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Abstract: The Jensen–Shannon divergence is a renown bounded symmetrization of the
Kullback–Leibler divergence which does not require probability densities to have matching supports.
In this paper, we introduce a vector-skew generalization of the scalar α-Jensen–Bregman divergences
and derive thereof the vector-skew α-Jensen–Shannon divergences. We prove that the vector-skew
α-Jensen–Shannon divergences are f -divergences and study the properties of these novel divergences.
Finally, we report an iterative algorithm to numerically compute the Jensen–Shannon-type centroids
for a set of probability densities belonging to a mixture family: This includes the case of the
Jensen–Shannon centroid of a set of categorical distributions or normalized histograms.

Keywords: Bregman divergence; f -divergence; Jensen–Bregman divergence; Jensen diversity;
Jensen–Shannon divergence; capacitory discrimination; Jensen–Shannon centroid; mixture family;
information geometry; difference of convex (DC) programming

1. Introduction

Let (X ,F , µ) be a measure space [1] where X denotes the sample space, F the σ-algebra of
measurable events, and µ a positive measure; for example, the measure space defined by the Lebesgue
measure µL with Borel σ-algebra B(Rd) for X = Rd or the measure space defined by the counting
measure µc with the power set σ-algebra 2X on a finite alphabet X . Denote by L1(X ,F , µ) the
Lebesgue space of measurable functions, P1 the subspace of positive integrable functions f such that∫
X f (x)dµ(x) = 1 and f (x) > 0 for all x ∈ X , and P1 the subspace of non-negative integrable functions

f such that
∫
X f (x)dµ(x) = 1 and f (x) ≥ 0 for all x ∈ X .

We refer to the book of Deza and Deza [2] and the survey of Basseville [3] for an introduction
to the many types of statistical divergences met in information sciences and their justifications.
The Kullback–Leibler Divergence (KLD) KL : P1 × P1 → [0, ∞] is an oriented statistical distance
(commonly called the relative entropy in information theory [4]) defined between two densities
p and q (i.e., the Radon–Nikodym densities of µ-absolutely continuous probability measures P and
Q) by

KL(p : q) :=
∫

p log
p
q

dµ. (1)

Although KL(p : q) ≥ 0 with equality iff. p = q µ-a. e. (Gibb’s inequality [4]), the KLD may
diverge to infinity depending on the underlying densities. Since the KLD is asymmetric, several
symmetrizations [5] have been proposed in the literature.
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A well-grounded symmetrization of the KLD is the Jensen–Shannon Divergence [6] (JSD), also
called capacitory discrimination in the literature (e.g., see [7]):

JS(p, q) :=
1
2

(
KL
(

p :
p + q

2

)
+ KL

(
q :

p + q
2

))
, (2)

=
1
2

∫ (
p log

2p
p + q

+ q log
2q

p + q

)
dµ = JS(q, p). (3)

The Jensen–Shannon divergence can be interpreted as the total KL divergence to the average
distribution p+q

2 . The Jensen–Shannon divergence was historically implicitly introduced in [8]
(Equation (19)) to calculate distances between random graphs. A nice feature of the Jensen–Shannon
divergence is that this divergence can be applied to densities with arbitrary support (i.e., p, q ∈ P1 with
the convention that 0 log 0 = 0 and log 0

0 = 0); moreover, the JSD is always upper bounded by log 2.
Let Xp = supp(p) and Xq = supp(q) denote the supports of the densities p and q, respectively, where
supp(p) := {x ∈ X : p(x) > 0}. The JSD saturates to log 2 whenever the supports Xp and Xp are
disjoints. We can rewrite the JSD as

JS(p, q) = h
(

p + q
2

)
− h(p) + h(q)

2
, (4)

where h(p) = −
∫

p log pdµ denotes Shannon’s entropy. Thus, the JSD can also be interpreted as the
entropy of the average distribution minus the average of the entropies.

The square root of the JSD is a metric [9] satisfying the triangle inequality, but the square root of
the JD is not a metric (nor any positive power of the Jeffreys divergence, see [10]). In fact, the JSD can
be interpreted as a Hilbert metric distance, meaning that there exists some isometric embedding of
(X ,
√

JS) into a Hilbert space [11,12]. Other principled symmetrizations of the KLD have been proposed
in the literature: For example, Naghshvar et al. [13] proposed the extrinsic Jensen–Shannon divergence
and demonstrated its use for variable-length coding over a discrete memoryless channel (DMC).

Another symmetrization of the KLD sometimes met in the literature [14–16] is the Jeffreys
divergence [17,18] (JD) defined by

J(p, q) := KL(p : q) + KL(q : p) =
∫
(p− q) log

p
q

dµ = J(q, p). (5)

However, we point out that this Jeffreys divergence lacks sound information-theoretical justifications.
For two positive but not necessarily normalized densities p̃ and q̃, we define the extended

Kullback–Leibler divergence as follows:

KL+( p̃ : q̃) := KL( p̃ : q̃) +
∫

q̃dµ−
∫

p̃dµ, (6)

=
∫ (

p̃ log
p̃
q̃
+ q̃− p̃

)
dµ. (7)

The Jensen–Shannon divergence and the Jeffreys divergence can both be extended to positive
(unnormalized) densities without changing their formula expressions:

JS+( p̃, q̃) :=
1
2

(
KL+

(
p̃ :

p̃ + q̃
2

)
+ KL+

(
q̃ :

p̃ + q̃
2

))
, (8)

=
1
2

(
KL
(

p̃ :
p̃ + q̃

2

)
+ KL

(
q̃ :

p̃ + q̃
2

))
= JS( p̃, q̃), (9)

J+( p̃, q̃) := KL+( p̃ : q̃) + KL+( p̃ : q̃) =
∫
( p̃− q̃) log

p̃
q̃

dµ = J( p̃, q̃). (10)
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However, the extended JS+ divergence is upper-bounded by ( 1
2 log 2)(

∫
( p̃ + q̃)dµ) = 1

2 (µ(p) +
µ(q)) log 2 instead of log 2 for normalized densities (i.e., when µ(p) + µ(q) = 2).

Let (pq)α(x) := (1− α)p(x) + αq(x) denote the statistical weighted mixture with component
densities p and q for α ∈ [0, 1]. The asymmetric α-skew Jensen–Shannon divergence can be defined for
a scalar parameter α ∈ (0, 1) by considering the weighted mixture (pq)α as follows:

JSα
a (p : q) := (1− α)KL(p : (pq)α) + αKL(q : (pq)α), (11)

= (1− α)
∫

p log
p

(pq)α
dµ + α

∫
q log

q
(pq)α

dµ. (12)

Let us introduce the α-skew K-divergence [6,19] Kα(p : q) by:

Kα (p : q) := KL (p : (1− α)p + αq) = KL (p : (pq)α) . (13)

Then, both the Jensen–Shannon divergence and the Jeffreys divergence can be rewritten [20] using
Kα as follows:

JS (p, q) =
1
2

(
K 1

2
(p : q) + K 1

2
(q : p)

)
, (14)

J (p, q) = K1(p : q) + K1(q : p), (15)

since (pq)1 = q, KL(p : q) = K1(p : q) and (pq) 1
2
= (qp) 1

2
.

We can thus define the symmetric α-skew Jensen–Shannon divergence [20] for α ∈ (0, 1) as follows:

JSα(p, q) :=
1
2

Kα(p : q) +
1
2

Kα(q : p) = JSα(q, p). (16)

The ordinary Jensen–Shannon divergence is recovered for α = 1
2 .

In general, skewing divergences (e.g., using the divergence Kα instead of the KLD) have been
experimentally shown to perform better in applications like in some natural language processing
(NLP) tasks [21].

The α-Jensen–Shannon divergences are Csiszár f -divergences [22–24]. An f -divergence is defined
for a convex function f , strictly convex at 1, and satisfies f (1) = 0 as:

I f (p : q) =
∫

q(x) f
(

p(x)
q(x)

)
dx ≥ f (1) = 0. (17)

We can always symmetrize f -divergences by taking the conjugate convex function f ∗(x) = x f ( 1
x )

(related to the perspective function): I f+ f ∗(p, q) is a symmetric divergence. The f -divergences are
convex statistical distances which are provably the only separable invariant divergences in information
geometry [25], except for binary alphabets X (see [26]).

The Jeffreys divergence is an f -divergence for the generator f (x) = (x − 1) log x, and the
α-Jensen–Shannon divergences are f -divergences for the generator family fα(x) = − log((1 −
α) + αx) − x log((1 − α) + α

x ). The f -divergences are upper-bounded by f (0) + f ∗(0). Thus, the
f -divergences are finite when f (0) + f ∗(0) < ∞.

The main contributions of this paper are summarized as follows:

• First, we generalize the Jensen–Bregman divergence by skewing a weighted separable
Jensen–Bregman divergence with a k-dimensional vector α ∈ [0, 1]k in Section 2. This yields
a generalization of the symmetric skew α-Jensen–Shannon divergences to a vector-skew parameter.
This extension retains the key properties for being upper-bounded and for application to densities
with potentially different supports. The proposed generalization also allows one to grasp a better
understanding of the “mechanism” of the Jensen–Shannon divergence itself. We also show how to
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directly obtain the weighted vector-skew Jensen–Shannon divergence from the decomposition of
the KLD as the difference of the cross-entropy minus the entropy (i.e., KLD as the relative entropy).

• Second, we prove that weighted vector-skew Jensen–Shannon divergences are f -divergences
(Theorem 1), and show how to build families of symmetric Jensen–Shannon-type divergences
which can be controlled by a vector of parameters in Section 2.3, generalizing the work of [20] from
scalar skewing to vector skewing. This may prove useful in applications by providing additional
tuning parameters (which can be set, for example, by using cross-validation techniques).

• Third, we consider the calculation of the Jensen–Shannon centroids in Section 3 for densities
belonging to mixture families. Mixture families include the family of categorical distributions and
the family of statistical mixtures sharing the same prescribed components. Mixture families
are well-studied manifolds in information geometry [25]. We show how to compute the
Jensen–Shannon centroid using a concave–convex numerical iterative optimization procedure [27].
The experimental results graphically compare the Jeffreys centroid with the Jensen–Shannon
centroid for grey-valued image histograms.

2. Extending the Jensen–Shannon Divergence

2.1. Vector-Skew Jensen–Bregman Divergences and Jensen Diversities

Recall our notational shortcut: (ab)α := (1− α)a + αb. For a k-dimensional vector α ∈ [0, 1]k,
a weight vector w belonging to the (k− 1)-dimensional open simplex ∆k, and a scalar γ ∈ (0, 1), let us
define the following vector skew α-Jensen–Bregman divergence (α-JBD) following [28]:

JBα,γ,w
F (θ1 : θ2) :=

k

∑
i=1

wiBF ((θ1θ2)αi : (θ1θ2)γ) ≥ 0, (18)

where BF is the Bregman divergence [29] induced by a strictly convex and smooth generator F:

BF(θ1 : θ2) := F(θ1)− F(θ2)− 〈θ1 − θ2,∇F(θ2)〉, (19)

with 〈·, ·〉 denoting the Euclidean inner product 〈x, y〉 = x>y (dot product). Expanding the Bregman
divergence formulas in the expression of the α-JBD and using the fact that

(θ1θ2)αi − (θ1θ2)γ = (γ− αi)(θ1 − θ2), (20)

we get the following expression:

JBα,γ,w
F (θ1 : θ2) =

(
k

∑
i=1

wiF ((θ1θ2)αi )

)
− F ((θ1θ2)γ)−

〈
k

∑
i=1

wi(γ− αi)(θ1 − θ2),∇F((θ1θ2)γ)

〉
. (21)

The inner product term of Equation (21) vanishes when

γ =
k

∑
i=1

wiαi := ᾱ. (22)

Thus, when γ = ᾱ (assuming at least two distinct components in α so that γ ∈ (0, 1)), we get the
simplified formula for the vector-skew α-JBD:

JBα,w
F (θ1 : θ2) =

(
k

∑
i=1

wiF ((θ1θ2)αi )

)
− F ((θ1θ2)ᾱ) . (23)
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This vector-skew Jensen–Bregman divergence is always finite and amounts to a Jensen diversity [30]
JF induced by Jensen’s inequality gap:

JBα,w
F (θ1 : θ2) = JF((θ1θ2)α1 , . . . , (θ1θ2)αk ; w1, . . . , wk) :=

k

∑
i=1

wiF ((θ1θ2)αi )− F ((θ1θ2)ᾱ) ≥ 0. (24)

The Jensen diversity is a quantity which arises as a generalization of the cluster variance when
clustering with Bregman divergences instead of the ordinary squared Euclidean distance; see [29,30]
for details. In the context of Bregman clustering, the Jensen diversity has been called the Bregman
information [29] and motivated by rate distortion theory: Bregman information measures the minimum
expected loss when encoding a set of points using a single point when the loss is measured using
a Bregman divergence. In general, a k-point measure is called a diversity measure (for k > 2), while
a distance/divergence is the special case of a 2-point measure.

Conversely, in 1D, we may start from Jensen’s inequality for a strictly convex function F:

k

∑
i=1

wiF(θi) ≥ F

(
k

∑
i=1

wiθi

)
. (25)

Let us notationally write [k] := {1, . . . , k}, and define θm := mini∈[k]{θi}i and θM :=
maxi∈[k]{θi}i > θm (i.e., assuming at least two distinct values). We have the barycenter θ̄ = ∑i wiθi =:
(θmθM)γ which can be interpreted as the linear interpolation of the extremal values for some γ ∈ (0, 1).
Let us write θi = (θmθM)αi for i ∈ [k] and proper values of the αis. Then, it comes that

θ̄ = ∑
i

wiθi, (26)

= ∑
i

wi(θmθM)αi , (27)

= ∑
i

wi((1− αi)θm + αiθM), (28)

=

(
1−∑

i
wiαi

)
θm + ∑

i
αiwiθM, (29)

= (θmθM)∑i wiαi = (θmθM)γ, (30)

so that γ = ∑i wiαi = ᾱ.

2.2. Vector-Skew Jensen–Shannon Divergences

Let f (x) = x log x − x be a strictly smooth convex function on (0, ∞). Then, the Bregman
divergence induced by this univariate generator is

B f (p : q) = p log
p
q
+ q− p = kl+(p : q), (31)

the extended scalar Kullback–Leibler divergence.
We extend the scalar-skew Jensen–Shannon divergence as follows: JSα,w(p : q) := JBα,ᾱ,w

−h (p : q)
for h, the Shannon’s entropy [4] (a strictly concave function [4]).

Definition 1 (Weighted vector-skew (α, w)-Jensen–Shannon divergence). For a vector α ∈ [0, 1]k and
a unit positive weight vector w ∈ ∆k, the (α, w)-Jensen–Shannon divergence between two densities p, q ∈ P̄1 is
defined by:

JSα,w(p : q) :=
k

∑
i=1

wiKL((pq)αi : (pq)ᾱ) = h ((pq)ᾱ)−
k

∑
i=1

wih ((pq)αi ) ,
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with ᾱ = ∑k
i=1 wiαi, where h(p) = −

∫
p(x) log p(x)dµ(x) denotes the Shannon entropy [4] (i.e., −h is

strictly convex).

This definition generalizes the ordinary JSD; we recover the ordinary Jensen–Shannon divergence
when k = 2, α1 = 0, α2 = 1, and w1 = w2 = 1

2 with ᾱ = 1
2 : JS(p, q) = JS(0,1),( 1

2 , 1
2 )(p : q).

Let KLα,β(p : q) := KL((pq)α : (pq)β). Then, we have KLα,β(q : p) = KL1−α,1−β(p : q). Using this
(α, β)-KLD, we have the following identity:

JSα,w(p : q) =
k

∑
i=1

wiKLαi ,ᾱ(p : q), (32)

=
k

∑
i=1

wiKL1−αi ,1−ᾱ(q : p) = JS1k−α,w(q : p), (33)

since ∑k
i=1 wi(1− αi) = 1k − α = 1− ᾱ, where 1k = (1, . . . , 1) is a k-dimensional vector of ones.

A very interesting property is that the vector-skew Jensen–Shannon divergences are
f -divergences [22].

Theorem 1. The vector-skew Jensen–Shannon divergences JSα,w(p : q) are f -divergences for the generator
fα,w(u) = ∑k

i=1 wi(αiu + (1− αi)) log (1−αi)+αiu
(1−ᾱ)+ᾱu with ᾱ = ∑k

i=1 wiαi.

Proof. First, let us observe that the positively weighted sum of f -divergences is an f -divergence:
∑k

i=1 wi I fi
(p : q) = I f (p : q) for the generator f (u) = ∑k

i=1 wi fi(u).
Now, let us express the divergence KLα,β(p : q) as an f -divergence:

KLα,β(p : q) = I fα,β
(p : q), (34)

with generator

fα,β(u) = (αu + 1− α) log
(1− α) + αu
(1− β) + βu

. (35)

Thus, it follows that

JSα,w(p : q) =
k

∑
i=1

wiKL((pq)αi : (pq)ᾱ), (36)

=
k

∑
i=1

wi I fαi ,ᾱ(p : q), (37)

= I∑k
i=1 wi fαi ,ᾱ

(p : q). (38)

Therefore, the vector-skew Jensen–Shannon divergence is an f -divergence for the following
generator:

fα,w(u) =
k

∑
i=1

wi(αiu + (1− αi)) log
(1− αi) + αiu
(1− ᾱ) + ᾱu

, (39)

where ᾱ = ∑k
i=1 wiαi.

When α = (0, 1) and w = ( 1
2 , 1

2 ), we recover the f -divergence generator for the JSD:

fJS(u) =
1
2

log
1

1
2 + 1

2 u
+

1
2

u log
u

1
2 + 1

2 u
, (40)

=
1
2

(
log

2
1 + u

+ u log
2u

1 + u

)
. (41)
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Observe that f ∗α,w(u) = u fα,w(1/u) = f1−α,w(u), where 1− α := (1− α1, . . . , 1− αk).
We also refer the reader to Theorem 4.1 of [31], which defines skew f -divergences from any

f -divergence.

Remark 1. Since the vector-skew Jensen divergence is an f -divergence, we easily obtain Fano and Pinsker
inequalities following [32], or reverse Pinsker inequalities following [33,34] (i.e., upper bounds for the vector-skew
Jensen divergences using the total variation metric distance), data processing inequalities using [35], etc.

Next, we show that KLα,β (and JSα,w) are separable convex divergences. Since the f -divergences
are separable convex, the KLα,β divergences and the JSα,w divergences are separable convex. For the
sake of completeness, we report a simplex explicit proof below.

Theorem 2 (Separable convexity). The divergence KLα,β(p : q) is strictly separable convex for α 6= β and
x ∈ Xp ∩ Xq.

Proof. Let us calculate the second partial derivative of KLα,β(x : y) with respect to x, and show that it
is strictly positive:

∂2

∂x2 KLα,β(x : y) =
(β− α)2y2

(xy)α(xy)2
β

> 0, (42)

for x, y > 0. Thus, KLα,β is strictly convex on the left argument. Similarly, since KLα,β(y : x) =

KL1−α,1−β(x : y), we deduce that KLα,β is strictly convex on the right argument. Therefore, the
divergence KLα,β is separable convex.

It follows that the divergence JSα,w(p : q) is strictly separable convex, since it is a convex
combination of weighted KLαi ,ᾱ divergences.

Another way to derive the vector-skew JSD is to decompose the KLD as the difference of the
cross-entropy h× minus the entropy h (i.e., KLD is also called the relative entropy):

KL(p : q) = h×(p : q)− h(p), (43)

where h×(p : q) := −
∫

p log qdµ and h(p) := h×(p : p) (self cross-entropy). Since α1h×(p1 :
q) + α2h×(p2 : q) = h×(α1 p1 + α2 p2 : q) (for α2 = 1− α1), it follows that

JSα,w(p : q) :=
k

∑
i=1

wiKL((pq)αi : (pq)γ), (44)

=
k

∑
i=1

wi
(
h×((pq)αi : (pq)γ)− h((pq)αi )

)
, (45)

= h×
(

k

∑
i=1

wi(pq)αi : (pq)γ

)
−

k

∑
i=1

wih ((pq)αi ) . (46)

Here, the “trick” is to choose γ = ᾱ in order to “convert” the cross-entropy into an entropy:
h×(∑k

i=1 wi(pq)αi : (pq)γ) = h((pq)ᾱ) when γ = ᾱ. Then, we end up with

JSα,w(p : q) = h ((pq)ᾱ)−
k

∑
i=1

wih ((pq)αi ) . (47)
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When α = (α1, α2) with α1 = 0 and α2 = 0 and w = (w1, w2) = ( 1
2 , 1

2 ), we have ᾱ = 1
2 , and we

recover the Jensen–Shannon divergence:

JS(p : q) = h
(

p + q
2

)
− h(p) + h(q)

2
. (48)

Notice that Equation (13) is the usual definition of the Jensen–Shannon divergence, while
Equation (48) is the reduced formula of the JSD, which can be interpreted as a Jensen gap for Shannon
entropy, hence its name: The Jensen–Shannon divergence.

Moreover, if we consider the cross-entropy/entropy extended to positive densities p̃ and q̃:

h×+( p̃ : q̃) = −
∫
( p̃ log q̃ + q̃)dµ, h+( p̃) = h×+( p̃ : p̃) = −

∫
( p̃ log p̃ + p̃)dµ, (49)

we get:

JSα,w
+ ( p̃ : q̃) =

k

∑
i=1

wiKL+(( p̃q̃)αi : ( p̃q̃)γ) = h+(( p̃q̃)ᾱ)−
k

∑
i=1

wih+(( p̃q̃)αi ). (50)

Next, we shall prove that our generalization of the skew Jensen–Shannon divergence to
vector-skewing is always bounded. We first start by a lemma bounding the KLD between two
mixtures sharing the same components:

Lemma 1 (KLD between two w-mixtures). For α ∈ [0, 1] and β ∈ (0, 1), we have:

KLα,β(p : q) = KL
(
(pq)α : (pq)β

)
≤ log max

{
1− α

1− β
,

α

β

}
.

Proof. For p(x), q(x) > 0, we have

(1− α)p(x) + αq(x)
(1− β)p(x) + βq(x)

≤ max
{

1− α

1− β
,

α

β

}
. (51)

Indeed, by considering the two cases α ≥ β (or equivalently, 1− α ≤ 1− β) and α ≤ β (or
equivalently, 1− α ≥ 1− β), we check that (1− α)p(x) ≤ max

{
1−α
1−β , α

β

}
(1− β)p(x) and αq(x) ≤

max
{

1−α
1−β , α

β

}
βq(x). Thus, we have (1−α)p(x)+αq(x)

(1−β)p(x)+βq(x) ≤ max
{

1−α
1−β , α

β

}
. Therefore, it follows that:

KL
(
(pq)α : (pq)β

)
≤
∫
(pq)α log max

{
1− α

1− β
,

α

β

}
dµ = log max

{
1− α

1− β
,

α

β

}
. (52)

Notice that we can interpret log max
{

1−α
1−β , α

β

}
= max{log 1−α

1−β , log α
β} as the ∞-Rényi

divergence [36,37] between the following two two-point distributions: (α, 1 − α) and (β, 1 − β).
See Theorem 6 of [36].

A weaker upper bound is KL((pq)α : (pq)β) ≤ log 1
β(1−β)

. Indeed, let us form a partition of the
sample space X into two dominance regions:

• Rp := {x ∈ X : q(x) ≤ p(x)} and
• Rq := {x ∈ X : q(x) > p(x)}.

We have (pq)α(x) = (1− α)p(x) + αq(x) ≤ p(x) for x ∈ Rp and (pq)α(x) ≤ q(x) for x ∈ Rq.
It follows that

KL
(
(pq)α : (pq)β

)
≤
∫

Rp
(pq)α(x) log

p(x)
(1− β)p(x)

dµ(x) +
∫

Rq
(pq)α(x) log

q(x)
βq(x)

dµ(x).
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That is, KL((pq)α : (pq)β) ≤ − log(1− β)− log β = log 1
β(1−β)

. Notice that we allow α ∈ {0, 1}
but not β to take the extreme values (i.e., β ∈ (0, 1)).

In fact, it is known that for both α, β ∈ (0, 1), KL
(
(pq)α : (pq)β

)
amount to compute a Bregman

divergence for the Shannon negentropy generator, since {(pq)γ : γ ∈ (0, 1)} defines a mixture
family [38] of order 1 in information geometry. Hence, it is always finite, as Bregman divergences are
always finite (but not necessarily bounded).

By using the fact that

JSα,w(p : q) =
k

∑
i=1

wiKL ((pq)αi : (pq)ᾱ) , (53)

we conclude that the vector-skew Jensen–Shannon divergence is upper-bounded:

Lemma 2 (Bounded (w, α)-Jensen–Shannon divergence). JSα,w is bounded by log 1
ᾱ(1−ᾱ)

where ᾱ =

∑k
i=1 wiαi ∈ (0, 1).

Proof. We have JSα,w(p : q) = ∑i wiKL ((pq)αi : (pq)ᾱ). Since 0 ≤ KL ((pq)αi : (pq)ᾱ) ≤ log 1
ᾱ(1−ᾱ)

,
it follows that we have

0 ≤ JSα,w(p : q) ≤ log
1

ᾱ(1− ᾱ)
.

Notice that we also have

JSα,w(p : q) ≤∑
i

wi log max
{

1− αi
1− ᾱ

,
αi
ᾱ

}
.

The vector-skew Jensen–Shannon divergence is symmetric if and only if for each index i ∈ [k]
there exists a matching index σ(i) such that ασ(i) = 1− αi and wσ(i) = wi.

For example, we may define the symmetric scalar α-skew Jensen–Shannon divergence as

JSα
s (p, q) =

1
2

KL((pq)α : (pq) 1
2
) +

1
2

KL((pq)1−α : (pq) 1
2
), (54)

=
1
2

∫
(pq)α log

(pq)α

(pq) 1
2

dµ +
1
2

∫
(pq)1−α log

(pq)1−α

(pq) 1
2

dµ, (55)

=
1
2

∫
(qp)1−α log

(qp)1−α

(qp) 1
2

dµ ++
1
2

∫
(qp)α log

(qp)α

(qp) 1
2

dµ, (56)

= h((pq) 1
2
)− h((pq)α) + h((pq)1−α)

2
, (57)

=: JSα
s (q, p), (58)

since it holds that (ab)c = (ba)1−c for any a, b, c ∈ R. Note that JSα
s (p, q) 6= JSα(p, q).

Remark 2. We can always symmetrize a vector-skew Jensen–Shannon divergence by doubling the dimension of
the skewing vector. Let α = (α1, . . . , αk) and w be the vector parameters of an asymmetric vector-skew JSD,
and consider α′ = (1− α1, . . . , 1− αk) and w to be the parameters of JSα′ ,w. Then, JS(α,α′),( w

2 , w
2 ) is a symmetric

skew-vector JSD:

JS(α,α′),( w
2 , w

2 )(p : q) :=
1
2

JSα,w(p : q) +
1
2

JSα′ ,w(p : q), (59)

=
1
2

JSα,w(p : q) +
1
2

JSα,w(q : p) = JS(α,α′),( w
2 , w

2 )(q : p). (60)
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Since the vector-skew Jensen–Shannon divergence is an f -divergence for the generator fα,w (Theorem 1),

we can take generator f s
w,α(u) =

fw,α(u)+ f ∗w,α(u)
2 to define the symmetrized f -divergence, where f ∗w,α(u) =

u fw,α(
1
u ) denotes the convex conjugate function. When fα,w yields a symmetric f -divergence I fα,w , we can apply

the generic upper bound of f -divergences (i.e., I f ≤ f (0) + f ∗(0)) to get the upper bound on the symmetric
vector-skew Jensen–Shannon divergences:

I fα,w(p : q) ≤ fα,w(0) + f ∗α,w(0), (61)

≤
k

∑
i=1

wi

(
(1− αi) log

1− αi
1− ᾱ

+ αi log
αi
ᾱ

)
, (62)

since

f ∗α,w(u) = u fα,w

(
1
u

)
, (63)

=
k

∑
i=1

wi((1− αi)u + αi) log
(1− αi)u + αi
(1− ᾱ)u + ᾱ

. (64)

For example, consider the ordinary Jensen–Shannon divergence with w =
(

1
2 , 1

2

)
and α = (0, 1). Then,

we find JS(p : w) = I f
(0,1),( 1

2 , 1
2 )
(p : q) ≤ 1

2 log 2 + 1
2 log 2 = log 2, the usual upper bound of the JSD.

As a side note, let us notice that our notation (pq)α allows one to compactly write the following
property:

Property 1. We have q = (qq)λ for any λ ∈ [0, 1], and ((p1 p2)λ(q1q2)λ)α = ((p1q1)α(p2q2)α)λ for any
α, λ ∈ [0, 1].

Proof. Clearly, q = (1− λ)q + λq =: ((qq)λ) for any λ ∈ [0, 1]. Now, we have

((p1 p2)λ(q1q2)λ)α = (1− α)(p1 p2)λ + α(q1q2)λ, (65)

= (1− α)((1− λ)p1 + λp2) + α((1− λ)q1 + λq2), (66)

= (1− λ)((1− α)p1 + αq1) + λ((1− α)p2 + αq2), (67)

= (1− λ)(p1q1)α + λ(p2q2)α, (68)

= ((p1q1)α(p2q2)α)λ. (69)

2.3. Building Symmetric Families of Vector-Skewed Jensen–Shannon Divergences

We can build infinitely many vector-skew Jensen–Shannon divergences. For example, consider
α =

(
0, 1, 1

3

)
and w =

(
1
3 , 1

3 , 1
3

)
. Then, ᾱ = 1

3 + 1
9 = 4

9 , and

JSα,w(p : q) = h
(
(pq) 4

9

)
−

h(p) + h(q) + h
(
(pq) 1

3

)
3

6= JSα,w(q : p). (70)

Interestingly, we can also build infinitely many families of symmetric vector-skew Jensen–Shannon
divergences. For example, consider these two examples that illustrate the construction process:

• Consider k = 2. Let (w, 1− w) denote the weight vector, and α = (α1, α2) the skewing vector.
We have ᾱ = wα1 + (1− w)α2 = α2 + w(α1 − α2). The vector-skew JSD is symmetric iff. w =
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1− w = 1
2 (with ᾱ = α1+α2

2 ) and α2 = 1− α1. In that case, we have ᾱ = 1
2 , and we obtain the

following family of symmetric Jensen–Shannon divergences:

JS(α,1−α),( 1
2 , 1

2 )(p, q) = h
(
(pq) 1

2

)
− h((pq)α) + h((pq)1−α)

2
, (71)

= h
(
(pq) 1

2

)
− h((pq)α) + h((qp)α)

2
= JS(α,1−α),( 1

2 , 1
2 )(q, p). (72)

• Consider k = 4, weight vector w =
(

1
3 , 1

3 , 1
6 , 1

6

)
, and skewing vector α = (α1, 1− α1, α2, 1− α2) for

α1, α2 ∈ (0, 1). Then, ᾱ = 1
2 , and we get the following family of symmetric vector-skew JSDs:

JS(α1,α2)(p, q) = h
(
(pq) 1

2

)
−

2h((pq)α1) + 2h((pq)1−α1) + h((pq)α2) + h((pq)1−α2)

6
, (73)

= h
(
(pq) 1

2

)
− 2h((pq)α1) + 2h((qp)α1) + h((pq)α2) + h((qp)α2)

6
, (74)

= JS(α1,α2)(q, p). (75)

• We can similarly carry on the construction of such symmetric JSDs by increasing the dimensionality
of the skewing vector.

In fact, we can define

JSα,w
s (p, q) := h

(
(pq) 1

2

)
−

k

∑
i=1

wi
h((pq)αi ) + h((pq)1−αi )

2
=

k

∑
i=1

wiJS
αi
s (p, q), (76)

with

JSα
s (p, q) := h

(
(pq) 1

2

)
− h((pq)α) + h((pq)1−α)

2
. (77)

3. Jensen–Shannon Centroids on Mixture Families

3.1. Mixture Families and Jensen–Shannon Divergences

Consider a mixture family in information geometry [25]. That is, let us give a prescribed set
of D + 1 linearly independent probability densities p0(x), . . . , pD(x) defined on the sample space X .
A mixture familyM of order D consists of all strictly convex combinations of these component densities:

M :=

{
m(x; θ) :=

D

∑
i=1

θi pi(x) +

(
1−

D

∑
i=1

θi

)
p0(x) : θi > 0,

D

∑
i=1

θi < 1

}
. (78)

For example, the family of categorical distributions (sometimes called “multinouilli” distributions)
is a mixture family [25]:

M =

{
mθ(x) =

D

∑
i=1

θiδ(x− xi) +

(
1−

D

∑
i=1

θi

)
δ(x− x0)

}
, (79)

where δ(x) is the Dirac distribution (i.e., δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0). Note that the
mixture family of categorical distributions can also be interpreted as an exponential family.

Notice that the linearly independent assumption on probability densities is to ensure to have an
identifiable model: θ ↔ m(x; θ).

The KL divergence between two densities of a mixture family M amounts to a Bregman
divergence for the Shannon negentropy generator F(θ) = −h(mθ) (see [38]):

KL(mθ1 : mθ2) = BF(θ1 : θ2) = B−h(mθ)
(θ1 : θ2). (80)
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On a mixture manifoldM, the mixture density (1− α)mθ1 + αmθ2 of two mixtures mθ1 and mθ2

ofM also belongs toM:
(1− α)mθ1 + αmθ2 = m(θ1θ2)α

∈ M, (81)

where we extend the notation (θ1θ2)α := (1− α)θ1 + αθ2 to vectors θ1 and θ2: (θ1θ2)
i
α = (θi

1θi
2)α.

Thus, the vector-skew JSD amounts to a vector-skew Jensen diversity for the Shannon negentropy
convex function F(θ) = −h(mθ):

JSα,w(mθ1 : mθ2) =
k

∑
i=1

wiKL
(
(mθ1 mθ2)αi : (mθ1 mθ2)ᾱ

)
, (82)

=
k

∑
i=1

wiKL
(

m(θ1θ2)αi
: m(θ1θ2)ᾱ

)
, (83)

=
k

∑
i=1

wiBF ((θ1θ2)αi : (θ1θ2)ᾱ) , (84)

= JBα,ᾱ,w
F (θ1 : θ2), (85)

=
k

∑
i=1

wiF ((θ1θ2)αi )− F ((θ1θ2)ᾱ) , (86)

= h(m(θ1θ2)ᾱ
)−

k

∑
i=1

wih
(

m(θ1θ2)αi

)
. (87)

3.2. Jensen–Shannon Centroids

Given a set of n mixture densities mθ1 , . . . , mθn of M, we seek to calculate the skew-vector
Jensen–Shannon centroid (or barycenter for non-uniform weights) defined as mθ∗ , where θ∗ is the
minimizer of the following objective function (or loss function):

L(θ) :=
n

∑
j=1

ωjJSα,w(mθk : mθ), (88)

where ω ∈ ∆n is the weight vector of densities (uniform weight for the centroid and non-uniform
weight for a barycenter). This definition of the skew-vector Jensen–Shannon centroid is a generalization
of the Fréchet mean (the Fréchet mean may not be unique, as it is the case on the sphere for two
antipodal points for which their Fréchet means with respect to the geodesic metric distance form
a great circle) [39] to non-metric spaces. Since the divergence JSα,w is strictly separable convex, it
follows that the Jensen–Shannon-type centroids are unique when they exist.

Plugging Equation (86) into Equation (88), we get that the calculation of the Jensen–Shannon
centroid amounts to the following minimization problem:

L(θ) =
n

∑
j=1

ωj

(
k

∑
i=1

wiF((θjθ)αi )− F
(
(θjθ)ᾱ

))
. (89)

This optimization is a Difference of Convex (DC) programming optimization, for which we
can use the ConCave–Convex procedure [27,40] (CCCP). Indeed, let us define the following two
convex functions:

A(θ) =
n

∑
j=1

k

∑
i=1

ωjwiF((θjθ)αi ), (90)

B(θ) =
n

∑
j=1

ωjF
(
(θjθ)ᾱ

)
. (91)



Entropy 2020, 22, 221 13 of 24

Both functions A(θ) and B(θ) are convex since F is convex. Then, the minimization problem of
Equation (89) to solve can be rewritten as:

min
θ

A(θ)− B(θ). (92)

This is a DC programming optimization problem which can be solved iteratively by initializing θ

to an arbitrary value θ(0) (say, the centroid of the θis), and then by updating the parameter at step t
using the CCCP [27] as follows:

θ(t+1) = (∇B)−1(∇A(θ(t))). (93)

Compared to a gradient descent local optimization, there is no required step size (also called
“learning” rate) in CCCP.

We have ∇A(θ) = ∑n
j=1 ∑k

i=1 ωjwiαi∇F((θjθ)αi ) and ∇B(θ) = ∑n
j=1 ωjᾱ∇F

(
(θjθ)ᾱ

)
.

The CCCP converges to a local optimum θ∗ where the support hyperplanes of the function graphs
of A and B at θ∗ are parallel to each other, as depicted in Figure 1. The set of stationary points is
{θ : ∇A(θ) = ∇B(θ)}. In practice, the delicate step is to invert∇B. Next, we show how to implement
this algorithm for the Jensen–Shannon centroid of a set of categorical distributions (i.e., normalized
histograms with all non-empty bins).

minθ A(θ)−B(θ)

∇A(θt+1) = ∇B(θt) A

B

θθ0 θ1 θ2 θ3θ4

Figure 1. The Convex–ConCave Procedure (CCCP) iteratively updates the parameter θ by aligning
the support hyperplanes at θ. In the limit case of convergence to θ∗, the support hyperplanes at θ∗ are
parallel to each other. CCCP finds a local minimum.

3.2.1. Jensen–Shannon Centroids of Categorical Distributions

To illustrate the method, let us consider the mixture family of categorical distributions [25]:

M =

{
mθ(x) =

D

∑
i=1

θiδ(x− xi) +

(
1−

D

∑
i=1

θi

)
δ(x− x0)

}
. (94)

The Shannon negentropy is

F(θ) = −h(mθ) =
D

∑
i=1

θi log θi +

(
1−

D

∑
i=1

θi

)
log

(
1−

D

∑
i=1

θi

)
. (95)

We have the partial derivatives

∇F(θ) =
[

∂

∂θi

]
i
,

∂

∂θi
F(θ) = log

θi

1−∑D
j=1 θj

. (96)
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Inverting the gradient ∇F requires us to solve the equation ∇F(θ) = η so that we get θ =

(∇F)−1(η). We find that

∇F∗(η) = (∇F)−1(η) =
1

1 + ∑D
j=1 exp(ηj)

[exp(ηi)]i, θi = (∇F−1(η))i =
exp(ηi)

1 + ∑D
j=1 exp(ηj)

, ∀i ∈ [D]. (97)

Table 1 summarizes the dual view of the family of categorical distributions, either interpreted as
an exponential family or as a mixture family.

We have JS(p1, p2) = JF(θ1, θ2) for p1 = mθ1 and p2 = mθ2 , where

JF(θ1 : θ2) =
F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
, (98)

is the Jensen divergence [40]. Thus, to compute the Jensen–Shannon centroid of a set of n densities
p1, . . . , pn of a mixture family (with pi = mθi ), we need to solve the following optimization problem
for a density p = mθ :

min
p ∑

i
JS(pi, p), (99)

min
θ

∑
i

JF(θi, θ), (100)

min
θ

∑
i

F(θi) + F(θ)
2

− F
(

θi + θ

2

)
, (101)

≡ min
θ

1
2

F(θ)− 1
n ∑

i
F
(

θi + θ

2

)
:= E(θ). (102)

The CCCP algorithm for the Jensen–Shannon centroid proceeds by initializing θ(0) = 1
n ∑i θi

(center of mass of the natural parameters), and iteratively updates as follows:

θ(t+1) = (∇F)−1

(
1
n ∑

i
∇F

(
θi + θ(t)

2

))
. (103)

We iterate until the absolute difference |E(θ(t))− E(θ(t+1))| between two successive θ(t) and θ(t+1)

goes below a prescribed threshold value. The convergence of the CCCP algorithm is linear [41] to
a local minimum that is a fixed point of the equation

θ = MH

(
θ1 + θ

2
, . . . ,

θn + θ

2

)
, (104)

where MH(v1, . . . , vn) := H−1(∑n
i=1 H(vi)) is a vector generalization of the formula of the

quasi-arithmetic means [30,40] obtained for the generator H = ∇F. Algorithm 1 summarizes the
method for approximating the Jensen–Shannon centroid of a given set of categorical distributions
(given a prescribed number of iterations). In the pseudo-code, we used the notation (t+1)θ instead of
θ(t+1) in order to highlight the conversion procedures of the natural parameters to/from the mixture
weight parameters by using superscript notations for coordinates.
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Table 1. Two views of the family of categorical distributions with d choices: An exponential family or a mixture family of order D = d− 1. Note that the Bregman
divergence associated to the exponential family view corresponds to the reverse Kullback–Leibler (KL) divergence, while the Bregman divergence associated to the
mixture family view corresponds to the KL divergence.

Exponential Family Mixture Family

pdf pθ(x) = ∏d
i=1 pti(x)

i , pi = Pr(x = ei), ti(x) ∈ {0, 1}, ∑d
i=1 ti(x) = 1 mθ(x) = ∑d

i=1 piδei (x)
primal θ θi = log pi

pd
θi = pi

F(θ) log(1 + ∑D
i=1 exp(θi)) θi log θi + (1−∑D

i=1 θi) log(1−∑D
i=1 θi)

dual η = ∇F(θ) eθi

1+∑D
j=1 exp(θj)

log θi
1−∑D

j=1 θj

primal θ = ∇F∗(η) log ηi
1−∑D

j=1 ηj

eθi

1+∑D
j=1 exp(θj)

F∗(η) ∑D
i=1 ηi log ηi + (1−∑D

j=1 ηj) log(1−∑D
j=1 ηj) log(1 + ∑D

i=1 exp(ηi))

Bregman divergence BF(θ : θ′) = KL∗(pθ : pθ′) BF(θ : θ′) = KL(mθ : mθ′)
= KL(pθ′ : pθ)

Algorithm 1: The CCCP algorithm for computing the Jensen–Shannon centroid of a set of categorical distributions.

Input: A set {pi = (p1
i , . . . , pd

i )}i∈[n] of n categorical distributions belonging to the (d− 1)-dimensional probability simplex ∆d−1
Input: T: The number of CCCP iterations
Output: An approximation (T) p̄ of the Jensen–Shannon centroid p̄
/* Convert the categorical distributions to their natural parameters by dropping the last coordinate */

θ
j
i = pj

i for j ∈ {1, . . . , d− 1}; /* Initialize the JS centroid */
t← 0; (0) θ̄ = 1

n ∑i=1 θi; /* Convert the initial natural parameter of the JS centroid to a categorical distribution */
(0) p̄j = (0) θ̄ j for j ∈ {1, . . . , d− 1}; (0) p̄d = 1−∑d

i=1
(0) p̄j;

/* Perform the ConCave-Convex Procedure (CCCP) */
while t ≤ T do

/* Use Equation (96) for ∇F and Equation (97) for ∇F∗ = (∇F)−1 */
(t+1)θ = (∇F)−1

(
1
n ∑i∇F

(
θi+

(t)θ
2

))
; t← t + 1;

end
(T) p̄j = (T) θ̄ j for j ∈ {1, . . . , d− 1}; (T) p̄d = 1−∑d

i=1
(T) p̄j; return (T) p̄;
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Figure 2 displays the results of the calculations of the Jeffreys centroid [18] and the Jensen–Shannon
centroid for two normalized histograms obtained from grey-valued images of Lena and Barbara.
Figure 3 show the Jeffreys centroid and the Jensen–Shannon centroid for the Barbara image and its
negative image. Figure 4 demonstrates that the Jensen–Shannon centroid is well defined even if the
input histograms do not have coinciding supports. Notice that on the parts of the support where only
one distribution is defined, the JS centroid is a scaled copy of that defined distribution.
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Jeffreys vs Jensen−Shannon histogram centroids

Barbara/Lena grey histograms

Figure 2. The Jeffreys centroid (grey histogram) and the Jensen–Shannon centroid (black histogram)
for two grey normalized histograms of the Lena image (red histogram) and the Barbara image (blue
histogram). Although these Jeffreys and Jensen–Shannon centroids look quite similar, observe that
there is a major difference between them in the range [0, 20] where the blue histogram is zero.
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Figure 3. The Jeffreys centroid (grey histogram) and the Jensen–Shannon centroid (black histogram)
for the grey normalized histogram of the Barbara image (red histogram) and its negative image (blue
histogram which corresponds to the reflection around the vertical axis x = 128 of the red histogram).
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Figure 4. Jensen–Shannon centroid (black histogram) for the clamped grey normalized histogram of
the Lena image (red histograms) and the clamped gray normalized histogram of Barbara image (blue
histograms). Notice that on the part of the sample space where only one distribution is non-zero, the JS
centroid scales that histogram portion.

3.2.2. Special Cases

Let us now consider two special cases:

• For the special case of D = 1, the categorical family is the Bernoulli family, and we have F(θ) =
θ log θ + (1− θ) log(1− θ) (binary negentropy), F′(θ) = log θ

1−θ (and F′′(θ) = 1
θ(1−θ)

> 0) and
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(F′)−1(η) = eη

1+eη . The CCCP update rule to compute the binary Jensen–Shannon centroid
becomes

θ(t+1) = (F′)−1

(
∑

i
wiF′

(
θ(t) + θi

2

))
. (105)

• Since the skew-vector Jensen–Shannon divergence formula holds for positive densities:

JS+α,w
( p̃ : q̃) =

k

∑
i=1

wiKL+(( p̃q̃)αi : (( p̃q̃)ᾱ), (106)

=
k

∑
i=1

wi

KL(( p̃q̃)αi : (( p̃q̃)ᾱ) +
∫
( p̃q̃)ᾱdµ−

k

∑
i=1

wi

∫
( p̃q̃)αi dµ︸ ︷︷ ︸

=
∫
( p̃q̃)ᾱdµ

 , (107)

= JSα,w( p̃ : q̃), (108)

we can relax the computation of the Jensen–Shannon centroid by considering 1D separable
minimization problems. We then normalize the positive JS centroids to get an approximation of
the probability JS centroids. This approach was also considered when dealing with the Jeffreys’
centroid [18]. In 1D, we have F(θ) = θ log θ − θ, F′(θ) = log θ and (F′)−1(η) = eη .

In general, calculating the negentropy for a mixture family with continuous densities sharing the
same support is not tractable because of the log-sum term of the differential entropy. However, the
following remark emphasizes an extension of the mixture family of categorical distributions:

3.2.3. Some Remarks and Properties

Remark 3. Consider a mixture family m(θ) = ∑D
i=1 θi pi(x) +

(
1−∑D

i=1 θi

)
p0(x) (for a parameter θ

belonging to the D-dimensional standard simplex) of probability densities p0(x), . . . , pD(x) defined respectively
on the supports X0,X1, . . . ,XD. Let θ0 := 1−∑D

i=1 θi. Assume that the support Xis of the pis are mutually
non-intersecting (Xi ∩Xj = ∅ for all i 6= j implying that the D + 1 densities are linearly independent) so that
mθ(x) = θi pi(x) for all x ∈ Xi, and let X = ∪iXi. Consider Shannon negative entropy F(θ) = −h(mθ) as
a strictly convex function. Then, we have

F(θ) = −h(mθ) =
∫
X

mθ(x) log mθ(x), (109)

=
D

∑
i=0

θi

∫
Xi

pi(x) log(θi pi(x))dµ(x), (110)

=
D

∑
i=0

θi log θi −
D

∑
i=0

θih(pi). (111)

Note that the term ∑i θih(pi) is affine in θ, and Bregman divergences are defined up to affine terms so
that the Bregman generator F is equivalent to the Bregman generator of the family of categorical distributions.
This example generalizes the ordinary mixture family of categorical distributions where the pis are distinct
Dirac distributions. Note that when the support of the component distributions are not pairwise disjoint,
the (neg)entropy may not be analytic [42] (e.g., mixture of the convex weighting of two prescribed distinct
Gaussian distributions). This contrasts with the fact that the cumulant function of an exponential family
is always real-analytic [43]. Observe that the term ∑i θih(pi) can be interpreted as a conditional entropy:
∑i θih(pi) = h(X|Θ) where Pr(Θ = i) = θi and Pr(X ∈ S|Θ = i) =

∫
S pi(x)dµ(x).
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Notice that we can truncate an exponential family [25] to get a (potentially non-regular [44]) exponential
family for defining the pis on mutually non-intersecting domains Xis. The entropy of a natural exponential
family {e(x : θ) = exp(x>θ − ψ(θ)) : θ ∈ Θ} with cumulant function ψ(θ) and natural parameter space
Θ is −ψ∗(η), where η = ∇ψ(θ), and ψ∗ is the Legendre convex conjugate [45]: h(e(x : θ)) = −ψ∗(∇ψ(θ)).

In general, the entropy and cross-entropy between densities of a mixture family (whether the
distributions have disjoint supports or not) can be calculated in closed-form.

Property 2. The entropy of a density belonging to a mixture family M is h(mθ) = −F(θ), and the
cross-entropy between two mixture densities mθ1 and mθ2 is h×(mθ1 : mθ2) = −F(θ2)− (θ1 − θ2)

>η2 =

F∗(η2)− θ>1 η2.

Proof. Let us write the KLD as the difference between the cross-entropy minus the entropy [4]:

KL(mθ1 : mθ2) = h×(mθ1 : mθ2)− h(mθ1), (112)

= BF(θ1 : θ2), (113)

= F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2). (114)

Following [45], we deduce that h(mθ) = −F(θ) + c and h×(mθ1 : mθ2) = −F(θ2)− (θ1− θ2)
>η2−

c for a constant c. Since F(θ) = −h(mθ) by definition, it follows that c = 0 and that h×(mθ1 : mθ2) =

−F(θ2)− (θ1 − θ2)
>η2 = F∗(η2)− θ>1 η2 where η = ∇F(θ).

Thus, we can numerically compute the Jensen–Shannon centroids (or barycenters) of a set of
densities belonging to a mixture family. This includes the case of categorical distributions and the
case of Gaussian Mixture Models (GMMs) with prescribed Gaussian components [38] (although in
this case, the negentropy needs to be stochastically approximated using Monte Carlo techniques [46]).
When the densities do not belong to a mixture family (say, the Gaussian family, which is an exponential
family [25]), we face the problem that the mixture of two densities does not belong to the family
anymore. One way to tackle this problem is to project the mixture onto the Gaussian family.
This corresponds to an m-projection (mixture projection) which can be interpreted as a Maximum
Entropy projection of the mixture [25,47]).

Notice that we can perform fast k-means clustering without centroid calculations using
a generalization of the k-means++ probabilistic initialization [48,49]. See [50] for details of the
generalized k-means++ probabilistic initialization defined according to an arbitrary divergence.

Finally, let us notice some decompositions of the Jensen–Shannon divergence and the skew Jensen
divergences.

Remark 4. We have the following decomposition for the Jensen–Shannon divergence:

JS(p1, p2) = h
(

p1 + p2

2

)
− h(p1) + h(p2)

2
, (115)

= h×JS(p1 : p2)− hJS(p2) ≥ 0, (116)

where

h×JS(p1 : p2) = h
(

p1 + p2

2

)
− 1

2
h(p1), (117)

and hJS(p2) = h×JS(p2 : p2) = h(p2) − 1
2 h(p2) = 1

2 h(p2). This decomposition bears some similarity
with the KLD decomposition viewed as the cross-entropy minus the entropy (with the cross-entropy always
upper-bounding the entropy).
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Similarly, the α-skew Jensen divergence

Jα
F(θ1 : θ2) := (F(θ1)F(θ2))α − F ((θ1θ2)α) , α ∈ (0, 1) (118)

can be decomposed as the sum of the information Iα
F(θ1) = (1− α)F(θ1) minus the cross-information Cα

F(θ1 :
θ2) := F ((θ1θ2)α)− αF(θ2):

Jα
F(θ1 : θ2) = Iα

F(θ1)− Cα
F(θ1 : θ2) ≥ 0. (119)

Notice that the information Iα
F(θ1) is the self cross-information: Iα

F(θ1) = Cα
F(θ1 : θ1) = (1− α)F(θ1).

Recall that the convex information is the negentropy where the entropy is concave. For the Jensen–Shannon
divergence on the mixture family of categorical distributions, the convex generator F(θ) = −h(mθ) =

∑D
i=1 θi log θi is the Shannon negentropy.

Finally, let us briefly mention the Jensen–Shannon diversity [30] which extends the Jensen–Shannon
divergence to a weighted set of densities as follows:

JS(p1, . . . , pk; w1, . . . , wk) :=
k

∑
i=1

wiKL(pi : p̄), (120)

where p̄ = ∑k
i=1 wi pi. The Jensen–Shannon diversity plays the role of the variance of a cluster with

respect to the KLD. Indeed, let us state the compensation identity [51]: For any q, we have

k

∑
i=1

wiKL(pi : q) =
k

∑
i=1

wiKL(pi : p̄) + KL( p̄ : q). (121)

Thus, the cluster center defined as the minimizer of ∑k
i=1 wiKL(pi : q) is the centroid p̄, and

k

∑
i=1

wiKL(pi : p̄) = JS(p1, . . . , pk; w1, . . . , wk). (122)

4. Conclusions and Discussion

The Jensen–Shannon divergence [6] is a renown symmetrization of the Kullback–Leibler oriented
divergence that enjoys the following three essential properties:

1. It is always bounded,
2. it applies to densities with potentially different supports, and
3. it extends to unnormalized densities while enjoying the same formula expression.

This JSD plays an important role in machine learning and in deep learning for studying
Generative Adversarial Networks (GANs) [52]. Traditionally, the JSD has been skewed with a scalar
parameter [19,53] α ∈ (0, 1). In practice, it has been experimentally demonstrated that skewing
divergences may significantly improve the performance of some tasks (e.g., [21,54]).

In general, we can symmetrize the KLD KL(p : q) by taking an abstract mean (we require
a symmetric mean M(x, y) = M(y, x) with the in-betweenness property: min{x, y} ≤ M(x, y) ≤
max{x, y}) M between the two orientations KL(p : q) and KL(q : p):

KLM(p, q) := M(KL(p : q), KL(q : p)). (123)

We recover the Jeffreys divergence by taking the arithmetic mean twice (i.e., J(p, q) = 2A(KL(p :
q), KL(q : p)) where A(x, y) = x+y

2 ), and the resistor average divergence [55] by taking the harmonic
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mean (i.e., RKL(p, q) = H(KL(p : q), KL(q : p)) = 2KL(p:q)KL(q:p)
KL(p:q)+KL(q:p) where H(x, y) = 2

1
x +

1
y

). When we

take the limit of Hölder power means, we get the following extremal symmetrizations of the KLD:

KLmin(p : q) = min{KL(p : q), KL(q : p)} = KLmin(q : p), (124)

KLmax(p : q) = max{KL(p : q), KL(q : p)} = KLmax(q : p). (125)

In this work, we showed how to vector-skew the JSD while preserving the above three properties.
These new families of weighted vector-skew Jensen–Shannon divergences may allow one to fine-tune
the dissimilarity in applications by replacing the skewing scalar parameter of the JSD by a vector
parameter (informally, adding some “knobs” for tuning a divergence). We then considered computing
the Jensen–Shannon centroids of a set of densities belonging to a mixture family [25] by using the
convex–concave procedure [27].

In general, we can vector-skew any arbitrary divergence D by using two k-dimensional vectors
α ∈ [0, 1]k and β ∈ [0, 1]k (with α 6= β) by building a weighted separable divergence as follows:

Dα,β,w(p : q) :=
k

∑
i=1

wiD
(
(pq)αi : (pq)βi

)
= D1k−α,1k−β,w(q : p), α 6= β. (126)

This bi-vector-skew divergence unifies the Jeffreys divergence with the Jensen–Shannon α-skew
divergence by setting the following parameters:

KL(0,1),(1,0),(1,1)(p : q) = KL(p : q) + KL(q : p) = J(p, q), (127)

KL(0,α),(1,1−α),( 1
2 , 1

2 )(p : q) =
1
2

KL(p : (pq)α) +
1
2

KL(q : (pq)α). (128)

We have shown in this paper that interesting properties may occur when the skewing vector β is
purposely correlated to the skewing vector α: Namely, for the bi-vector-skew Bregman divergences
with β = (ᾱ, . . . , ᾱ) and ᾱ = ∑i wiαi, we obtain an equivalent Jensen diversity for the Jensen–Bregman
divergence, and, as a byproduct, a vector-skew generalization of the Jensen–Shannon divergence.
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