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Abstract: Nonlinear non-equilibrium thermodynamic relations have been constructed based on
the generalized Ehrenfest–Klein model. Using these relations, the behavior of the entropy and its
production in time at arbitrary deviations from equilibrium has been studied. It has been shown that
the transient fluctuation theorem is valid for this model if a dissipation functional is treated as the
thermodynamic entropy production.
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1. Introduction

The behavior of the entropy in nonequilibrium processes has become of interest immediately after
the introduction of this function of state. The greatest scientists of the past: L. Boltzmann, A. Poincaré,
J. Gibbs, L. Onsager, I. Prigogine, etc. actively studied this issue. Currently, interest in entropy and
its change has been refreshed after the proof of the so-called fluctuation theorems for a number of
nonequilibrium systems [1–4].

The behavior of the entropy near equilibrium is well studied within linear nonequilibrium
thermodynamics. This theory, which arose initially as a generalization of experimental facts, is now
firmly included in the foundation of modern science [5–10]. This is largely facilitated by its consistency
not only with experiment, but also with a number of classical models (a weakly non-equilibrium
rarefied gas satisfying the Boltzmann equation, etc.). However, classical linear nonequilibrium
thermodynamics is inapplicable if deviations from equilibrium are arbitrary in magnitude. For this
case, development of so-called nonlinear nonequilibrium thermodynamics is currently of interest.
Being extremely demanding in theory and practice, nonlinear nonequilibrium thermodynamics has not
yet been completed and is under active development [7–13]. For this reason, it is extremely interesting
and important to test and match the foundations of nonlinear nonequilibrium thermodynamics with
classical nonlinear statistical models. One such model was proposed at the beginning of the 20th century
by Paul and Tatiana Ehrenfest [14]. This model was introduced in order to solve the irreversibility
paradoxes that arose during the scientific discussion between Boltzmann on the one hand and Poincaré
with like-minded scientists on the other hand. Advantages of the model is its relative simplicity,
the possibility of an exact analytical solution, and its applicability to describe the relaxation of the
system with an arbitrary initial deviation from equilibrium. Subsequently, this model was used as a
foundation for a whole class of precisely solvable models known as urn models (or dog–flea models).
These models are different in complexity and purposes. In particular, in recent works [15–17], diverse
variations of Ehrenfest urn models are presented as a tool for studying various theories of equilibrium
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and nonequilibrium statistical physics. In this work, the historically first modification of the Ehrenfest
model proposed by Klein [18] is considered.

The aim of this work is to develop nonlinear nonequilibrium thermodynamics based on the
generalized Ehrenfest–Klein model and to apply it to study the time evolution of the entropy at
arbitrary deviations from equilibrium, as well as to test the validity of the fluctuation theorem for
this model.

2. Ehrenfest–Klein Model

The essence of the model is as follows [18]. Let a system of N balls consist of two subsystems
(boxes) A and B containing n and N–n balls, respectively. A ball is randomly transferred either from A
to B with a probability p or from B to A with a probability q. Obviously, there is a nonzero probability
that any transfer does not occur at any time (at each discrete step) (with the probabilities 1–p and 1–q
for the subsystems A and B, respectively).

The total number of balls in both subsystems A and B is fixed; therefore, it is sufficient to follow
the number of balls in one of two subsystems, e.g., the subsystem A. The transition from n0 to nτ balls
in the subsystem A in τ discrete steps is denoted as (n0→nτ; τ). The transition can be implemented
in various ways; thus, the total probability is the sum of the probabilities of individual trajectories.
Under the assumption that the subsystem A is “prepared” in advance with the number of balls n0, this
relation can be written as

P(n0 → nτ; τ) =
∑

j

ω j(n
j
1

∣∣∣∣n0) ·ω j(n
j
2

∣∣∣∣n j
1) · . . . ·ω j(nτ

∣∣∣∣n j
m−1) , (1)

where j is the index of a particular trajectory and ω are the transition probabilities:

ω j
(
n j
τ+1

∣∣∣∣n j
τ

)
=


q N−n j

τ
N , n j

τ+1 = n j
τ + 1,

p n j
τ

N , n j
τ+1 = n j

τ − 1,

1− q N−n j
τ

N − p n j
τ

N , n j
τ+1 = n j

τ.

(2)

An exact solution of this model is known [18]. This solution leads in particular to the following
average number of balls in the subsystem A in τ steps:

〈
n(τ)

〉
= neq +

(
n0 − neq

)(
1−

p + q
N

)τ
, (3)

where
neq =

q
p + q

N . (4)

If the number of balls in the system is large (N >>1), using the known relation lim
x→0

(1 + x)1/x = e ,

we obtain (
1−

p + q
N

)τ
=

(
1−

p + q
N

)(− N
p+q )·(−

p+q
N )τ

≈ e−
p+q
N τ

and Equation (3) is represented in the form

〈
n(τ)

〉
= neq +

(
n0 − neq

)
e−

p+q
N τ. (5)

Below, we omit angle brackets but remember that we deal with average values.
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3. Physicochemical System Consistent with the Ehrenfest–Klein Model:
Thermodynamic Consideration

We consider a physicochemical system mathematically based on the game model described above.
Let N particles be distributed between subsystems A (with n particles) and B (with N–n particles).
The subsystems are at a constant temperature T and the total number of particles N is constant. Let the
particles in each of the subsystems form an ideal gas and the number of particles in the subsystems
at any time is much larger than unity. Inside any subsystem, the ideal gas is in thermal equilibrium,
whereas the subsystems themselves are not in equilibrium with each other and have different energies
εA and εB.

We assume that a certain analog of a chemical reaction (or phase transformation) occurs between
the subsystems, resulting in the transfer of particles from the subsystem A to the subsystem B. For a
given arbitrary initial distribution of particles, they will be redistributed between the subsystems A
and B until equilibrium values are reached. This flux of particles generates an energy flux between the
system and thermostat because the energy ∆ε should be obtained from the thermostat for the transition
of an individual particle to a higher energy state (A←B). On the contrary, the transition to a lower
energy state (A→B) is accompanied by the transfer of the energy ∆ε from the system to the thermostat.
The transfer of dn particles of the system from one subsystem to the other results in a change in the
entropy dS [10]:

TdS = (εA − εB)dn− (µA − µB)dn, (6)

where µi is the chemical potential.
The transition probabilities p and q are introduced as

p = qe
εA−εB

T , (7)

where it is assumed that εA > εB and the temperature is measured in energy units.
Relation (7) expresses the fact that to pass from the subsystem B to the subsystem A (unlike

the reverse transfer A→B), a particle should overcome an additional energy barrier ∆ε = εA – εB.
The probabilities p and q have the meaning of the rate constants of the direct A→B and reverse A←B
reactions, respectively. The chemical potentials for the ideal subsystems under consideration are
determined in terms of the partial pressures of the components and, consequently, have the form [10]:

µA = µ0A(T, εA) + T ln n,
µB = µ0B(T, εB) + T ln(N − n),

(8)

where µ0A(T,εA) and µ0B(T,εB) are the chemical potentials in the standard state, which satisfy the
relation [10].

µ0A(T, εA) − µ0B(T, εB) = T ln
p
q

. (9)

Using Equations (8) and (9), we represent the difference between the chemical potentials of the
A�B processes in the form:

∆µ = µA − µB = T ln
pn

q(N − n)
. (10)

At equilibrium in the system, ∆µ = 0 and, according to Equation (10), pneq = q(N – neq).
Consequently, the equilibrium concentration neq satisfies the relation (4). Using Equation (10),
we rewrite (6) in the form

dS
dτ

= − ln
pn

q(N − n)
dn
dτ

+ ln
p
q

dn
dτ

. (11)

It is well known that the entropy change rate in the system dS/dτ can be represented in the
form [6,10]:

dS
dτ

= Σ + Js, (12)
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where Js is the reversible part of the entropy increment caused by the energy flux through the boundaries
of the system and Σ is the part of the increment caused by the irreversible processes inside the system,
which is usually referred to as the entropy production.

Since change in the number of particles in the subsystem is accompanied by the energy exchange
Tln(p/q) per particle with the environment (see Equation (7)), the second term in Equation (11)
characterizes the entropy flux exchange between the system and environment when the number
of particles in the subsystem A is changed by dn. This term can be both positive and negative.
The first term in Equation (11) is the product of the difference between the chemical potentials of the
subsystems and change in the number of particles. It is easily seen that this term is always nonnegative.
Indeed, if the transition rate from the subsystem A to the subsystem B is higher than the reverse
rate, the logarithm appears to be positive and the number of particles in the subsystem A decreases
(dn/dτ < 0); on the contrary, if the transition rate from the subsystem A is lower than the reverse
transition rate, the logarithm is negative, but dn/dτ > 0. For the mentioned reasons, the first term in
Equation (11) can be called the entropy production in the system [10]. Thus,

Js = ln
p
q

dn
dτ

, (13)

Σ = − ln
pn

q(N − n)
dn
dτ

. (14)

4. Time Dependence of the Entropy of the System at the Evolution to the Equilibrium State

Using Equations (4), (5), (13) and (14), we write the entropy flux in the form

JS(τ) = −
(p + q)

N

(
n0 − neq

)
e−

p+q
N τ ln

(
N − neq

neq

)
(15)

and the entropy production in the system under consideration as

Σ(τ) =
(p + q)

N

(
n0 − neq

)
e−

p+q
N τ

ln


1 +
(n0−neq)

neq
e−

p+q
N τ

1 +
(neq−n0)

N−neq
e−

p+q
N τ


. (16)

Relations (15) and (16) were derived from the average numbers of particles in the subsystems at
each time (5). An expression similar to Equation (16) can be obtained by considering a chemical reaction
whose rate is proportional to the concentration of a reagent [10]. In this work, the derivation is based
on a particular statistical model rather than on a phenomenological approach [10]. Another statistical
approach resulting in Equation (16) can be found in [19], but presentation in that work was not
appropriate and did not contain any proof.

Figure 1 shows the time dependences of the flux (15) and entropy production (16), as well as their
sum, i.e., the total entropy change. As seen, when εA > εB, an increase in the number of particles in the
subsystem A in time results in the inflow of the entropy into the system Js > 0 at n0 < neq, whereas a
decrease in the number of particles in the subsystem A in time results in the outflow of the entropy
from the system Js < 0 at n0 > nEquation. According to Figure 1, the entropy production is always positive
and tends to zero near equilibrium (t→∞).

The law of relaxation of the entropy production (16) is nonexponential. This expression contains
an additional logarithmic factor. However, if the system is near equilibrium (either at the initial time,
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when n0 is near neq or in the limit t → ∞), the argument of the logarithm is close to unity and the
expansion of Equation (16) in a series gives

Σ(τ) =
(p + q)

N

(
n0 − neq

)2
 N

neq
(
N − neq

) e−
2(p+q)

N τ. (17)
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Figure 2 shows the time dependence of the entropy production (16) and its approximate 
expression (17). It is seen that the approximate expression (17) well describes the entropy production 
(16) if the initial deviation from equilibrium is small. On the contrary, if the initial deviation from 
equilibrium is large, the approximate expression (17) is inconsistent with (16) at small times. 
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Figure 2. Entropy production according to Equation (16) (solid line) and Equation (17) (dashed line) 
versus the time τ. (a) n0 = 0.2·× 108, (b) n0 = 0.01·× 108. N = 2·× 108, p = 0.8, q = 0.2, neq = 0.4·× 108. 

The entropy production is usually represented as the product of the thermodynamic forces X 
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Figure 1. (Solid line) Total entropy change and its components: (dash-dotted line) entropy flux Js(τ) and
(dashed line) entropy production Σ(τ). (a) n0 = 0.1 × 108, (b) n0 = 1 × 108. p = 0.8, q = 0.2, neq = 0.4 × 108

(see Equation (4)), N = 2 × 108.

Figure 2 shows the time dependence of the entropy production (16) and its approximate expression
(17). It is seen that the approximate expression (17) well describes the entropy production (16) if the
initial deviation from equilibrium is small. On the contrary, if the initial deviation from equilibrium is
large, the approximate expression (17) is inconsistent with (16) at small times.
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The entropy production is usually represented as the product of the thermodynamic forces X and
fluxes J [6]. According to Equations (14) and (16) we have

J(τ) =
dn
dτ

= −
(p + q)

N

(
n0 − neq

)
e−

p+q
N τ, (18)
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X = − ln
pn

q(N − n)
= − ln


1 +

(n0−neq)
neq

e−
p+q
N τ

1 +
(neq−n0)

N−neq
e−

p+q
N τ

. (19)

It follows from Equations (18) and (19), that the relation between the force and flux X(J) is
strongly nonlinear:

X(J) = ln
1 + N

(N−neq)(p+q)
J

1− N
neq(p+q) J

. (20)

The relation becomes linear near equilibrium (t→∞; J→0). Indeed, the expansion of the logarithm
in Equation (20) into a Taylor series in a small flux yields

X(J) = ln
(
1 + N

(N−neq)(p+q)
J
)
− ln

(
1− N

neq(p+q) J
)
≈

N
(N−neq)(p+q)

J + N
neq(p+q) J =

= N2

(p+q)(N−neq)neq
J = p+q

pq J.
(21)

As seen from the linearized relation, the parameter (p + q)/(pq) is an analog of the kinetic coefficient
in the model under consideration.

Examples of X(J) dependences are shown in Figure 3. As seen, the dependences near equilibrium
(J→0) are well described by a linear law, but the dependence far from equilibrium becomes nonlinear.
The figure shows that the thermodynamic force tends to infinity when the flux approaches a certain
Jmax value. The Jmax values can be found from Equations (4) and (20), by equating the argument of the
logarithm to zero. As a result, for the case Figure 3a, we obtain

Jmax =
neq(p + q)

N
= q, (22)

whereas for the case of Figure 3b, we have

|Jmax| =

(
N − neq

)
(p + q)

N
= p. (23)
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Figure 3. Relation between the thermodynamic force and flux X(J) for the system with N =2 × 108

and p = 0.7. (a) Initial number of particles in the subsystem B is larger than that in the subsystem A
(X > 0, J > 0); (b) the initial number of particles in the subsystem A is larger than that in the subsystem
B (X < 0, J < 0, the axes present absolute values).
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Thus, the Ehrenfest–Klein system implies a fundamental restriction on the maximum possible
flux Jmax, which is due to the finiteness and constancy of the total number of particles N in the system.
A picture similar to Figure 3 is also observed in the case of p < q.

5. Test of the Validity of the Fluctuation Theorem

Fluctuation theorem connects measure of dissipation (dissipation functional) of direct and reverse
process. There are several formulations of the fluctuation theorem, which are different in form but
common in idea. Originally, fluctuation relation is obtained for a thermostatted shear-driven fluid
using numerical simulations by Evans et al. [1,3]. Fluctuation theorem was first proven for a large
class of systems using concepts from chaotic dynamics by Gallavotti and Cohen. Later the fluctuation
theorem was extended for systems with diffusive and Langevin dynamics, Markovian stochastic
systems, etc. [2,4]. One of the widely known formulations is the transient fluctuation theorem (TFT)
which was found by Evans and Searles [1]. TFT applies to systems evolving over finite time τ between
two arbitrary states that are not necessarily required to be in equilibrium. According to the transient
fluctuation theorem in simplest form applicable for further consideration [1,3],

P(Ω)

P(−Ω)
= eΩτ, (24)

where P(± Ω) is the probability of observing a trajectory with a dissipation functional equal to
± Ω. A positive value characterizes the direction of the process to equilibrium, whereas a negative
value indicates the development of the system to a larger deviation from equilibrium. The transient
fluctuation theorem is often considered as a generalization of the second law of thermodynamics
because it is applicable to the systems evolving in time at any deviation from equilibrium.

A specific form of the dissipation functional is determined by the properties of the system
under study. Under certain assumptions (such as a large number of particles, the presence of local
equilibrium, small nonequilibrium, etc.), it is supposed that the dissipation functional is reduced to the
thermodynamic entropy production [3]. However, this is not necessarily true. In particular, it was
demonstrated in [20] that the identification of the dissipation functional with the thermodynamic
entropy production is incorrect in the case of the Schlögl model under the conditions of local equilibrium
and a large number of particles. For a number of systems described by the nonlinear Langevin equation,
the authors of [21] also showed that the identification of the dissipation functional with the entropy
production in the transient fluctuation theorem leads to invalid results. In this work, we analytically test
the possibility of identifying the dissipation functional Ω with the thermodynamic entropy production
in the transient fluctuation theorem in application to the Ehrenfest–Klein model.

We consider the variation of the number of particles in the subsystem A from n1 to n2 in a time
interval τ, where n1 and n2 correspond to two locally equilibrium states and satisfy Equation (5). Let n1

< n2 < neq for definiteness; i.e., as the number of particles in the subsystem A increases, the system
approaches equilibrium. For this model, Equation (24) can be represented in the form

ln
P(n1 → n2; τ)
P(n2 → n1; τ)

=

τ∫
0

Σ(t)dt, (25)

where the numerator and denominator of the left-hand side include the probabilities of the process
approaching the system to equilibrium and deviating it from equilibrium, respectively.

We transform the right-hand side of Equation (25). According to Equation (14),

τ∫
0

Σ(t)dt = −

n2∫
n1

ln
pn

q(N − n)
dn = N ln

N − n1

N − n2
+ n2 ln

neq(N − n2)(
N − neq

)
n2

+ n1 ln

(
N − neq

)
n1

neq(N − n1)
. (26)
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We now calculate the left-hand side of Equation (25). In one step, only one elementary event
occurs; therefore, Equation (1) always contains exactly τ factors that are the probabilities (rates) of
elementary transitions. The transition process is a chain of locally equilibrium states. According to
Equation (1), only some possible trajectories at a given τ value can ensure the necessary transition
∆n = n2 – n1. Moreover, for the transition probabilities in τ steps to be nonzero, the inequality τ ≥ ∆n
should be satisfied. Let τ = ∆n + ξ, where ξ is some non-negative integer. The total number of steps
τ can be represented as the sum of ∆n + h steps in which the transitions from B to A occur, h steps
in which the transitions from A to B occur, and ξ – 2h steps in which the numbers of particles in the
subsystems do not change. Since ξ – 2h ≥ 0, h can be from zero to hmax = int(ξ/2) (where int(x) means
the integer part of the number x).

We determine the possible number of trajectories corresponding to the (n1→n1 + ∆n; τ)
transitions. The entire set of trajectories can be divided into hmax + 1 groups specified by the h
values. Within one group, the trajectories differ only in the sequence of elementary events from
Equation (1). Thus, the number of trajectories in a group with a certain h value will be determined by
the number of all possible ways to combine all the elementary transitions (ignoring the steps at which
the number of particles does not change), i.e., ∆n + h steps with transitions from B to A and h steps
with transitions from A to B: (

∆n + ξ
∆n + 2h

)
=

(∆n + ξ)!
(∆n + 2h)!(ξ− 2h)!

. (27)

The total number of trajectories is given by the sum

M =

hmax∑
h=0

(∆n + ξ)!
(∆n + 2h)!(ξ− 2h)!

. (28)

In the Ehrenfest–Klein model, a transition from any state with a certain number of particles
to any other one is possible: “forbidden” trajectories are absent, and each trajectory corresponds
to the conjugate one, in which all the same states are passed in τ steps, but in the reverse order.
Consequently, the total numbers of trajectories corresponding to the (n1→ n1 + ∆n; τ) and (n1 + ∆n→
n1; τ) transitions are equal to each other.

We now consider the structure of a single transition trajectory (n1→n1+∆n; τ = ∆n+ξ). For clarity,
we consider the example in Figure 4. In Equation (1), individual factors can be combined into two
groups according to their value. The first group consists of ∆n factors that correspond to a sequential
transition through the states n1, n1+1, n1+2, . . . , n1+∆n in ∆n steps, i.e., (n1→n1+∆n; ∆n). This group
of factors is the same for any trajectory (n1→n1+∆n; τ = ∆n+ξ). In Figure 4, such factors are shown in
gray. The second group includes the remaining elementary transitions, each of which is "compensated"
by the reverse transition; as a result, they return the system to its initial state rather than transfer it
to new states. In Figure 4, such factors are indicated in white. A similar consideration is applicable
to the reverse transition (n1+∆n→n1; τ = ∆n+ξ). Since each elementary transition from the second
group of states is necessarily accompanied by a reverse one, the entire set of such transitions is not
sensitive to the direction of the global transition (in the forward or reverse direction). They are also
fully compensated, and, in fact, return the system to its initial state. Therefore, the factors from the
second groups for the direct j and reverse j* trajectories completely coincide with each other (this is
clearly seen in Figure 4) and they can be taken out of the summation sign and canceled when writing
the left-hand side of the fluctuation theorem.
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Figure 4. Example of the complete set of trajectories of the transition (n→n + 1; τ = 3) and the set
of conjugate trajectories (marked by *) for the reverse transition (n + 1→n; τ = 3). The schemes of
elementary transitions and their probabilities are indicated for each trajectory at every time instant. It is
seen that each of the trajectories of a transition (direct or reverse) contains the identical part marked
in white.
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As a result, using Equation (1), the left-hand side of Equation (25) can be written in the form

ln
P(n1 → n1 + ∆n; τ = ∆n + ξ)

P(n1 + ∆n→ n1; τ = ∆n + ξ)
= ln

M∑
j=1

∆n factors︷     ︸︸     ︷{
group 1

}
×

ξ( j) factors︷      ︸︸      ︷{
group 2

}
j

M∑
j∗=1

{
group 1

}∗︸      ︷︷      ︸
∆n factors

×
{
group 2

}∗
j∗︸       ︷︷       ︸

ξ( j∗) factors

, (29)

where: {
group 1

}
=

( q
N

)∆nn1+∆n−1∏
k=n1

(N − k),

{
group 1

}∗ = ( p
N

)∆n n1+∆n∏
k∗=n1+1

k∗,{
group 2

}
j ≡

{
group 2

}∗
j∗ .

(30)

After simple transformations of Equations (29) and (30), we have

ln
P(n1 → n1 + ∆n; τ = ∆n + ξ)

P(n1 + ∆n→ n1; τ = ∆n + ξ)
= ln

(
q(N − n1) × q(N − (n1 + 1)) × . . .× q(N − (n1 + ∆n))

p(n1 + ∆n) × p(n1 + (∆n− 1)) × . . .× p(n1 + 1)

)
. (31)

The right-hand-hand side of Equation (31) can be represented in the shorter form

ln

(q
p

)∆n

·
(N − n1)!

(N − (n1 + ∆n))!
·

n1!
(n1 + ∆n)!

. (32)

Assuming that the number of particles in all considered stages of evolution is much larger than
unity, we transform Equation (32) using the Stirling formula and Equation (4):

∆n ln q
p + (N − n1) ln(N − n1) − (N − (n1 + ∆n)) ln(N − (n1 + ∆n)) + n1 ln n1 − (n1 + ∆n) ln(n1 + ∆n). (33)

After a series of simple transformations, Equation (33) exactly coincides with Equation (26).
Thus, at the introduced restrictions (a large number of particles in the subsystems and the

hypothesis of local equilibrium at each step), the transient fluctuation theorem turns out to be valid for the
Ehrenfest–Klein model if the thermodynamic entropy production is used as the dissipation functional.

6. Conclusions

Nonequilibrium thermodynamic relations have been derived for the simplest physicochemical
system considered within the classical Ehrenfest–Klein model. A nonlinear relation between the
thermodynamic flux (reaction rate) and force (affinity) valid for an arbitrary deviation from equilibrium
has been obtained. A nonexponential time dependence of the entropy production when the system
approaches equilibrium is an interesting result of this work. The validity of the transient fluctuation
theorem, where the thermodynamic entropy production is used as a dissipation functional, has been
tested. The results obtained will be useful for the development of nonlinear nonequilibrium
thermodynamics, which is still incomplete, unlike linear thermodynamics. The derived relations could
be applied to different systems with two energy levels (two-level systems). For example, consideration
of the interaction of radiation with matter and membrane transport processes (in particular, biological
ones) is very promising.
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