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Abstract: The interaction between the solar wind and the Earth’s magnetosphere–ionosphere system
is very complex, being essentially the result of the interplay between an external driver, the solar
wind, and internal processes to the magnetosphere–ionosphere system. In this framework, modelling
the Earth’s magnetosphere–ionosphere response to the changes of the solar wind conditions requires
a correct identification of the causality relations between the different parameters/quantities used
to monitor this coupling. Nowadays, in the framework of complex dynamical systems, both
linear statistical tools and Granger causality models drastically fail to detect causal relationships
between time series. Conversely, information theory-based concepts can provide powerful model-free
statistical quantities capable of disentangling the complex nature of the causal relationships. In this
work, we discuss how to deal with the problem of measuring causal information in the solar
wind–magnetosphere–ionosphere system. We show that a time delay of about 30–60 min is
found between solar wind and magnetospheric and ionospheric overall dynamics as monitored
by geomagnetic indices, with a great information transfer observed between the z component of
the interplanetary magnetic field and geomagnetic indices, while a lower transfer is found when
other solar wind parameters are considered. This suggests that the best candidate for modelling
the geomagnetic response to solar wind changes is the interplanetary magnetic field component Bz.
A discussion of the relevance of our results in the framework of Space Weather is also provided.

Keywords: information theory; time series analysis; solar wind-magnetosphere–ionosphere system;
space weather

1. Introduction

The response of the Earth’s magnetosphere–ionosphere system to the changes of solar wind
and interplanetary medium conditions is the central issue of the studies in the framework of Space
Weather. In the past decades a large amount of work has been done to provide new insights within
the Space Weather discipline, e.g., the investigation, characterization and forecasting of physical
processes operating in the near-Earth environment and their relation with the solar activity [1].
These include large-scale induced currents [2,3], geomagnetic storms and substorms [4], solar
energetic particle events [5–7], and so on [8]. All these phenomena have a common driver which
is the solar activity evolving on both temporal and spatial scales across the heliosphere, reaching
the Earth’s boundary regions and interacting with the near-Earth electromagnetic environment.
However, both the magnetosphere and the ionosphere do not passively respond to the solar
wind variability but evidence a wide range of processes which are characterized by nonlinear

Entropy 2020, 22, 276; doi:10.3390/e22030276 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6303-5329
https://orcid.org/0000-0002-3403-647X
https://orcid.org/0000-0001-6096-0220
https://orcid.org/0000-0001-7288-1087
http://dx.doi.org/10.3390/e22030276
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 276 2 of 13

and multiscale features [9,10]. Indeed, the magnetosphere–ionosphere system is characterized
by both externally-driven and purely-internal processes (eventually triggered by interplanetary
conditions changes), which are generally characterised by different spatial and temporal scales:
while coherent intermittent internal processes occur on short timescales (τ < 100–200 min), the
directly-driven processes from the solar wind occur on longer timescales [11,12]. In other words, the
magnetosphere–ionosphere system displays a very complex dynamics, showing features that are due
to the interplay of the external (interplanetary) driving and internal processes. The inherent complexity
of the magnetosphere–ionosphere system dynamics manifests in scale-invariant and near-criticality
features [13,14] that are not directly connected to the external driving. This suggests that the whole
information content of the solar wind variability is not sufficient for a correct characterization and
forecasting of the magnetosphere–ionosphere system; this aspect is clearly evidenced by the difficulty
of reproducing the short timescale dynamics of geomagnetic indices only using solar wind plasma
parameters [15].

Before the development of the Space Weather field almost all concepts from information theory
were largely proposed, currently employed in several fields (e.g., [11,16–19]). These concepts
mostly deal with the characterization of the behaviour of complex systems, e.g., physical systems
consisting of many interacting components whose collective behavior is not the simple extrapolation
of single-component one, with the main goal of understanding interactions among system components
(e.g., [16,19]). Indeed, interacting systems and sub-systems can mutually exchange information,
influence each other, and causally influence another one [19], thus proper measures of the information
flow and of causality relationships were introduced (e.g., [20,21]). Moreover, complexity observed in
such systems is not only related to their multi-component nature but also stems on their multiscale
nature, in terms of both spatial and temporal scales, as well as on their nonlinear character. Thus,
correctly investigating the multiscale nature of dynamical systems, properly identifying the main
physical processes, and detecting cross-scale causal interactions (e.g., identify input and output system
variables) are currently a challenge for dynamical system theory and play a crucial role for the Space
Weather framework (e.g., [11,15,21]).

Recently, new approaches based on information theory concepts were proposed and successfully
applied to unveil some features of the complex dynamics of the Earth’s magnetosphere–ionosphere
system in response to solar wind changes [11,17,22–25]. These methods have been shown to be very
successful in untangling some useful relations between different quantities. Motivated by these
very promising results, in this work we present an application of these novel information theory
approaches for understanding and characterizing the magnetosphere–ionosphere system response to
interplanetary and solar wind changes. In particular, we present an application of the transfer entropy to
the investigation of the relevant solar wind parameters affecting the multiscale fluctuations observed
in the geomagnetic activity as monitored by SYM-H and AE indices. A time delay from 30 min up
to ∼ 60 min is found between solar wind and magnetospheric overall dynamics as monitored by
geomagnetic indices, in agreement with the typical response time of the Earth’s magnetosphere to
the solar wind changes (e.g., [11]). Moreover, a great information transfer can be observed between
the z component of the interplanetary magnetic field and geomagnetic indices, while a lower transfer
is found when the Perreault-Akasofu coupling function, ε, is considered. This suggests that the best
candidate for modelling the geomagnetic response to solar wind changes is the interplanetary magnetic
field component Bz.

2. Data

For our analysis we use solar wind parameters obtained from spacecraft located at the L1
Lagrangian point (∼220 RE from the Earth) and shifted to the nose of the bow shock (∼14 RE from the
Earth) as well as geomagnetic indices derived from ground-based observatories. Specifically, from
the OMNI HR1 database, freely retrievable from the Space Physics Data Facility (SPDF) Coordinated
Data Analysis Web (CDAWeb) interface at https://cdaweb.gsfc.nasa.gov/index.html/, we select
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5-minute time resolution data related to the solar wind bulk speed and to the interplanetary magnetic
field components (in the GSM reference frame). By means of these parameters we evaluate the
Perreault-Akasofu coupling function [26], well-known as ε parameter, which is defined as

ε = C0 v B2 sin4
(

θc

2

)
, (1)

being C0 = 4π
µ0
`2

0 a dimensional constant (`0 = 7RE), v the solar wind bulk speed, B the interplanetary
magnetic field magnitude, and θc the projection of the polar angle of the interplanetary magnetic field
onto the y–z plane [11,26]

θc =


tan−1

(∣∣∣ By
Bz

∣∣∣) , if Bz > 0;

π − tan−1
(∣∣∣ By

Bz

∣∣∣) , if Bz < 0;
π
2 , if Bz = 0.

(2)

We consider these two parameters, i.e., Bz and ε, since they are directly connected to the energy, mass,
and momentum transfers from the interplanetary space to the near-Earth electromagnetic environment
(e.g., [1,10,11,26]). Indeed, when Bz is southward oriented, solar wind particles are favourite to enter
the magnetosphere via magnetic reconnection at the flanks of it, while when ε increases this means
that a huge amount of energy is transferred to the magnetosphere.

Moreover, we also consider in our analysis geomagnetic indices data being representative of both
magnetospheric and ionospheric current systems as the ring current and the auroral electrojects [27,28].
In particular we use the 5-minute time resolution low-latitude geomagnetic index SYM-H [27] which
describes the geomagnetic disturbances at mid-latitudes in terms of symmetric (SYM) disturbances of
the horizontal component (H) of the magnetic field near the equator, monitoring the variability of the
magnetospheric ring current, and the auroral electroject (AE) indices, at 5 minutes resolution, obtained
from high-latitude observations of the variability of the geomagnetic H component, monitoring the
activity of the auroral electrojects [28].

As time interval for our study we collect a dataset consisting of the previous quantities/parameters
over a 1-year period from 1 January 2000 to 1 January 2001, which corresponds to the maximum phase
of solar cycle 23, such to have a considerable and sufficient statistics for correctly computing the
information measures (e.g., the number of data points is N =105,408).

The selected period (see Figure 1) is characterized by the occurrence of several geomagnetic storms
and substorms, e.g., sudden increases of the intensity of the geomagnetic field due to enhancements in
both magnetospheric and ionospheric current systems as a response to solar wind magnetic structures
impacting the boundaries of the magnetosphere (e.g., [1,11]). One of these intervals corresponds
to the well-known Bastille Day geomagnetic storm [12], e.g., the fifth strongest geomagnetic storm
of the 23th solar cycle (Kpmax = 9, https://www.spaceweatherlive.com/en/auroral-activity/top-
50-geomagnetic-storms/solar-cycle/23), associated with a fast moving Halo CME on 14 July 2000
at 10:54 UT, with a high transit time velocity (>750 km/s), and related to a forward interplanetary
shock, observed at the L1 Lagrangian point on 15 July 2000 at 14:15 UT. This solar eruption was
also accompanied by the emission of solar energetic particles observed at the Earth as an intense
event [29]. During geomagnetic storms SYM-H tends to more negative values, meaning that the
ring current is enhanced, and its evolution is firstly characterized by a rapid decreases (e.g., the
storm main phase), followed by a very long and slow increase (e.g., the recovery phase) up to the
unperturbed state (e.g., [12,27]). Conversely, geomagnetic substorms consist of explosive releases of
stored magnetotail energy in the form of energetic particles and strong plasma flow. This results in
an enhancement of auroral electrojets, followed by the excitation of discrete auroras becoming more
intense and widespread, corresponding to larger values of the AE index (e.g., [11,28]). However, the
great part of our dataset obviously consists of geomagnetically quiet periods, e.g., time intervals in
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which all currents residing in the near-Earth space are in their baseline levels (i.e., SYM-H ∼ 0 nT, AE
< 100 nT).
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Figure 1. (From top to bottom) Solar wind parameters (magnetic field component Bz, ε parameter) and
geomagnetic indices (AE and SYM-H), during the period 1 January 2000–1 January 2001, corresponding
to the maximum phase of the 23th solar cycle.

3. Methods

Information theory methods are based upon the conceptualization of the information carried by a
signal X in terms of the randomness associated to the probability distribution over the accessible states.
In particular, the information content/randomness of a signal is provided by the Shannon entropy [30],
defined as,

H(X) = −
N

∑
i=1

p(xi) log p(xi), (3)

where x is a variable which represents the possible outcomes of the process X and p(xi) is the
probability associated to the event xi.

In the framework of information theory, more general and interesting functionals can be defined,
as the Kullback-Leibler distance DKL, i.e.,

DKL(p(x)||q(x)) =
N

∑
i=1

p(xi) log
p(xi)

q(xi)
, (4)

where p(x) and q(x) are the observed distribution and a reference one for the outcomes of the process
X, respectively, and the conditioned Kullback-Leibler distance CDKL, i.e.,

CDKL(p(y|x)||q(y|x)) =
N

∑
i=1

M

∑
j=1

p(xi, yj) log
p(yj|xi)

q(yj|xi)
, (5)

where p(y|x) and q(y|x) are the observed and reference conditioned distributions, respectively. These
two functionals are usually named as Kullback-Leibler divergences (KLDs). It can be proven (e.g., [31])
that these measures satisfy the Jensen’s inequality, i.e., Equations (4) and (5) are always greater or equal
to zero. In particular, the equality is satisfied if and only if p and q are equal, and the KLDs allow
to define the distance from a suitable null hypothesis. For example, if we consider the hypothesis
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of statistical independence, e.g., being X and Y two random processes then p(x, y) = p(x)p(y), the
so-called mutual information I(X, Y) can be derived from Equation (4) in the multivariate case as

I(X, Y) =
N

∑
i=1

M

∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
, (6)

providing I(X, Y) a general measure of correlation between two signals/processes since no hypothesis
are made on the nature of both X and Y (e.g., [31]). More rigorously I(X, Y) quantifies the information
shared between the two processes, i.e., the amount of inference on a process based on the knowledge
of an other.

In real world physical systems, the maximal information shared between two processes, X and
Y, could occur with a time delay τ; thus, it may be that I(X, Y) = 0 in Equation (6) only because
we are not considering the time delay between the two processes. In order to take into account the
possible presence of a delay in the shared information, one can introduce a time delay τ in Equation (6),
defining the so-called delayed mutual information (DMI), i.e.,

DMIX,Y(τ) = I(Xt, Yt+τ) (7)

where τ is a time-lag. In such a way, using the DMI one can check for the occurrence of a certain
shifting in time of correlation between X and Y, where the latter is shifted back in time. It is important
to remark that the occurrence of a time lag in the maximal information shared between two processes
has not to be confused as a measure of causality, that in such a framework should be identified only in
the case of a directed flow of information. In other words, by only looking for correlation we are not
able to conclude that τ∗ is the causal time; indeed, the existence of a correlation time may be simply
due to a common driver and only the past history of X does not improve the predictability of the
τ-shifted Y.

In order to overcome this problem, Schreiber [32] introduced the concept of transfer entropy as the
deviation from the generalized Markov condition

p(yt+τ |y(k)
t , x(l)t ) = p(yt+τ |y(k)

t ). (8)

being y(k)
t = (yt, yt−1, ..., yt−k+1) and x(l)t = (xt, xt−1, ..., xt−l+1). The transfer entropy TX→Y(τ) is based

on transition probabilities, thus containing information about the dynamics underlying the processes
X and Y [32], and can be obtained by inserting Equation (8) in Equation (5)

TX→Y(τ) = ∑
yi+τ ,y(k)

i ,x(l)i

p(yi+τ , y(k)
i , x(l)i ) log

p(yi+τ |y
(k)
i , x(l)i )

p(yi+τ |y
(k)
i )

, (9)

accounting for the information flow from X to Y [32]. This means that, if TX→Y 6= 0, the knowledge of
the past history of X improve the prediction about the future of Y.

In the case of systems exhibiting dynamical complexity, the information exchange between
variables is often bidirectional (feedback loop) [33]. For this reason, in our analyses we prefer to
compute the excess of transfer entropy in terms of the difference between the transfer entropies from X
to Y and vice versa, i.e.,

∆TX↔Y(τ) = TX→Y(τ)− TY→X(τ). (10)

Thus, if ∆TX↔Y(τ) = 0 it means that the information flow from X to Y is balanced by the
information flow from Y to X, so that Equation (10) is useful in order to unveil which variable, if
there, dominates the interaction. This excess of transfer entropy in one specific direction represents a
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net information flow from one process to the other, which could support the possibility of a causality
relation, i.e., a direct influence of a process on the other.

The numerical computation of the above quantities requires a certain attention. Indeed, in many
situations when the state space of the processes under investigation is not extensively sampled, the
application of histogram- and/or kernel-based methods for the evaluation of the joint distributions
can produce fake results. To avoid as much as possible these computational problems, we follow the
recipe described in reference [34] for the mutual information, which has been also implemented for the
computation of the transfer entropy [35].

Clearly the algorithms are prone to the finite-size sample effects, as well as numerical ones (for
instance, the transfer entropy will never be exactly equal to zero). For this reason, we need to estimate
the bias by following a null-hypothesis test, thus for each computation of the net information flow we
create the probability distribution of the values assuming the null hypothesis (absence of information
flow) by means of surrogate time series [36]. The critical value to reject the null hypothesis is selected in
correspondence of the value corresponding to the 95% of the probability distribution for the surrogates.

4. Results

We start our analysis on the information flow between solar wind parameters and geomagnetic
indices by computing the direct and reverse flow of information between the different quantities.
Figure 2 shows the transfer entropy TX→Y(τ) derived from each couple of time series and for both
directions of the information flow (e.g., X
 Y).

Figure 2. The transfer entropy TX→Y(τ) derived from each couple of time series and for both directions
of the information flow. (a) Bz 
 AE, (b) Bz 
 SYM-H, (c) ε 
 AE, and (d) ε 
 SYM-H. The gray
shaded area marks the 95% significance level.

The results highlight that there is a strong, clear, and significant information transfer from
both solar wind parameters (i.e., Bz and ε) to both geomagnetic indices (i.e., SYM-H and AE).
This is clearly an expected result, being the interplanetary medium variability the driver of the
magnetosphere–ionosphere system dynamics. However, a different time delay τ is found for the two
geomagnetic indices, while no significant variations are found for the two solar wind parameters.
Indeed, a time delay τ ∼ 30 min is found when solar wind information flows to the auroral ionosphere
as monitored by AE-index, while τ ∼ 60 min is found for the information transfer from solar wind to
the inner and equatorial magnetospheric regions of the ring current as measured by SYM-H index.
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The first delay (τ ∼ 30 min) is consistent with the response of the auroral electrojets, according to
particles injection process, plus the time that the disturbance takes to reach the ionosphere from bow
shock (e.g., [11,23]); the second time delay (τ ∼ 60 min) is instead consistent with the characteristic
times of convection processes (a slower phenomenon), plus the travel time of the disturbance to
reach the inner magnetosphere from bow shock (e.g., [11,37]). The inverse directions, i.e., the
information transfer from past values of geomagnetic indices to solar wind parameters, do not show
any characteristic time delay. This could be interpreted as a fake result due to the inherent complex
nature of the magnetospheric dynamics, which manifests in an unreasonable information transfer
from the magnetosphere–ionosphere system to the near-Earth interplanetary medium. Forcing the
interpretation of this reverse flow of information from the magnetosphere to the solar wind, the only
possible conjecture that one could make is that the changes of the magnetospheric cavity and the
nearby interplanetary medium could partially reflect in the interplanetary quantities. Clearly, this
is a simple conjecture in an holistic point of view, which is very difficult to support on the basis of
our simple analysis. Furthermore, larger values of the transfer entropy TX→Y(τ) are found when
information flows from the solar wind parameters to SYM-H, while a lower information transfer is
found for AE.

Whereas storms are surely correlated to the strong intensification of plasma flow (in terms of
an intensification of the large plasma convection) inside the inner magnetosphere, substorms are
phenomena, which are more related to the mechanisms through which the constantly flowing energy
from the Sun is dissipated (e.g., [1,9–11]). When this coupling is strengthened by the arrival of a
solar wind perturbation, both the intensity and the frequency of substorms, as monitored by auroral
electrojet indices, grow up. Furthermore, it has been widely reported that the ion particle population
of the ring current is due to both the solar wind and the terrestrial ionosphere. Indeed, although
the quiescent ring current is mainly carried by protons of predominantly solar wind origin, during
magnetic storms, the ionospheric plasma (mainly consisting of oxygen ions O+) is transferred to the
magnetospheric regions via field aligned currents (FACs) [38]. This mechanism produces enhancements
of the ring current intensity, especially during the main phase of a geomagnetic storm, also affecting
the characteristic times of the recovery phase, e.g., the decay of the ring current, through charge
exchange and wave-particle scattering loss mechanisms [39]. Thus, although geomagnetic storms are
certainly driven by the solar wind variability and are associated with the enhancements of large-scale
convective processes within the Earth’s magnetosphere, they could also be understood in terms of
frequent and intense collection of substorms [40]. In this view, the coupling between geomagnetic
storms and solar wind variability could be partially indirect, thus suggesting that the storm time
ring current is increasingly terrestrial in origin [41]. This scenario is also supported by information
theory-based results by De Michelis et al. [17], although recently Runge et al. [25], by applying a
multivariate information-theoretic analysis, found no-evidence for a relation between high-latitude
substorm phenomena and low-latitude storms.

In order to deepen this subtle connection, it is helpful to investigate the information exchange
between SYM-H and AE indices and also between Bz and ε. Figure 3 reports the transfer entropy
TX→Y(τ) derived from (a) Bz 
 ε and (b) AE
 SYM-H, respectively.

While it seems that no significant differences are found in the information flows between solar
wind parameters, a clear difference emerges when geomagnetic indices (e.g., SYM-H and AE) are
considered. Although no peaks are found for each transfer entropy, it seems that larger information
is transferred from AE to SYM-H with respect to the inverse direction, e.g., from SYM-H to AE. This
suggests that the internal dynamics of the near-Earth electromagnetic environment is characterized by
an information exchange between the different regions.

To highlight which could be the driving variables in this complex system as well as to investigate
the coupling strength between the different quantities, we evaluate the net information flow ∆TX↔Y(τ)

as the difference of transfer entropies in both the direct and the inverse direction, e.g., ∆TX↔Y(τ) =
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TX→Y(τ)− TY→X(τ). Here, ∆TX↔Y(τ) = 0 means the absence of information flow, while ∆TX↔Y(τ) ≷
0 means that there exists an information flow from X to Y or vice versa.

Figure 3. The transfer entropy TX→Y(τ) derived for (a) Bz 
 ε and (b) AE
 SYM-H, respectively.
The gray shaded area marks the 95% significance level.

Figure 4 shows the net information flow ∆TX↔Y(τ) derived from the coupling between solar
wind parameters and geomagnetic indices.

Figure 4. The net information transfer entropy ∆TX↔Y(τ) derived from the coupling between solar
wind parameters and geomagnetic indices. (a) Bz ↔ AE, (b) Bz ↔ SYM-H, (c) ε ↔ AE, and (d) ε ↔
SYM-H. The gray shaded area marks the 95% significance level.

While ε and Bz are equally significant for AE, it seems that Bz is the most important variable for
driving the behavior of SYM-H. Interestingly, AE seems to respond impulsively to external drivers;
conversely, SYM-H is coupled for much more time, being the net information above the null hypothesis
threshold for all the considered time delays.

Another interesting result seems to emerge when both the solar wind parameters and the
geomagnetic indices are separately investigated by means of evaluating the net information flow
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between the two solar wind parameters (e.g., Bz and ε) as well as between the two geomagnetic indice
(e.g., SYM-H and AE).

Figure 5 shows the net information flow ∆TX↔Y(τ) derived from the coupling between Bz and
ε (a) and between the two geomagnetic indices (b). It is clear that there is no a significant difference
in the net information transfer between solar wind parameters, being ∆TBz↔ε(τ) below the null
hypothesis threshold for almost all time delays. Conversely, the information seems to be transferred
predominantly from AE index to the ring current index (SYM-H), thus suggesting that substorms
could drive the occurrence of storms to a certain extent. This result seems to support the previous
findings by De Michelis et al. [17] and also the physical mechanisms about the ionospheric plasma
outflow during geomagnetic storms suggested by Daglis et al. (e.g., [38,39,41]), although a different
dataset (e.g., the whole year 2000 with respect to the whole year 1981) and a different proxy for the
geomagnetic substorms (AE instead of AL) are considered. We will return on this point in the Section 5.

Figure 5. The net information transfer entropy ∆TX↔Y(τ) derived for (a) Bz ↔ ε and (b) AE↔ SYM-H.
The gray shaded area marks the 95% significance level.

5. Discussion and Conclusions

In Section 4 we have presented the results on the information flow between interplanetary
variables and geomagnetic indices which monitor the Earth’s magnetosphere–ionosphere system.
One of the major outcome of our analysis is the signature of the primary role that the interplanetary
magnetic field Bz component plays in driving the Earth’s overall magnetospheric dynamics, while the
Perrault-Akasofu ε coupling function seems to be less relevant than Bz (e.g., Figures 2 and 3). This
may be interpreted as an evidence of the fact that the more relevant physical phenomenon responsible
for plasma penetration within the magnetospheric boundaries is the magnetic reconnection, which
principally occurs when the IMF is southward oriented. This result is extremely important in the
framework of Space Weather forecast studies and support the feasibility to make predictive models
exclusively based on the IMF field information content (e.g., [42]).

Moreover, it seems that the overall magnetospheric response to the solar wind variability occurs
with a typical time delay of about 60 min, as monitored by the SYM-H index; conversely, the
auroral activity typically enhances within 30 min. This difference can be interpreted in terms of
the more complex dynamics of loading mechanisms of the ring current, which requires long-standing
processes on longer timescales (e.g., [11] and references therein), as a stable convection allowing current
intensification by plasma particle population. Indeed, the magnetospheric response is the result of the
superposition of different processes occurring on a wide range of timescales: the shortest timescales,
mainly related to the impulsive response, manifest into a strong information transfer (in the form of
energy, mass, and momentum) in a short time, while the longer timescales, due to slow processes
(convection, for example), although weaker, seem to dominate the overall information transfer with
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respect to the impulsive response. Conversely, interplanetary medium effects on high-latitude
processes during geomagnetic substorms as monitored by AE-index seem to be characterized by
an overall fast dynamics as justified by the fact that high latitudes are more subject to direct injection
of particles from magnetotail.

Summarizing, our findings suggest that:

1. the solar wind drives both the magnetospheric and ionospheric variabilities as controlled by
the SYM-H and AE indices, respectively. Thus, the solar wind-magnetosphere–ionosphere
system is always connected with the information flow intensifying during strong interplanetary
perturbations;

2. the most relevant variable, in terms of information flow toward SYM-H and AE, is Bz. On the
average, by looking at the τ-shifted history of the interplanetary magnetic field carried by the
solar wind one will be less uncertain about the future temporal variability of the SYM-H index
when τ = 60 min; on the other hand, to model AE index variability one has to look 30 minutes
back in time at Bz;

3. the information flow from AE to SYM-H dominates with respect to the inverse direction. This
means that, on the average, the auroral electrojets inject mass, energy and momentum into the
ring current system in the magnetosphere, so that the information flow is not in a steady-state.
This is an evidence of the fact that the ring current is enhanced by the energy flux coming from
the ionospheric plasma outflows as already observed in reference [38].

These findings are schematised in Figure 6.

✏
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Figure 6. A sketch of the information flow among the different quantities here considered. The
dimension of the arrows and their grey/black intensity indicates the relevance of the information flow.

Comparing our results with previous studies (see, e.g., [17,25]) on a similar subject, we can note
how our results support the recent results by Runge et al. [25] on the main role of Bz in driving the
magnetosphere–ionosphere response to the interplanetary medium variability. Conversely, regarding
the information flow from high-latitude processes to low-latitude ones or vice-versa, our results
seem to support the previous findings by De Michelis et al. [17] on the existence of an average
driving of the ring current by high latitude phenomena. We remark that this possible link between
geomagnetic substorms and storms is also supported by in-situ observations and other physical
considerations [38,40]. The observed discrepancy with results reported in reference [25] could be due
to the fact that here we are considering a different geomagnetic index, AE instead of AL, which is
representative of the overall current flowing in the auroral ionosphere and not only of the westward
electrojet. Moreover, another difference is the time resolution of geomagnetic indices: while we use
5-min resolution, Runge et al. [25] considered a smoothed version of geomagnetic indices at 20-min
resolution. This obviously affects the monitoring of processes occurring on short timescales, being
the auroral electrojects dynamics characterized by impulsive energy-release typically occurring on
short timescales (e.g., [11,13,28,43]). Indeed, up to 60% of the AE-index bursts are characterized by a
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time duration of less than 20 min [13,43], so that the use of data with a temporal resolution of 20 min
could not account for particle energisation that could contribute to the information flow towards the
magnetospheric equatorial currents. This is a very relevant point that could explain the difference
observed on the AE(AL)→SYM-H among this work, Ref. [17] and Runge et al. [25]. Clearly, this point
deserves a more extended analysis on the timing of such an information flow that, however, at the
moment is outside of the scope of this work.

In conclusion, here we have shown the suitability of information theory approaches to infer the
nature of relationships and causal links in the study of the Earth’s magnetosphere–ionosphere system
dynamics in response to interplanetary conditions changes. This approach is very promising in the
field of Space Weather and will be pursued in forthcoming works by considering more events for
enriching the statistics (e.g., by using an ensemble of geomagnetic storm and substorm periods) as
well as by searching for a better understanding of the hypothesis of substorms-driving mechanism.
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The following abbreviations are used in this manuscript:

AE Auroral Electroject
CDAWeb Coordinated Data Analysis Web
CME Coronal Mass Ejection
DMI Delayed mutual information
GSM Geocentric Solar Magnetospheric System
H Horizontal component
KLD Kullback-Leibler Divergence
M-I Magnetosphere-Ionosphere system
RE Earth radii
SPDF Space Physics Data Facility
SW Solar wind
SYM Symmetric

References

1. Schwenn, R. Space Weather: The Solar Perspective. Living Rev. Sol. Phys. 2006, 3, 2. [CrossRef]
2. Boteler, D.H.; Pirjola, R.J.; Nevanlinna, H. The effects of geomagnetic disturbances on electrical systems at

the Earth’s surface. Adv. Space. Res. 1998, 22, 17. [CrossRef]
3. Tozzi, R.; De Michelis, P.; Coco, I.; Giannattasio, F. A preliminary risk assessment of geomagnetically induced

currents over the Italian territory. Space Weather 2019, 17, 46. [CrossRef]
4. Gonzalez, W.D.; Tsurutani, B.T.; Clúa de Gonzalez, A.L. Interplanetary origin of geomagnetic storms. Space

Sci. Rev. 1999, 88, 529. [CrossRef]
5. Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 1999, 90, 413. [CrossRef]
6. Gopalswamy, N.; Lara, A.; Kaiser, M.L.; Bougeret, J.-L. Near-Sun and near-Earth manifestations of solar

eruptions. J. Geophys. Res. 2001, 106, 25261. [CrossRef]

https://cdaweb.gsfc.nasa.gov/index.html/
http://dx.doi.org/10.12942/lrsp-2006-2
http://dx.doi.org/10.1016/S0273-1177(97)01096-X
http://dx.doi.org/10.1029/2018SW002065
http://dx.doi.org/10.1023/A:1005160129098
http://dx.doi.org/10.1023/A:1005105831781
http://dx.doi.org/10.1029/2000JA004025


Entropy 2020, 22, 276 12 of 13

7. Cliver, E.W.; Svalgaard, L. The 1859 Solar Terrestrial Disturbance And the Current Limits of Extreme Space
Weather Activity. Solar Phys. 2004, 224, 407. [CrossRef]

8. Daglis, I.; Baker, D.; Kappenman, J.; Panasyuk, M.; Daly, E. Effects of space weather on technology
infrastructure. Space Weather 2004, 2, S02004.

9. Tsurutani, B.; Sugiura, M.; Iyemori, T.; Goldstein, B.E.; Gonzalez, W.D.; Akasofu, S.-I.; Smith, E.J. The
nonlinear response of AE to the IMF Bs driver: A spectral break at 5 hours. Geophys. Res. Lett. 1990, 17, 279.
[CrossRef]

10. Klimas, A.J.; Vassiliadis, D.; Baker, D.; Roberts, D. The organized nonlinear dynamics of the magnetosphere.
J. Geophys. Res. 1996, 101, 13089. [CrossRef]

11. Alberti, T.; Consolini, G.; Lepreti, F.; Laurenza, M.; Vecchio, A.; Carbone, V. Timescale separation in the solar
wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. 2017, 122,
4266–4283. [CrossRef]

12. Alberti, T.; Consolini, G.; De Michelis, P.; Laurenza, M.; Marcucci, M.F. On fast and slow Earth’s
magnetospheric dynamics during geomagnetic storms: a stochastic Langevin approach. J. Space Weather
Space Clim. 2018, 8, A56. [CrossRef]

13. Consolini, G. Self-organized criticality: A new paradigm for the magnetotail dynamics. Fractals 2002, 10,
275–283. [CrossRef]

14. Uritsky, V.M.; Klimas, A.J.; Vassiliadis, D.; Chua, D.; Parks, G.D. Scale- free statistics of spatiotemporal
auroral emissions as depicted by POLAR UVI images: The dynamic magnetosphere is an avalanching
system, J. Geophys. Res. 2002, 107, 1426; (SMP 7-1 – SMP 7-11). [CrossRef]

15. Consolini, G.; Alberti, T.; De Michelis, P. On the Forecast Horizon of Magnetospheric Dynamics: A
Scale-to-Scale Approach. J. Geophys. Res. 2018, 123, 9065–9077. [CrossRef]

16. Donner, R.V.; Zou, Y.; Donges, J.F.; Marwan, N.; Kurths, J. Recurrence networks–a novel paradigm for
nonlinear time series analysis. New J. Phys. 2010, 12, 033025. [CrossRef]

17. De Michelis, P.; Consolini, G.; Materassi, M.; Tozzi, R. An information theory approach to the storm-substorm
relationship. J. Geophys. Res. 2011, 116, A08225. [CrossRef]

18. Jajcay, N.; Hlinka, J.; Kravtsov, S.; Tsonis, A.A.; Palus, M. Time scales of the European surface air temperature
variability: The role of the 7-8 year cycle. Geophys. Res. Lett. 2016, 43, 902–909. [CrossRef]

19. Palus, M.; Krakovska, A.; Jakubik, J.; Chvostekova, M. Causality, dynamical systems and the arrow of time.
Chaos 2018, 28, 075307. [CrossRef]

20. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.
Econometrica 1969, 37, 424. [CrossRef]

21. Palus, M.; Vejmelka, M. Directionality of coupling from bivariate time series: How to avoid false causalities
and missed connections. Phys. Rev. E 2007, 75, 056211. [CrossRef] [PubMed]

22. Materassi, M.; Ciraolo, L.; Consolini, G.; Smith, N. Predictive Space Weather: An information theory
approach. Adv. Space. Res. 2011, 47, 877–885. [CrossRef]

23. Johnson, J.R.; Wing, S. External versus internal triggering of substorms: An information-theoretical approach.
Geophys. Res. Lett. 2014, 41, 5748–5754. [CrossRef]

24. Wing, S.; Johnson, J.R.; Camporeale, E.; Reeves, G.D. Information theoretical approach to discovering solar
wind drivers of the outer radiation belt. J. Geophys. Res. 2016, 121, 9378–9399. [CrossRef]

25. Runge, J.; Balasis, G.; Daglis, I.A.; Papadimitriou, C.; Donner, R. Common solar wind drivers behind
magnetic storms-magnetospheric substorm dependency. Sci. Rep. 2018, 8, 16987. [CrossRef]

26. Perreault, P.; Akasofu, S.-I. A study of geomagnetic storms. Geophys. J. Roy. Astron. Soc. 1978, 54, 547.
[CrossRef]

27. Iyemori, T. Storm-time magnetospheric currents inferred from midlatitude geomagnetic field variations. J.
Geomagn. Geoelectr. 1990, 42, 1249. [CrossRef]

28. Davies, T.N.; Sugiura, M. Auroral electroject activity index AE and its universal time variations. J. Geophys.
Res. 1966, 71, 785. [CrossRef]

29. Laurenza, M.; Alberti, T.; Cliver, E.W. A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme
Solar Proton Events. Astrophys. J. 2018, 857, 107. [CrossRef]

30. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
31. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley Series in Telecommunications and

Signal Processing; Wiley-Interscience: Hoboken, NJ, USA, 2006; p. 748, ISBN 978-0471241959.

http://dx.doi.org/10.1007/s11207-005-4980-z
http://dx.doi.org/10.1029/GL017i003p00279
http://dx.doi.org/10.1029/96JA00563
http://dx.doi.org/10.1002/2016JA023175
http://dx.doi.org/10.1051/swsc/2018039
http://dx.doi.org/10.1142/S0218348X02001397
http://dx.doi.org/10.1029/2001JA000281
http://dx.doi.org/10.1029/2018JA025952
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1029/2011JA016535
http://dx.doi.org/10.1002/2015GL067325
http://dx.doi.org/10.1063/1.5019944
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1103/PhysRevE.75.056211
http://www.ncbi.nlm.nih.gov/pubmed/17677152
http://dx.doi.org/10.1016/j.asr.2010.10.026
http://dx.doi.org/10.1002/2014GL060928
http://dx.doi.org/10.1002/2016JA022711
http://dx.doi.org/10.1038/s41598-018-35250-5
http://dx.doi.org/10.1111/j.1365-246X.1978.tb05494.x
http://dx.doi.org/10.5636/jgg.42.1249
http://dx.doi.org/10.1029/JZ071i003p00785
http://dx.doi.org/10.3847/1538-4357/aab712
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x


Entropy 2020, 22, 276 13 of 13

32. Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [CrossRef] [PubMed]
33. Wibral, M.; Pampu, N.; Priesemann, V.; Siebenhühner, F.; Seiwert, H.; Lindner, M.; Lizier, J. T.; Vicente, R.

Measuring Information-Transfer Delays. PLoS ONE 2013, 8, e55809. [CrossRef] [PubMed]
34. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.

[CrossRef] [PubMed]
35. Kraskov, A.; Stögbauer, H.; Andrzejak, R.G.; Grassberger, P. Hierarchical clustering using mutual information.

Europhys. Lett. 2005, 70, 278. [CrossRef]
36. Schreiber, T.; Schmitz, A. Surrogate time series. Phys. D 2000, 142, 346–382. [CrossRef]
37. Lyons, L.R.; Blanchard, G.T.; Samson, J.C.; Lepping, R.P.; Yamamoto, T.; Moretto, T. Coordinated observations

demonstrating external substorm triggering. J. Geophys. Res. 1997, 102, 27039–27051. [CrossRef]
38. Daglis, I.A.; Axford, W.I.; Livi, S.; Wilken, B.; Grande, M.; Søraas, F. Auroral ionospheric ion feeding of the

inner plasma sheet during substorms. J. Geophys. Geoelectr. 1994, 48, 729. [CrossRef]
39. Daglis, I.A.; Thorne, R.M.; Baumjohann, W.; Orsini, S. The terrestrial ring current: Origin, formation, and

decay. Rev. Geophys. 1999, 37, 407. [CrossRef]
40. Akasofu, S.-I. Several controversial issues on substorms. Space Sci. Rev. 2004, 113, 1. [CrossRef]
41. Daglis, I.A. Terrestrial agents in the realm of space storms: Missions study oxygen ions. Eos Trans. AGU

1997, 24, 245–251. [CrossRef]
42. Pallocchia, G.; Amata, E., Consolini, G.; Marcucci, M.F.; Bertello, I. Geomagnetic Dst index forecast based on

IMF data only. Annales Geophys. 2006, 24, 989–999. [CrossRef]
43. Consolini, G.; Kretzschmar, M. Thermodynamics of rare events and impulsive relaxation events in the

magnetospheric substorm dynamics. Planetary Space Sci. 2007, 55, 2244–2250. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.85.461
http://www.ncbi.nlm.nih.gov/pubmed/10991308
http://dx.doi.org/10.1371/journal.pone.0055809
http://www.ncbi.nlm.nih.gov/pubmed/23468850
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ncbi.nlm.nih.gov/pubmed/15244698
http://dx.doi.org/10.1209/epl/i2004-10483-y
http://dx.doi.org/10.1016/S0167-2789(00)00043-9
http://dx.doi.org/10.1029/97JA02639
http://dx.doi.org/10.5636/jgg.48.729
http://dx.doi.org/10.1029/1999RG900009
http://dx.doi.org/10.1023/B:SPAC.0000042938.57710.fb
http://dx.doi.org/10.1029/97EO00162
http://dx.doi.org/10.5194/angeo-24-989-2006
http://dx.doi.org/10.1016/j.pss.2007.05.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data
	Methods
	Results
	Discussion and Conclusions
	References

