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Abstract: In the previous work of the author, a non-trivial symmetry of the relative entropy in the
information geometry of normal distributions was discovered. The same symmetry also appears in
the symplectic/contact geometry of Hilbert modular cusps. Further, it was observed that a contact
Hamiltonian flow presents a certain Bayesian inference on normal distributions. In this paper, we
describe Bayesian statistics and the information geometry in the language of current geometry in
order to spread our interest in statistics through general geometers and topologists. Then, we foliate
the space of multivariate normal distributions by symplectic leaves to generalize the above result of
the author. This foliation arises from the Cholesky decomposition of the covariance matrices.

Keywords: information geometry; poisson structure; symplectic structure; contact structure; foliation;
Cholesky decomposition

1. Introduction

Suppose that a smooth manifold U is embedded in the space of positive probability densities
defined on a fixed domain. Then, the relative entropy defines a separating premetric D : U×U → R≥0

on U. Here a premetric on U is a non-negative function on U ×U vanishing along the diagonal set
∆ ⊂ U ×U, and it is separating if it vanishes only at ∆. Its jet of order 3 at ∆ induces a family of
differential geometric structures on U, which is the main subject of the information geometry. There is
a large body of literature on the information geometry (see [1], [2] and references therein). It is worth
noting that another “canonical” choice of premetric other than the above D is discussed in [3].

In the case where U is the space of univariate normal distributions, the half plane H = R×R>0 3
(m, s) presents U, where m denotes the mean and s the standard deviation. Since the convolution of
two normal densities is a normal density, it induces a product ∗ on H called the convolution product.
On the other hand, since the pointwise product of two normal densities is proportional to a normal
density, it induces another product · on H called the Bayesian product. Their expressions are

(m, s) ∗ (m′, s′) =
(

m + m′,
√

s2 + s′2
)

, (m, s) · (m′, s′) =

(
ms′2 + m′s2

s2 + s′2
,

ss′√
s2 + s′2

)
. (1)

In the previous work of the author ([4]), a Fourier-like transformation is defined as the

diffeomorphism F̂ : H→ H sending (m′, s′) to (M, S) =
(
−m′

s′2
,

1
s′

)
. It is an involution interchanging

the two operations ∗ and ·. Accordingly, the stereograph f : H×H→ R>0 of the above D is defined by

f : (m, s, M, S) 7→1
2

(
M
S

+ sS
m
s

)2
+

1
2
(sS)2 − 1

2
− ln(sS)

=
1
2

{
(m−m′)2 + s2

s′2
− 1 + ln

s2

s′2

}
= D((m, s), (m′, s′)).

(2)
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The flow (m, s, M, S) 7→ (etm, ets, e−t M, e−tS) (t ∈ R) preserves f as well as the graph F ⊂ H×H of F̂.
The same symmetry appears in the contact/symplectic geometry related to the algebraic geometry
of Hilbert modular cusps. Moreover, there exists a contact Hamiltonian flow whose restriction to the
graph F presents a certain Bayesian inference. Its application appears in [5].

In this paper, we describe Bayesian statistics in the language of current geometry in order to share
the problems among general geometers and topologists. Then, generalizing the above result of the
author, we foliate the space of multivariate normal distributions by using the Cholesky decomposition
of the covariance matrices and define on each leaf the Fourier-like transformation, the stereograph of
the relative entropy, and the contact Hamiltonian flow presenting a Bayesian inference. The ultimate
aim of this research is to construct a Bayesian statistical model of space-time on which everything
learns by changing its inner distribution along the leaf.

2. Results

2.1. Symplectic/Contact Geometry

Current geometry does not heavily use tensor calculus. Instead, it uses (exterior) differential forms,
which can be integrated along cycles, pulled-back under smooth maps, and differentiated without
affine connections. In symplectic/contact geometry, the readers must be familiar with differential
forms. Then, this subsection is the minimal summary of definitions. For the details, refer to [6].

A (positive) symplectic form on an oriented 2n-manifold is a closed 2-form ω satisfying ωn > 0,
where ωn = ω ∧ · · · ∧ω. If the orientation is reversed, the 2-form ω becomes a negative symplectic
form. In either case, a symplectic form ω identifies a vector field X with an exact 1-form dH through the
one-to-one correspondence defined by Hamilton’s equation ιXω = −dH. Here ι denotes the interior
product. Then, X is called a Hamiltonian vector field of the primitive function H (+constant). The flow
generated by X preserves the symplectic form ω. Namely, the Lie derivative LXω(= ιXdω + dιXω)

vanishes. A Lagrangian submanifold is an n-manifold which is immersed in a symplectic 2n-manifold
so that the pull-back of the symplectic form vanishes. The word “symplectic” is a calque of “complex”.
Indeed, there exists an almost complex structure J which is compatible with a given symplectic
structure, i.e., for which the composition ω(·, J·) is a Riemannian metric. In the case where J is
integrable, ω is called a Kähler form of the complex manifold.

On the other hand, a (positive) contact form on an oriented (2n− 1)-manifold N is a 1-form η

satisfying η ∧ (dη)n−1 > 0. A (co-oriented) contact structure on N is the conformal class of a contact
form. It can be presented as the oriented hyperplane field ker η. The product manifold R(3 t)× N
carries the exact symplectic form d(etη). Take a function h on N. Let X be the Hamiltonian vector
field of the function eth defined on the product manifold R× N. Then, the push-forward Y of X under
the projection of R× N to the second factor is well-defined. The vector field Y is called the contact
Hamiltonian vector field of the function h on N. The pair of the equations η(Y) = h and η ∧ LYη = 0
uniquely determines Y. A Legendrian submanifold is an (n− 1)-manifold which is immersed in a
contact (2n− 1)-manifold so that the pull-back of the contact form vanishes.

2.2. Bayesian Statistics

Suppose that any point y of a smooth manifold M equipped with a volume form dvol presents a
positive probability density or probability ρy : W → R>0 defined on a (possibly discrete) measurable
space W, where ρy depends smoothly on y, and ρy 6= ρy′ for y 6= y′ ∈ M. Let V be the space of positive
volume forms with finite total volume on M. Take an arbitrary element V ∈ V and consider it as
the initial state of the mind M of an agent. Here W stands for (a part of) the world for the agent.
Finding a datum w ∈W in his world, the agent can take the value ρy(w) as a smooth positive function
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ρw : y 7→ ρy(w) on M, which is called the likelihood of the datum w. Then, he can multiply the volume
form V by ρw > 0 to obtain a new element of V . This defines the updating map

ϕ : W × V 3 (w, V) 7→ ρwV ∈ V . (3)

The “psychological” probability density pV on the mind M defined by pVdvol = V/
∫

M V is
accordingly updated into the density pϕ(w,V) ∝ pVρw, which is called the conditional probability
density given the datum w. Practically, Bayes’ rule on conditional probabilities is expressed as

P(y ∈ ∆y |w ∈ ∆w) =
P(w ∈ ∆w | y ∈ ∆y)

P(w ∈ ∆w)
· P(y ∈ ∆y). (4)

Here P denotes the probability of an event, ∆y (respectively, ∆w) a small portion of M (respectively,
W). Since the state of the world does not depend on the mind of the agent, the probability P(w ∈
∆w) is independent of y, and therefore approximates a constant on M. On the other hand, the
conditional probability P(w ∈ ∆w | y ∈ ∆y) of the datum w approximates a function of y which is

clearly proportional to the above likelihood. This implies that the factor
P(w ∈ ∆w | y ∈ ∆y)

P(w ∈ ∆w)
in the

right-hand side of Bayes’ rule (Equation (4)) is approximately proportional to the likelihood. Thus,
Bayes’ rule (Equation (4)) implies the updating of pV via the formula (Equation (3)). The Bayesian
product · mentioned in the introduction appears in this context. Namely, the variable of the first factor
is the mean y of a normal distribution on W. The density of the normal distribution at the datum w
can be considered as a function of y, which is proportional to a normal distribution on M. Thus the
Bayesian product of normal distributions on M presents the updating of the density of the predictive
mean in the mind of the agent.

The aim of Bayesian updating is practical to many people. Indeed, the aim of the above updating
is the estimation of the mean. Nevertheless, it is quite natural that a geometer multiplies a volume
form by a positive function once he is given them. In this regard, we can say that the aim of Bayesian
updating is a geometric setting of a dynamical system. In particular, a Bayesian updating in the
conjugate prior is at first, simply the iteration of a Bayesian product.

2.3. The Information Geometry

Suppose that a manifold U is embedded in the subset {V ∈ V |
∫

M V = 1} = {pVdvol | V ∈ V}.
Hereafter, we identify the element pVdvol ∈ U with the “psychological” probability density pV .
We call U a conjugate prior for the updating map ϕ if the cone Ũ = {etV | t ∈ R, V ∈ U} satisfies
ϕ(W × Ũ) ⊂ Ũ. (Whether there exists a preferred conjugate prior or not, how to determine the initial
state of the mind is another interesting problem. For example, one may fix the asymptotic behavior of
the state of mind according to the aim of the Bayesian inference and search for the optimal decision of
the initial state. See [7] for an approach to this problem via the information geometry.)

Now we define the “distance” D̃ : Ũ × Ũ → R on Ũ, which satisfies none of the axioms of
distance, by

D̃(V1, V2) =
∫

M
V1 ln

V1

V2
(the relative entropy). (5)

From the convexity of− ln, we see that the restriction D = D̃|U×U
(
≥ − ln

(∫
M V2

)
= 0

)
is a separating

premetric on U, which is called the Kullback–Leibler divergence in information theory. This implies that
the germ of D along the diagonal set ∆ of U×U represents the zero section of the cotangent sheaf of U,
that is, for any point x = (x1, . . . , xn) of any chart of U, the Taylor expansion of D

(
x + 1

2 dx, x− 1
2 dx

)
has no linear terms. Thus the differential dD : TU × TU → R also vanishes on the diagonal set ∆′

of TU × TU. We regard the 1-form on TU represented by the germ of dD along ∆′ as a quadratic
tensor, and denote it by g (note that gx : TxU × TxU → R is linear). It appears as two times the
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quadratic terms
1
2 ∑

i,j
gijdxidxj (gij = gji) in the above Taylor expansion. Of course, it also appears in

the Taylor expansion of D
(

x− 1
2 dx, x + 1

2 dx
)

. Thus it can also be considered as the quadratic terms

of the symmetric sum D
(

x + 1
2 dx, x− 1

2 dx
)
+ D

(
x− 1

2 dx, x + 1
2 dx

)
. The symmetric matrix [gij] is

called the Fisher information in information theory. From the non-negativity of D, we may assume
generically that g is a Riemannian metric. We would like to notice that this construction of Riemannian
metric by means of symmetric sum also works over Ũ. Indeed, we have

D̃(et+ 1
2 dtV, et− 1

2 dtV) + D̃(et− 1
2 dtV, et+ 1

2 dtV) = etdt2 + O(dt3). (6)

Let∇0 be the Levi–Civita connection of g. We write the lowest degree terms in the Taylor expansions of

D
(

x + 1
2 dx, x− 1

2 dx
)
− D

(
x− 1

2 dx, x + 1
2 dx

)
as

1
3 ∑

i,j,k
Tijkdxidxjdxk (Tijk = Tjik = Tikj). This presents

the symmetric cubic tensor T, which can be constructed from the anti-symmetric difference D′(x1, x2) =

D(x1, x2) − D(x2, x1) similarly as above. One can use it to deform the Levi–Civita connection ∇0

into the α-connections ∇α = ∇0 − αg∗T (α ∈ R) without torsion, where g∗ denotes the dual metric.
Especially, we call ∇1 and ∇−1 respectively the e-connection and the m-connection. The symmetric
tensor T is sometimes called skewness since it presents the asymmetry of D. The information geometry
concerns the family of α-connections as well as the Fisher information metric on U. We usually do not
extend it over Ũ for the symmetric sum of D̃ lacks asymmetry.

2.4. The Geometry of Normal Distributions

We consider the space U of multivariate normal distributions on M = Rn. A vector µ =

(µi)1≤i≤n ∈ Rn and an upper triangular matrix C = [cij]1≤i,j≤n ∈ Mat(n,R) with positive diagonal
entries parameterize U by declaring that µ presents the mean and CTC the Cholesky decomposition of
the covariance matrix. Further we put

σi = cii, rij =
cij

cii
(i, j ∈ {1, . . . , n}), C = diag(σ)[rij]. (7)

The matrix [rij] is unitriangular, i.e., a triangular matrix whose diagonal entries are all 1. Then,
each point x = (µ, σ, r) ∈ U = Rn × (R>0)

n ×Rn(n−1)/2 presents the volume form

Vx =
1√

(2π)nσ1 · · · σn
exp

(
−1

2

∥∥∥C(σ, r)−T(y− µ)
∥∥∥2
)

dvol. (8)

Let ‖ · ‖2 denote the sum of the squares of the entries of a matrix as well as a vector. The relative
entropy defines the premetric D(x, x′ = (µ′, σ′, r′)) by

D(x, x′) =

∥∥C(σ′, r′)−T(µ′ − µ)
∥∥2

2
+
‖C(σ, r)C(σ′, r′)−1‖2 − n

2
−

n

∑
i=1

ln
σi
σ′i

, (9)

Let 1n denote the unit matrix, and ∆C the difference C(σ + ∆σ, r + ∆r)− C(σ, r). We have

D(x + ∆x, x) =

∥∥C−T∆µ
∥∥2

2
+

∥∥∆CC−1
∥∥2

2
+ tr(∆CC−1)− ln

∣∣∣1n + ∆CC−1
∣∣∣ . (10)
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Let rij be the entries of the inverse matrix of [rij]. We have

(the ij-entry of ∆CC−1) =



∆σi
σi

(i = j)

σi + ∆σi
σj

j

∑
k=i+1

rkj∆rik (i < j)

0 (i > j)

. (11)

From Equations (10) and (11), we see that the Fisher information metric g is expressed as

g =
n

∑
k=1

(
1
σk

k

∑
i=1

rikdµi

)2

+ 2
n

∑
i=1

(
dσi
σi

)2
+

n−1

∑
l=1

n

∑
k=l+1

(
σl
σk

k

∑
i=l+1

rikdrli

)2

. (12)

Put

gµµ =
[

gµi ,µj

]
=

[
∑

k≥i,j

rikrjk

σk
2

]
= C−1C−T,

gσσ = diag
((

2
σi

2

))
,

grr,l =
[

grlirl j

]
i,j>l

=
[
σl

2gµi ,µj

]
i,j>l

(l = 1, . . . , n− 1).

(13)

Then, the representing matrix of g is the following block diagonal matrix:

diag(gµµ, gσσ, grr,2, . . . , grr,n). (14)

Lowering the upper indices of the α-connection with ∑
L

gKLΓα
I J

K = Γα
{I,J},K, we have

Γ0
{µi ,µj},σk

= −Γ0
{µi ,σk},µj

=
rikrjk

σk
3 , (15)

Γ0
{σi ,σi},σi

=
−2
σi

3 , (16)

Γ0
{µi ,µj},rab

= −Γ0
{µi ,rab},µj

=
n

∑
k=b

rbk(riarjk + rikrja)

2σk
2 , (17)

Γ0
{rli ,rl j},σl

= −Γ0
{rli ,σl},rl j

= ∑
k≥i,j

−σlrikrjk

σk
2 , (18)

Γ0
{rli ,rl j},σk

= −Γ0
{rli ,σk},rl j

=
σl

2rikrjk

σk
3 (k ≥ i, j), (19)

Γ0
{rli ,rl j},rab

= −Γ0
{rli ,rab},rl j

= σl
2Γ0
{µi ,µj},rab

(a > l), (20)

Γ0
{I,J},K = 0 (for the other choices of {I, J} and K). (21)

With respect to the same coordinates, the coefficients of the e-connection are

Γ1
{µi ,σk},µj

= 2Γ0
{µi ,σk},µj

, (22)

Γ1
{σi ,σi},σi

= 3Γ0
{σi ,σi},σi

, (23)

Γ1
{µi ,rab},µj

= 2Γ0
{µi ,rab},µj

, (24)

Γ1
{rli ,rlj

},σl
= 2Γ0

{rli ,rlj
},σl

, (25)
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Γ1
{rli ,σk},rlj

= 2Γ0
{rli ,σk},rlj

(k ≥ i, j), (26)

Γ1
{rli ,rab},rl j

= 2Γ0
{rli ,rab},rl j

(a > l), (27)

Γ1
{I,J},K = 0 (for the other choices of {I, J} and K). (28)

Those of the m-connection are

Γ(−1)
{µi ,µj},σk

= 2Γ0
{µi ,µj},σj

, (29)

Γ(−1)
{σi ,σi},σi

= −Γ0
{σi ,σi},σi

, (30)

Γ(−1)
{µi ,µj},rab

= 2Γ0
{µi ,µj},rab

, (31)

Γ(−1)
{rli ,σl},rlj

= 2Γ0
{rli ,σl},rlj

, (32)

Γ(−1)
{rli ,rlj

},σk
= 2Γ0

{rli ,rlj
},σk

(k ≥ i, j), (33)

Γ(−1)
{rli ,rl j},rab

= 2Γ0
{rli ,rl j},rab

(a > l), (34)

Γ(−1)
{I,J},K = 0 (for the other choices of {I, J} and K). (35)

There is a particular system of coordinates for describing the e-connection. Namely, all the coefficients
vanish with respect to the natural parameter (C−1C−Tµ, ξ), where ξ = (ξab)1≤a≤b≤n is the upper half
of C−1C−T. On the other hand, all the coefficients for the m-connection vanish with respect to the
expectation parameter (µ, ν), where ν = (νab)1≤a≤b≤n is the upper half of CTC + µµT.

2.5. The Generalization

This subsection is devoted to the generalization of the result of the author, which is mentioned
in the introduction, to the above multivariate setting. We fix the third component r of the coordinate
system (µ, σ, r), and change the presentation of the others. Namely, we take the natural projection
π : U = Hn ×Rn(n−1)/2 → Rn(n−1)/2 and replace the coordinates (µ, σ) on the fiber L(r) = π−1(r) by
(m, s) appearing in the next proposition. The generalization is then straightforward.

Proposition 1. The fiber L(r) = π−1(r) is an affine subspace of U with respect to the e-connection ∇1. It can

be parameterized by affine parameters
mi
si

2 and
1

si
2 , where m = [rij]Tµ and s =

√
2σ.

Proof. The natural parameters C−1C−Tµ =

(
2

n

∑
k=i

rik mk
sk

2

)
1≤i≤n

and ξ =

(
−

n

∑
k=b

rakrbk 1
sk

2

)
1≤a≤b≤n

are affine provided that rij are constant, and
mi
si

2 and
1

si
2 are affine.

Note that dr(∇α
∂µ

∂µ) is identically zero on some/any fiber L(r) if and only if α = 1. The fiber
satisfies the following two properties.

Proposition 2. L(r) is closed under the convolution ∗ and the Bayesian product ·, and thus inherits them.

Proof. The covariance of the density at (µ, σ, r) ∗ (µ′, σ′, r) is

[rij]
Tdiag((σi

2))[rij] + [rij]
Tdiag((σ′i

2
))[rij] = [rij]

Tdiag((σi
2 + σ′i

2
))[rij]. (36)
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This coincides with that of the density at
(

µ + µ′,
(√

σi
2 + σ′i

2
)

, r
)

. Thus L(r) is closed under ∗,

and inherits it as (m, s) ∗ (m′, s′) =
(

m + m′,
(√

si
2 + s′i

2
))

.

Put u = (σi
−2) and y = [rij]Tx. The density at (µ, σ, r) is proportional to

exp
(

y(x)Tdiag(u)y(x)− 2mTdiag(u)y(x)
)

. From this we see that (µ, σ, r) · (µ′, σ′, r) = (µ′′, σ′′, r′′)
implies r′′ = r, u′′ = u + u′ and diag(u′′)m′′ = diag(u)m + diag(u′). Thus L(r) is closed under ·, and

inherits it as (m, s) · (m′, s′) =

mis′i
2 + m′isi

2

si
2 + s′i

2 ,
sis′i√

si
2 + s′i

2

.

Proposition 3. The fiber L(r) with the induced metric from g admits a Kähler complex structure.

Proof. The restriction of g is 2
n

∑
i=1

dmi
2 + dsi

2

si
2 . We define the complex structure J : TL(r)→ TL(r) by

J(∂mi ) = ∂si (⇔ J(∂si ) = −∂mi ). Then, the 2-form ω = 2
n

∑
i=1

dmi ∧ dsi
si

2 satisfies ω(·, J·) = g(·, ·).

We write the restriction D|L(r) of the premetric D using the coordinates (m, s) as follows, where
we omit r for the expression does not depend on r.

D|L((m, s), (m′, s′)) =
1
2

n

∑
i=1

{(
m′i
s′i
− mi

s′i

)2

+
si

2

s′i
2 − 1− ln

si
2

s′i
2

}
. (37)

We take the product U1 ×U2 of two copies of U. Then, the products L1(r)× L2(R) of the fibers
foliate U1 ×U2. We call this the primary foliation of U1 ×U2. For each (r, R) ∈ Rn(n−1), we have the

coordinate system (m, s, M, S) on the leaf L1(r)× L2(R). From the Kähler forms ω1 = 2
n

∑
i=1

dmi ∧ dsi
si

2

and ω2 = 2
n

∑
i=1

dMi ∧ dSi

Si
2 respectively on L1(r) and L2(R), we define the symplectic forms ω1 ±ω2 on

L1(r)× L2(R), which induce the mutually opposite orientations in the case where n is odd. Hereafter,
we consider the pair of regular Poisson structures defined by these symplectic structures on the primary

foliation, and fix the primitive 1-forms λ± = 2
n

∑
i=1

(
dmi
si
± dMi

Si

)
. The corresponding pair of Poisson

bi-vectors is Π± =
1
2

n

∑
i=1

(
si

2∂mi ∧ ∂si ± Si
2∂Mi ∧ ∂Si

)
defined on U1 ×U2. We take the 2n-dimensional

submanifolds Fε,δ =

{
mi
si

+
Mi − εi

Si
= 0, siSi = δi (i = 1, . . . , n)

}
of the leaf L1(r)× L2(R) for ε ∈ Rn

and δ ∈ (R>0)
n. The secondary foliation of U1×U2 foliates any leaf U(r)×U(r) by the 3n-dimensional

submanifolds Fε =
⋃

δ∈(R>0)n

Fε,δ for ε ∈ Rn. The tertiary foliation of U1 ×U2 foliates all leaves Fε of the

secondary foliation by the 2n-dimensional submanifolds Fε,δ for δ ∈ (R>0)
n.

Proposition 4. With respect to the Kähler form dλ−, the tertiary leaves Fε,δ are Lagrangian correspondences.

Proof. The tangent space TFε,δ is generated by si∂mi − Si∂Mi and 2mi∂mi + si∂si − Si∂Si . We have

dλ−(si∂mi − Si∂Mi , ∂mi ) = 0 and dλ−(si∂mi − Si∂Mi , si∂si − Si∂Si ) = 2
(

si
2

si
2 −

(−Si)
2

Si
2

)
= 0. Thus Fε,δ

are Lagrangian submanifolds of (L1(r)× L2(R), dλ−).
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The restrictions of λ±|N to the hypersurface N =

{
(m, s, M, S) ∈ L1 × L2

∣∣∣∣∣ n

∏
i=1

(siSi) = 1

}
are

contact forms. Let η± denote them.

Proposition 5. For any ε and δ with
n

∏
i=1

δi = 1, the submanifold Fε,δ ⊂ N is a disjoint union of n-dimensional

submanifolds {s = const} ⊂ Fε,δ which are integral submanifolds of the hyper plane field ker η+ on N.

Proof. We have λ+(si∂mi − Si∂Mi ) = 1− 1 = 0.

For each point (ε, δ) ∈ Hn, we have the diffeomorphism F̂ε,δ : Hn → Hn sending (m′, s′) ∈ Hn to

(M, S) ∈ Hn with (m′, s′, M, S) ∈ Fε,δ. We put hi = − ln
siSi
δi

and

fε,δ(m, s, M, S) =
1
2

n

∑
i=1

{(
Mi − εi

Si
+ e−hi

mi
si

)2
+ e−2hi − 1 + 2hi

}
. (38)

Then, we have D|L((m, s), (m′, s′)) = fε,δ((m, s), F̂ε,δ(m′, s′)). For any ζ ∈ (R>0)
2n, we define the

diffeomorphism ϕε,ζ : (m, s, M, S) 7→ (ζ2i−1mi), (ζ2i−1si), (εi + ζ2i(Mi − εi)), (ζ2iSi)), which preserves
the 1-forms λ±. It is easy to prove the following proposition.

Proposition 6. In the case where ζ2i−1ζ2i = 1 for i = 1, . . . , n, the diffeomorphism ϕε,ζ preserves fε,δ.

For each ε ∈ Rn, we take the set fε = {( fε,δ, Fε,δ) | δ ∈ (R>0)
n}, and consider it as a structure of

the secondary leaf Fε.

Proposition 7. For any ζ ∈ (R>0)
n, the diffeomorphism ϕε,ζ preserves the set fε for any ε ∈ Rn. In the case

where ζ satisfies
n

∏
i=1

(ζ2i−1ζ2i) = 1, the diffeomorphism ϕε,ζ also preserves the hypersurface N.

Proof. Fε,δ maps to Fε,(ζ2i−1ζ2iδi)
, and fε,(ζ2i−1ζ2iδi)

◦ ϕε,ζ = fε,δ holds. Further
n

∏
i=1

δi = 1 implies

n

∏
i=1

(ζ2i−1ζ2iδi) = 1 provided that
n

∏
i=1

(ζ2i−1ζ2i) = 1.

For any δ ∈ (R>0)
n, the diffeomorphism F̂0,δ interchanges the operation (m, s) ∗ (m′, s′) =(

m + m′,
(√

si
2 + s′i

2
))

with the operation (m, s) · (m′, s′) =

mis′i
2 + m′isi

2

si
2 + s′i

2 ,
sisi√

si
2 + s′i

2

.

Proposition 8. If (m, s, M, S), (m′, s′, M′, S′) ∈ F0,δ, then{
((m, s) · (m′, s′), (M, S) ∗ (M′, S′)) ∈ F0,δ

((m, s) ∗ (m′, s′), (M, S) · (M′, S′)) ∈ F0,δ
. (39)

Proof. Putting (m′′, s′′) = (m, s) · (m′, s′) we have Mi + M′i = −
δimi
si

2 −
δim′i
s′i

2 = −
δim′′i
s′′i

2 and Si
2 + S′i

2
=

δi
2

si
2 +

δi
2

s′i
2 =

δi
2

s′′i
2 , hence the first equation. The second equation is similarly proved.
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A curve (m(t), s(t)) ∈ Hn is a geodesic with respect to the e-connection ∇1 if and only if
mi
si

2 and

1
si

2 are affine functions of t for i = 1, . . . , n.

Definition 1. We say that an e-geodesic (m(t), s(t)) ∈ Hn is intensive if it admits an affine parameterization

such that
1

si
2 are linear for i = 1, . . . , n.

Note that any e-geodesic is intensive in the case where n = 1.

Proposition 9. Given an intensive e-geodesic (m(t), s(t)), we can change the parameterization of its image

(M(t), S(t)) =
((

εi −
mi(t)δi

si
2

)
,
(

δi
si

))
under the diffeomorphism F̂ε,δ to obtain an intensive e-geodesic.

Proof. Put
mi
si

2 = ait + bi and
1

si
2 = cit. We have

Mi − ε

Si
2 = − ai

ciδi
− bi

ciδi
· 1

t
and

1
Si

2 =
1

ciδi
2 ·

1
t

. They

are respectively an affine function and a linear function of
1
t

.

We have the hypersurface N =

{
n

∏
i=1

siSi = 1

}
⊂ Hn which carries the contact forms η± =

2
n

∑
i=1

(
dmi
si
± dMi

Si

) ∣∣∣
N

. This is defined on any leaf L1(r)× L2(R) ≈ H2n of the primary foliation of

U1 ×U2. Now we state the main result.

Theorem 1. The contact Hamiltonian vector field Y of the restriction of the function
n

∑
i=1

mi
si

to N for the contact

form η+ coincides with that for the other contact form η−. It is tangent to the tertiary leaves Fε,δ and defines
flows on them. Here each flow line presents the correspondence between intensive e-geodesics in Proposition 9.

Corollary 1. For any δ ∈ (R>0)
n, the flow on the leaf F0,δ presents the iteration of the operation ∗ on the first

factor of U1 ×U2 and that of the operation · on the second factor as is described in Proposition 8 (see Figure 1).

Figure 1. On any leaf of the primary foliation of U1 ×U2, there is a bi-contact hypersurface N carrying
the bi-contact Hamiltonian vector field Y. Because of the dimension, the surface F in the figure presents
simultaneously a leaf of the secondary foliation and a leaf of the tertiary foliation of that leaf. The flow
on the tertiary leaf F = F0,δ traces the common lift of the iteration of ∗ on L1 and the iteration of · on L2.

From Corollary 1, we see that the flow model of Bayesian inference studied in [4,5] also works for
the multivariate case. We prove the theorem.
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Proof. Take the vector field Ỹ =
1
4

n

∑
i=1

(
2mi∂mi + si∂si − Si∂Si

)
on U1 ×U1. It satisfies ιỸλ± =

n

∑
i=1

mi
si

,

L̃Yλ± = λ±, and ιỸd ln(siSi) = 0, and thus its restriction to N is the contact Hamiltonian vector field Y.

It also satisfies ιỸd
(

mi
si

+
Mi − εi

Si

)
=

1
4

(
mi
si

+
Mi − εi

Si

)
(i = 1, . . . , n), where the right-hand sides

vanish along Fε,δ. Given a point (P0, Q0) = (m0, s0, r0, M0, S0, R0) ∈ N ⊂ L1(r0)× L2(R0) ⊂ U ×U,
we have the integral curve (m(t), s(t), r(t), M(t), S(t), R(t)) = (e2tm0, ets0, r0, M0, e−tS0, R0) of Y with
initial point (P0, Q0). We can change the parameter of the curve (m(t), s(t), r0) on the first factor with
t′ = e−2t to obtain an intensive e-geodesic.

2.6. The Symmetry

The diffeomorphism ϕε,ζ with
n

∏
i=1

(ζ2i−1ζ2i) = 1 in Proposition 7 also appears in the standard

construction of Hilbert modular cusps in [8]. We sketch the construction.

Since the function H = ln
n

∏
i=1

(siSi) is linear in the logarithmic space R2n 3 ((ln si), (ln Si)), we can

take 2n− 1 points ((ln ζ2i−1(k)), (ln ζ2i(k))) ∈ {H = 0} (k = 1, . . . , 2n− 1) so that the quotient of the
primary leaf L(r)× L(R) under the Z2n−1-action generated by ϕε,ζ(1), . . . , ϕε,ζ(2n−1) is the total space
of a vector bundle over T2n−1 × R. Here T2n−1 is the quotient of {H = 0} under the Z2n−1-lattice
generated by the above points, and the fiber R2n consists of the vectors (m, M− ε).

In the univariate case (n = 1), on the logarithmic sS-plane, we can take any point (ln s, ln S) =
(ln ζ1(1), ln ζ2(1)) of the line H = ln s + ln S = 0 other than the origin. That is, we put ζ1(1) = et and
ζ2(1) = e−t (t 6= 0). Then, the map ϕε,ζ sends (m, s, M, S) to (etm, ets, e−t(M− ε), e−tS). The Z-action
generated by it rolls up the level sets of H, so that the quotient of the logarithmic sS-plane becomes the
cylinder T1×R, which is the base space. On the other hand, the mM-plane, which is the fiber, expands
horizontally and contracts vertically. This is the inverse monodromy along T1. In general, we obtain a
similar R2n-bundle over T2n−1 ×R if we take the 2n− 1 points of H = 0 in general position.

From Proposition 7, we see that the leaf Fε of the secondary foliation with the set fε, as well as
the pair of the 1-forms λ± with the function H, descends to the R2n-bundle. If there exists further
a Z2n-lattice on the fiber R2n which is simultaneously preserved by the maps ((mi), (Mi − εi)) 7→
((ζ2i−1(k)mi), (ζ2i(k)(Mi − εi))) (k = 1, . . . , 2n − 1), we obtain a T2n-bundle over T2n−1 × R. Such
a choice of ζ(k) would be number theoretical. Indeed, this is the case for Hilbert modular cusps.
Moreover, we are considering the 1-forms λ±, which descend to the T2n-bundle. See [9] for the
standard construction with special attention to these 1-forms.

We should notice that the vector field Y does not descend to the T2n-bundle. However, every
actual Bayesian inference along Y eventually stops. Thus, we may take sufficiently large T2n and
consider Y as a locally supported vector field to perform the inference in the quotient space.

3. Discussion

Finally, we would like to comment on the transverse geometry of the primary foliation. The author
conjectures that it has some relation to the M-theory. See e.g., [10] for a relation between Poisson
geometry and matrix theoretical or non-commutative geometrical physics.

The premetric D((µ + ∆µ, σ + ∆σ, r + ∆r), (µ, σ, r)) on U can be decomposed as

D((µ + ∆µ, σ + ∆σ, r), (µ, σ, r)) +
n−1

∑
i=1

n

∑
j=i+1

(
σi + ∆σi

σj

j

∑
k=i+1

rkj∆rik

)2

. (40)
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The first term on the right-hand side presents the fiber premetric D|L ((m + ∆m, s + ∆s), (m, s)),
where ∆m = [rij]T∆µ and ∆s =

√
2∆σ. If ∆σ = 0 (⇔ ∆s = 0), then we have the (non-information

geometrical) Pythagorean-type formula

D((µ + ∆µ, σ, r + ∆r), (µ, σ, r)) = D((µ + ∆µ, σ, r), (µ, σ, r)) + D((µ, σ, r + ∆r), (µ, σ, r)). (41)

Note that each term in this expression does not depend on µ. The second term on the right-hand
side can be expressed as

D((µ, σ, r + ∆r), (µ, σ, r)) =
n−1

∑
i=1

n

∑
j=i+1

(
σi
σj

j

∑
k=i+1

rkj∆rik

)2

. (42)

This presents the discretized version of the following restriction of the Fisher information g:

g|{(µ,σ)=const} =
n−1

∑
i=1

n

∑
j=i+1

(
σi
σj

j

∑
k=i+1

rkjdrik

)2

. (43)

We have the orthonormal frame with respect to this metric which consists of

eij =
σi
σj

n

∑
k=j

rjk∂rik (1 ≤ i < j ≤ n). (44)

This frame satisfies the relations [eij, ekl ] = δilekj − δkjeil of the unitriangular algebra, where δ·,·
denotes Kronecker’s delta. Using the dual coframe eij, the relations can be expressed as

deij =
j−1

∑
k=i+1

eik ∧ ekj. (45)

The transverse section of the primary foliation of U1 ×U2 is the product of two copies of the
unitriangular Lie group, which we would like to call the bi-unitriangular group. We fix the frame
(respectively, the coframe) of the transverse section consisting of the above eij (respectively, eij) in the
first factor U1 and their copies Eij (respectively, Eij) in the second factor U2. The quotient manifold of
the bi-unitriangular group by a cocompact lattice inherits a Riemannian metric from the sum of Fisher
informations, and carries the following global (n− 2)-plectic structure Ω (dΩ = 0, Ωn > 0):

Ω =
n

∑
i=1

ei,i+1 ∧ · · · ∧ ei,n ∧ En−i+1,n−i+2 ∧ · · · ∧ En−i+1,n. (46)

We notice that, in the symplectic case where n = 3, the quotient manifold admits no Kähler
structure (see [11]). However, it is still remarkable that the transverse symplectic 6-manifold is
naturally ignored in the Bayesian inference described in this paper. Conjecturally, a similar model
would help us to treat events in parallel worlds (or blanes) in the same “psychological” procedure.
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