(−1)

II 9.80 10.35 11.96 8.90 11.88 9.92 7.61 5.65 12.94 10.98
CP(0) 10.36 10.18 12.00 8.89 11.62 9.67 7.63 5.65 12.98 11.02

Again, the pair of points CP(1)
I and CP(1)

II admits a certain similarity between them, and so does

the pair of points CP(−1)
I and CP(−1)

II . Whereas, the Fisher-Riemannian geodesic midpoint CP(0) serves
as a medium version among these Chernoff points.

The upper bound of the probability of error given by Equation (25) is obtained via CP(1)
I as being

equal to 0.8789M. Thus, sufficiently large M need to be chosen so that the probability of error is less
than some threshold value.

4.2. Karcher Means of Multiple Points

A natural generalization of the Fisher-Riemannian geodesic midpoint between two points is given
by the Karcher mean among multiple points.

LetM be a metric space and S be a set of points onM. Define a criterion function f :M→ R by

f (x) :=
1

2 |S| ∑
p∈S

d(x, p)2,

where d(·, ·) is the distance function and |S| is the number of points of S. If the minimizer of the
function f exists and is unique, then it is called the Karcher mean of S onM. If d is a Riemannian metric
onM, then the negative gradient vector field with respect to f is found to be the usual average of the
corresponding points in the tangent space ([1]):

−∇ f (x) =
1
|S| ∑

p∈S
exp−1

x (p), (26)
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where exp−1
x is the inverse of the Riemannian exponential map at x. In view of this, the Karcher mean

can be alternatively understood as a point at which the above vector field vanishes.
The Karcher mean may be not unique unless all points are located on a geodesically convex region.

For example, there are infinitely many geodesic midpoints between two antipodal points on a sphere.
However, for model spaces, such as open half-sphere and hyperbolic space, there are existing results
to assure the existence and uniqueness of Karcher mean ([22]). Thus, by virtue of Theorem 1 and
Theorem 2, we conclude that the concept of a Karcher mean is well-defined on the multinomial and
negative multinomial models.

Now, we focus ourselves on the computation of the Karcher mean on these two models. The
Karcher mean of two points admits a closed-form expression as the Fisher-Riemannian geodesic
midpoint presented previously, but for multiple points, we can only expect to obtain a numerical
solution of the Karcher mean.

By virtue of Equation (26), there is a Riemannian gradient iteration algorithm with a locally
superlinear convergence in general ([23]):

xi+1 = expxi

(
1
|S| ∑

p∈S
exp−1

xi
(p)

)
.

However, this general algorithm is difficult to apply in practice unless proper representations of
the models are derived. In our case, as we have prepared enough geometric representation results
within the multinomial and negative multinomial models in Section 3, we still have to address two
practical issuses: the choice of initial points and the computation of Riemannian exponential map expxi

and its inverse exp−1
xi

.

4.2.1. Initial Points

Let S be a set of parameters to be averaged in either the model MN or NMM, we present a
heuristic approach motivated by the proof of Theorem 1 and Theorem 2 to provide an initial point
choice. The main procedure is presented as follows (here N = M = 1 is assumed as basic ideas are
unchanged up to scale):

1. Set the average of isometry images x∗ := 1
|S| ∑θ∈S F(θ);

2. Set the normalized vector u∗ := 2 x∗/‖ x∗‖; the parameter of the initial point is given by θ∗ :=
F−1(u∗).

For the modelMN , the isometry F is given by Equation (8), and the norm ‖ · ‖ is the Euclidean
norm ‖ · ‖e in the proof of Theorem 1. For the model NMM, the isometry F is given by Equation (15),
and the norm ‖ · ‖ is the Minkowski norm ‖ · ‖m in the proof of Theorem 2.

4.2.2. Computation of Riemannian Exponential and its Inverse

Within each of the model MN and NMM (again N = M = 1 is assumed), the Riemannian
exponential and its inverse map can be computed in an easy-to-manipulate way. Except for the
isometry F and the norm ‖ · ‖ being given as before, we also need to set 〈·, ·〉 by 〈x, y〉 = ∑n

i=0 xiyi as
the Euclidean inner product for the modelMN and by 〈x, y〉 = x0y0 − ∑n

i=1 xiyi as the Minkowski
inner product for the model NMM.

To compute exp−1
θ (ξ), we have the following steps:

1. Set a tangent vector by orthogonal projection

x := F(ξ)− F(θ) 〈F(ξ), F(θ)〉/4;
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2. Scale the vector by geodesic distance

u := d(θ, ξ) x/‖x‖,

where the geodesic distance d(·, ·) is given by Equation (9) for MN and by Equation (16) for
NMM.

Thus, we use the resulting vector u to represent exp−1
θ (ξ).

To compute expθ(u), we need to:

1. Set the angle α := ‖u‖/2;
2. ForMN , express the corresponding point on the sphere

x := F(θ) cos α + 2 ‖u‖−1 u sin α,

for NMM, express the corresponding point on the hyperbola

x := F(θ) cosh α + 2 ‖u‖−1 u sinh α;

3. Set the parameter by isometry ξ := F−1(x).

Thus, the resulting parameter ξ is obtained as expθ(u).

4.2.3. Numerical Example

Now, we test the above algorithm for solving Karcher mean by a numerical example. The data set S
is chosen as containing 10 empirical probability vectors from the first to the tenth 100 decimal digits of π.

To illustrate the goodness of each iteration, we present the norm of the negative gradient vector
field at each iteration point via Equation (26), as shown in Table 4. Within each model, we present
in column (a) the iteration results starting with the initial points chosen as the aforementioned way,
while in column (b), the iteration results with initial points chosen as the usual Euclidean means are
provided for comparison.

Table 4. Iteration for the Karcher mean illustrated by ‖−∇ f ‖ .

MN NMM
Iteration (a) (b) (a) (b)

0 8.21× 10−5 1.07× 10−2 3.05× 10−3 1.85× 10−1

1 4.62× 10−7 6.28× 10−5 1.74× 10−4 1.20× 10−2

2 2.68× 10−9 3.90× 10−7 1.01× 10−5 7.88× 10−4

As we can see, all of the four iterations shown here converge rapidly within the first two steps,
and our aforementioned choice for initial points is apparently better than the usual choice of Euclidean
means. In conclusion, this example, to some extent, shows the effectiveness of our computation scheme
for the Karcher mean within the multinomial and negative multinomial models.

5. Conclusions

In this paper, we have studied various information geometric properties based on divergence
functions for the multinomial and negative multinomial models. Some pre-derived expressions of
fundamental geometric quantities, such as Fisher-Riemannian metric, isometric representation and
α-curvature, have made it clear that these two models can be put together into a complementary view.
With the aid of these geometric structures, we investigate the average problems on these two models.
We have proposed the conception of generalized Chernoff points as midpoints of two points and
presented some determining equations for them. Then we provided an effective computation scheme
for the Karcher mean of multiple points on the multinomial and negative multinomial models.
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