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Abstract: The second part of this paper develops an approach suggested in Entropy 2020, 22(1), 11; 
which relates ordering in physical systems to symmetrizing. Entropy is frequently interpreted as a 
quantitative measure of “chaos” or “disorder”. However, the notions of “chaos” and “disorder” are 
vague and subjective, to a great extent. This leads to numerous misinterpretations of entropy. We 
propose that the disorder is viewed as an absence of symmetry and identify “ordering” with 
symmetrizing of a physical system; in other words, introducing the elements of symmetry into an 
initially disordered physical system. We explore the initially disordered system of elementary 
magnets exerted to the external magnetic field 𝐻ሬሬ⃗ . Imposing symmetry restrictions diminishes the 
entropy of the system and decreases its temperature. The general case of the system of elementary 
magnets demonstrating j-fold symmetry is studied. The 𝑇௝ ൌ ௝் interrelation takes place, where T 

and 𝑇௝ are the temperatures of non-symmetrized and j-fold-symmetrized systems of the magnets, 
correspondingly.    
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1. Introduction 

Entropy is a key concept in the characterization of ordering in physics [1–2], chemistry [3], 
biology [4–5], and engineering [6]. However, it remains one of the most abstract and least 
intellectually transparent quantities in physics [7–9]. The widespread illustrative interpretation of 
entropy is “the measure of disorder” in macroscopic systems built from a large number of particles 
[10]. However, researchers recently criticized the equating of entropy with disorder [8]. In the first 
part of our manuscript, we suggested that that “ordering” may be related to symmetry, inherent for 
the physical system [11]. In turn, “chaos” or “disorder” are understood as an absence of symmetry 
[11]. We have already illustrated this suggestion with the simplest binary 1D and 2D systems built 
using elementary magnets, which can point only up or down, fixed in a space, and aligned [11]. They 
form a binary, non-interacting system. We demonstrated that introducing elements of symmetry 
diminishes the entropy, which is true for 1D and 2D systems built using elementary magnets [11]. In 
the present work, we generalize the approach reported in [11] for the initially disordered systems of 
elementary magnets, embedded into the magnetic field  𝐻ሬሬ⃗ , and symmetrized by the j-fold 
symmetrizing procedure.     
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2. Symmetry and Entropy of Binary Magnetic Systems Embedded into a Magnetic Field  

2.1. Symmetrizing and Entropy of 1D Systems Exposed to Magnetic Field 𝐻ሬሬ⃗  

First, consider a binary 1D system built using non-interacting magnets (spins) 𝜇⃗, illustrated in 
Figure 1A. We assume that there are N separate and distinct sites fixed in a space and aligned, as 
shown in Figure 1A [11]. Attached to each site is an elementary magnet 𝜇⃗, which can point only up 
or down. The system using magnets is embedded into magnetic field𝐻ሬሬ⃗ ≠ 0 , leading to spin 
orientation. The potential energy of a single elementary magnet in the magnetic field is given by: 𝑈ଵ = −𝜇 ∙ 𝐻ሬሬ⃗  (1) 

The magnetic field directs the orientation of the magnets. The configuration of magnets 
demonstrating spin excess 2m is defined by Equation (2) (the numbers N and m are supposed to be 
even):  12𝑁 + 𝑚− ൬12𝑁 −𝑚൰ = 2𝑚 (2) 

corresponding to the configuration where ଵଶ𝑁 + 𝑚 of magnets are oriented “up” and ଵଶ 𝑁 −𝑚 are 
oriented “down”. The total potential energy of the system of magnets characterized by spin excess 
2m is given by [12–14]: 𝑈(2𝑚) = −2𝑚𝜇𝐻 (3) 

The entropy S of this system is given by [12–14]: 𝑆(𝑁,𝑚) = 𝑘஻𝑙𝑛𝑔(𝑁,𝑚) (4a) 

𝑔(𝑁,𝑚) ≅ 2ே ൬ 2𝜋𝑁൰ଵ ଶൗ 𝑒𝑥𝑝 ቆ−2𝑚ଶ𝑁 ቇ (4b) 

𝑆(𝑁,𝑚) ≅ 𝑘஻ ቈ𝑁𝑙𝑛2 − 12 𝑙𝑛 2𝜋𝑁 − 2𝑚ଶ𝑁 ቉ = 𝑆଴(𝑁) − 𝑘஻𝑈ଶ2𝑁𝜇ଶ𝐻ଶ (4c) 

where 𝑔(𝑁,𝑚) is the multiplicity function, i.e. the number of states having the same value of m [12–
14]; 𝑆଴(𝑁) = 𝑘஻ ቂ𝑁𝑙𝑛2 − ଵଶ 𝑙𝑛 ଶగேቃ. Eqs. 4b-c hold for 𝑚 ≫ 1;𝑁 ≫ 1; |௠|ே ≪ 1.  

 Now, let us restrict the possible configurations of elementary magnets by introducing the 
symmetry axis, shown with the dashed line in Figure 1B, keeping the spin excess of the system 2m 
and correspondingly its energy U the same. After introducing the symmetry axis, only the symmetric 
configurations of the elementary magnets are available, as depicted in Figure 1B; this implies a 
decrease in the number of “states” available for the symmetrized system to𝑔(ேଶ ,𝑚). The multiplicity 
function for the symmetrized, ordered, binary, non-interacting system is given by [12–14]: 

𝑔(𝑁2 ,𝑚) ≅ 2ே ଶൗ ቌ 2𝜋(𝑁2)ቍ
ଵ ଶൗ 𝑒𝑥𝑝 ቆ−4𝑚ଶ𝑁 ቇ (5) 

Hence, the entropy of the symmetrized, ordered, binary, non-interacting system is given by: 𝑆ଶ(𝑁,𝑚) = 𝑘஻ln𝑔 ൬𝑁2 ,𝑚൰ ≅ 𝑆଴ଶ(𝑁) − 𝑘஻𝑈ଶ𝑁𝜇ଶ𝐻ଶ (6) 

where subscript “2” indicates the presence of the axis of symmetry of the second order, and 𝑆଴ଶ(𝑁) =𝑘஻ ቈேଶ 𝑙𝑛2 − ଵଶ 𝑙𝑛 ଶగమಿ቉takes place. On combining Equations (3)–(6) and with trivial transformations, the 

following is obtained: 
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𝑆 − 𝑆ଶ ≅ 𝑘஻ ቈ𝑁2 𝑙𝑛2 + 2𝑚ଶ𝑁 ቉ = 𝑘஻ ቈ𝑁2 𝑙𝑛2 + 𝑈ଶ2𝑁𝜇ଶ𝐻ଶ቉ ൐ 0 (7) 

 
It is to be noted that introducing symmetry decreases the entropy, irrespective of the values of spin 
excess 2m, energy of the system U, and value of magnetic field 𝐻ሬሬ⃗  (recall that Equation (7) holds for 𝑚 ≫ 1;𝑁 ≫ 1; |௠|ே ≪ 1). The larger the spin excess 2m, the stronger a decrease in entropy emerging 
from symmetrizing. Thus, the generalization of the results reported in [11] is achieved.  

On considering the temperatures of the original T and symmetrized T2 systems of magnets, 
Equations. (4c) and 6 yield [12–14]: 1𝑇 = ൬𝜕𝑆𝜕𝑈൰ே = − 𝑘஻𝑈𝑁𝜇ଶ𝐻ଶ (8a) 1𝑇ଶ = ൬𝜕𝑆ଶ𝜕𝑈൰ே = − 2𝑘஻𝑈𝑁𝜇ଶ𝐻ଶ (8b) 

Recall that 𝑈 ൏ 0 takes place. Interrelation 𝑇ଶ = ଵଶ 𝑇 takes place; in other words, the symmetrized 
system of magnets is “colder” than the non- symmetrized one when spin excess and energy of the 
systems are the same. This result is intuitively expectable.  
 

 

 
 
 
 
          
 
  
 
 
 
 
                           

Figure 1. A. The binary 1D system of N non-interacting elementary magnets is shown, exposed to 
external magnetic field 𝐻ሬሬ⃗ ≠ 0. The spin excess of the system is given by 2𝑚 = ଵଶ𝑁 + 𝑚 − ቀଵଶ𝑁 −𝑚ቁ. 
B. The axis of symmetry shown with a dashed line “arranges” elementary magnets and restricts the 
number of available configurations of magnets. 

2.2. Symmetrizing and Entropy of 2D Systems Possessing Axes of Symmetry of Various Orders (j-fold 
Symmetry)  

Consider the 2D system of elementary magnets possessing axes of symmetry of the j-th order 
(Figure 2 depicts the sample system of spins with 𝑗 = 6). Again, the number of available states for 
the j-fold-symmetrical system is given by 𝑔(ே௝ ,𝑚). Indeed, keeping the j-fold symmetry requires 

simultaneous re-orientation of the j magnets. The entropy of such a j-fold system of magnets is 
supplied, in turn, by: 

A 

B 

N 

N/2 N/2 

𝐻ሬሬ⃗  
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𝑆௝ = 𝑘஻𝑙𝑛𝑔(𝑁𝑗 ,𝑚) ≅ 𝑘஻ln {2ே ௝ൗ ൬ 2𝑗𝜋𝑁൰ଵ ଶൗ 𝑒𝑥𝑝 ቆ− 2𝑗𝑚ଶ𝑁 ቇ}= 𝑆଴௝(𝑁, 𝑗) − 2𝑘஻𝑗𝑚ଶ𝑁 = 

  = 𝑆଴௝(𝑁, 𝑗) − 𝑘஻𝑗𝑈ଶ2𝑁𝜇ଶ𝐻ଶ 

(9a) 

𝑆଴௝(𝑁, 𝑗) = 𝑘஻ ൤𝑁𝑗 𝑙𝑛2 + 12 𝑙𝑛 ൬ 2𝑗𝜋𝑁൰൨ (9b) 

The initial entropy of the 2D non-symmetrical binary system of magnets is given in Equation (4) 
(2D location of the elementary magnets does not matter; the spin excess of the system 2m and its 
energy U are fixed). Combining Equations (9) and (4) yields:  𝑆 − 𝑆௝ ≅ 𝑘஻(𝑗 − 1) ቈ𝑁𝑗 𝑙𝑛2 + 2𝑚ଶ𝑁 ቉ = 𝑘஻(𝑗 − 1) ቈ𝑁𝐽 𝑙𝑛2 + 𝑈ଶ2𝑁𝜇ଶ𝐻ଶ቉ > 0 (10) 

Again, introducing symmetry decreases the entropy, irrespective of the order of the symmetry 
axis j, spin excess 2m, energy of the system U, and value of the magnetic field 𝐻ሬሬ⃗  (recall that Equations 
(3), (9a)–(10) hold for 𝑚 ≫ 1;𝑁 ≫ 1; |௠|ே ≪ 1). It is easily seen that: 𝜕𝑆𝜕𝑗 = −𝑘஻ ቆ𝑁𝑙𝑛2𝑗ଶ − 12𝑗 + 2𝑚ଶ𝑁 ቇ ≅ −𝑘஻ ቆ𝑁𝑙𝑛2𝑗 + 2𝑚ଶ𝑁 ቇ < 0 (11) 

Equation (11) holds when the condition ே௝ ≫ 1 takes place—this means that increase to the order 

of symmetry axis j decreases the entropy of the system. It is also seen from Equation (9a) that Equation 
(12) is true: 1𝑇௝ = ቆ𝜕𝑆௝𝜕𝑈ቇே,௝ = − 𝑘஻𝑗𝑈𝑁𝜇ଶ𝐻ଶ  (12) 

where 𝑇௝ is the temperature of the system of magnets, possessing axis of symmetry to the order of j, 
i.e. j-fold symmetry. Comparing Equations (12) and (8a) results in: 𝑇௝ = ௝்  (13) 

Further symmetrizing of the system of magnets “cools” it; moreover, the larger the value of j, the 
cooler the system is. The presented results support the idea that ordering (understood as 
symmetrizing) decreases the multiplicity of the system and consequently decreases the entropy.  

The obtained results are valid when the condition ఓு௞ಳ் ≪ 1 holds, as discussed in detail in [14]. 

The exact expressions should be derived by analysis of the partition function of the system of 
elementary magnets embedded into the magnetic field. However, the reported considerations 
qualitatively illustrate the suggested idea: the ordering (“arranging”) may be related to the 
symmetrizing of a physical system, decreasing its entropy. We already mentioned in the first part of 
the paper that it is possible that there are other pathways of ordering (“arrangement”) of physical 
systems, in addition to imposing elements of symmetry; these alternative pathways call for additional 
physical insights.     
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Figure 2. Schematic representation of a system of elementary magnets possessing axis of symmetry 
to the order of six, embedded into magnetic field 𝐻ሬሬ⃗ . Magnetic moments and magnetic field 𝐻ሬሬ⃗  are 
normal to the image plane. Maintaining 6-fold symmetry requires simultaneous re-orientation of six 
magnets (for example, re-orientation of the magnets, marked in Figure 2 with blue color).   

3. Conclusions 

We conclude that the introduction of elements of symmetry orders (arranges) the system of 
elementary magnets exposed to the external magnetic field and consequently diminishes its 
multiplicity, entropy, and temperature. The idea is illustrated with a binary system built from 
elementary non-interacting magnets 𝜇⃗ embedded into magnetic field 𝐻ሬሬ⃗ . Symmetrizing of the 
initially disordered system of N magnets diminishes the multiplicity function 𝑔(𝑁,𝑚), where 2m is 
the spin excess, and consequently decreases the entropy 𝑆(𝑁,𝑚). The simplest 1D exemplification of 
the binary systems is studied. Introducing two-fold symmetry decreases the entropy, irrespective of 
spin excess 2m, energy of the system U, and value of the magnetic field𝐻ሬሬ⃗ . The paper also addresses 
the system of elementary magnets demonstrating j-fold symmetry and exposed to magnetic field 𝐻ሬሬ⃗ . 
Symmetrizing decreases the multiplicity and entropy of the system, irrespective of the value of j; the 
condition డௌ(௝)డ௝ < 0 was found to be true. The 𝑇௝ = ௝் interrelation takes place, where T and 𝑇௝ are the 

temperatures of non-symmetrized and j-fold-symmetrized systems of the magnets, correspondingly. 
Thus, symmetrizing necessarily “cools” the system.                                   
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