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Abstract: Patterns within strings enable us to extract vital information regarding a string’s
randomness. Understanding whether a string is random (Showing no to little repetition in patterns)
or periodic (showing repetitions in patterns) are described by a value that is called the kth Subword
Complexity of the character string. By definition, the kth Subword Complexity is the number of
distinct substrings of length k that appear in a given string. In this paper, we evaluate the expected
value and the second factorial moment (followed by a corollary on the second moment) of the kth
Subword Complexity for the binary strings over memory-less sources. We first take a combinatorial
approach to derive a probability generating function for the number of occurrences of patterns in
strings of finite length. This enables us to have an exact expression for the two moments in terms of
patterns’ auto-correlation and correlation polynomials. We then investigate the asymptotic behavior
for values of k = Θ(log n). In the proof, we compare the distribution of the kth Subword Complexity
of binary strings to the distribution of distinct prefixes of independent strings stored in a trie. The
methodology that we use involves complex analysis, analytical poissonization and depoissonization,
the Mellin transform, and saddle point analysis..

Keywords: subword complexity; asymptotics; generating functions; saddle point method; probability;
the Mellin transform; moments.

1. Introduction

Analyzing and understanding occurrences of patterns in a character string is helpful for extracting
useful information regarding the nature of a string. We classify strings to low-complexity and
high-complexity, according to their level of randomness. For instance, we take the binary string
X = 10101010..., which is constructed by repetitions of the pattern w = 10. This string is periodic, and
therefore has low randomness. Such periodic strings are classified as low-complexity strings, whereas
strings that do not show periodicity are considered to have high complexity. An effective way of
measuring a string’s randomness is to count all distinct patterns that appear as contiguous subwords
in the string. This value is called the Subword Complexity. The name is given by Ehrenfeucht, Lee,
and Rozenberg [1], and initially was introduced by Morse and Hedlund in 1938 [2]. The higher the
Subword Complexity, the more complex the string is considered to be.

Assessing information about the distribution of the Subword Complexity enables us to better
characterize strings, and determine atypically random or periodic strings that have complexities far
from the average complexity [3]. This type of string classification has applications in fields such as
data compression [4], genome analysis (see [5–9]), and plagiarism detection [10]. For example, in data
compression, a data set is considered compressible if it has low complexity, as consists of repeated
subwords. In computational genomics, Subword Complexity (known as k-mers) is used in detection
of repeated sequences and DNA barcoding [11,12]. k-mers are composed of A, T, G, and C nucleotides.
For instance, 7-mers for a DNA sequence GTAGAGCTGT is four, meaning that there are 4-hour distinct
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substrings of length 7 in the given DNA sequence. Counting k-mers becomes challenging for longer
DNA sequences. Our results can be easily extended to the alphabet {A, T, G, C} and directly applied
in theoretical analysis of the genomic k-mer distributions under the Bernoulli probabilistic model,
particularly when the length n of the sequence approaches infinity.

There are two variations for the definition of the Subword Complexity: the one that counts all
distinct subwords of a given string (also known as Complexity Index and Sequence Complexity [13]),
and the one that only counts the subwords of the same length, say k, that appear in the string. In our
work, we analyze the latter, and we call it the kth Subword Complexity to avoid any confusion.

Throughout this work, we consider the kth Subword Complexity of a random binary string of
length n over a memory-less source, and we denote it by Xn,k. We analyze the first and second factorial
moments of Xn,k (1) for the range k = Θ(log n), as n→ ∞. More precisely, will divide the analysis into
three ranges as follows.

i.
1

log q−1 log n < k <
2

log q−1 + log p−1 log n ,

ii.
2

log q−1 + log p−1 log n < k <
1

q log q−1 + p log p−1 log n, and

iii.
1

q log q−1 + p log p−1 log n < k <
1

log p−1 log n,

Our approach involves two major steps. First, we choose a suitable model for the asymptotic
analysis, and afterwards we provide proofs for the derivation of the asymptotic expansion of the first
two factorial moments.

1.1. Part I

This part of the analysis is inspired by the earlier work of Jacquet and Szpankowski [14] on the
analysis of suffix trees by comparing them to independent tries. A trie, first introduced by René de la
Briandais in 1959 (see [15]), is a search tree that stores n strings, according to their prefixes. A suffix
tree, introduced by Weiner in 1973 (see [16]), is a trie where the strings are suffixes of a given string.
An example of these data structures are given in Figure 1.

(a)Suffix Tree (b)Trie

Figure 1. The suffix tree in (a) is built over the first four suffixes of string X = 101110..., and the trie in
(b) is build over strings X1 = 111..., X2 = 101..., X3 = 100, and X4 = 010....

A direct asymptotic analysis of the moments is a difficult task, as patterns in a string are not
independent from each other. However, we note that each pattern in a string can be regarded as a
prefix of a suffix of the string. Therefore, the number of distinct patterns of length k in a string is
actually the number of nodes of the suffix tree at level k and lower. It is shown by I. Gheorghiciuc and
M. D. Ward [17] that the expected value of the k-th Subword Complexity of a Bernoulli string of length
n is asymptotically comparable to the expected value of the number of nodes at level k of a trie built
over n independent strings generated by a memory-less source.
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We extend this analysis to the desired range for k, and we prove that the result holds for when k
grows logarithmically with n. Additionally, we show that asymptotically, the second factorial moment
of the k-th Subword Complexity can also be estimated by admitting the same independent model
generated by a memory-less source. The proof of this theorem heavily relies on the characterization of
the overlaps of the patterns with themselves and with one another. Autocorrelation and correlation
polynomials explicitly describe these overlaps. The analytic properties of these polynomials are key to
understanding repetitions of patterns in large Bernoulli strings. This, in conjunction with Cauchy’s
integral formula (used to compare the generating functions in the two models) and the residue theorem,
provides solid verification that the second factorial moment in the Subword Complexity behaves the
same as in the independent model.

To make this comparison, we derive the generating functions of the first two factorial moments
in both settings. In a paper published by F. Bassino, J. Clément, and P. Nicodème in 2012 [18], the
authors provide a multivariate probability generating function f (z, x) for the number of occurrences of
patterns in a finite Bernoulli string. That is, given a pattern w, the coefficient of the term znxm in f (z, x)
is the probability in the Bernoulli model that a random string of size n has exactly m occurrences of the
pattern w. Following their technique, we derive the exact expression for the generating functions of the
first two factorial moments of the kth Subword Complexity. In the independent model, the generating
functions are obtained by basic probability concepts.

1.2. Part II

This part of the proof is analogous to the analysis of profile of tries [19]. To capture the asymptotic
behavior, the expressions for the first two factorial moments in the independent trie are further
improved by means of a Poisson process. The poissonized version yields generating functions in
the form of harmonic sums for each of the moments. The Mellin transform and the inverse Mellin
transforms of these harmonic sums establish a connection between the asymptotic expansion and
singularities of the transformed function. This methodology is sufficient for when the length k of the
patterns are fixed. However, allowing k to grow with n, makes the analysis more challenging. This is
because for large k, the dominant term of the poissonized generating function may come from the term
involving k, and singularities may not be significant compared to the growth of k. This issue is treated
by combining the singularity analysis with a saddle point method [20]. The outcome of the analysis is
a precise first-order asymptotics of the moments in the poissonized model. Depoissonization theorems
are then applied to obtain the desired result in the Bernoulli model.

2. Results

For a binary string X = X1X2...Xn, where Xi’s ( i = 1, ..., n) are independent and identically
distributed random variables , we assume that P(Xi = 1) = p, P(Xi = 0) = q = 1− p, and p > q.
We define the kth Subword Complexity, Xn,k, to be the number of distinct substrings of length k that
appear in a random string X with the above assumptions. In this work, we obtain the first order
asymptotics for the average and the second factorial moment of Xn,k. The analysis is done in the range
k = Θ(log n). We rewrite this range as k = a log n, and by performing a saddle point analysis, we will
show that

1/ log q−1 < a < 1/ log p−1 (1)

In the first step, we compare the kth Subword Complexity to an independent model constructed
in the following way: We store a set of n independently generated strings by a memory-less source in
a trie. This means that each string is a sequence of independent and identically distributed Bernoulli
random variables from the binary alphabet A = {0, 1}, with P(1) = p, P(0) = q = 1− p . We denote
the number of distinct prefixes of length k in the trie by X̂n,k, and we call it the kth prefix complexity.
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Before proceeding any further, we remind that factorial moments of a random variable are defined as
following.

Definition 1. The jth factorial moment of a random variable X is defined as

E[(X)j] = E[(X)(X− 1)(X− 2)...(X− j + 1)], (2)

where j=1,2,... .

will show that the first and second factorial moments of Xn,k are asymptotically comparable to
those of X̂n,k, when k = Θ(log n). We have the following theorems.

Theorem 1. For large values of n, and for k = Θ(log n), there exists M > 0 such that

E[Xn,k]− E[X̂n,k] = O(n−M).

We also prove a similar result for the second factorial moments of the kth Subword Complexity
and the kth Prefix Complexity:

Theorem 2. For large values of n, and for k = Θ(log n), there exists ε > 0 such that

E[(Xn,k)2]− E[(X̂n,k)2] = O(n−ε).

In the second part of our analysis, we derive the first order asymptotics of the kth Prefix
Complexity. The methodology used here is analogous to the analysis of profile of tries [19]. The
rate of the asymptotic growth depends on the location of the value a as seen in (1) . For instance, for
the average kth Subword Complexity ,E[Xn,k], we have the following observations.

i. For the range I1 :
1

log q−1 < a <
2

log q−1 + log p−1 , the growth rate is of order O(2k),

ii. in the range I2 :
2

log q−1 + log p−1 < a <
1

q log q−1 + p log p−1 , we observe some oscillations

with n, and

iii. in the range I3 :
1

q log q−1 + p log p−1 < a <
1

log p−1 , the average has a linear growth O(n).

The above observations will be discussed in depth in the proofs of the following theorems.

Theorem 3. The average of the kth Prefix Complexity has the following asymptotic expansion

i. For a ∈ I1,

E[X̂n,k] = 2k −Φ1((1 + log p) logp/q n)
nν√
log n

(
1 + O

(
1√

log n

))
, (3)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

∑
j∈Z

Γ(r0 + itj)e−2πijx

is a bounded periodic function.
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ii. For a ∈ I2,

E[X̂n,k] = Φ1((1 + log p) logp/q n)
nν√
log n

(
1 + O

(
1√

log n

))
.

iii. For a ∈ I3

E[X̂n,k] = n + O(nν0),

for some ν0 < 1.

Theorem 4. The second factorial moment of the kth Prefix Complexity has the following asymptotic expansion.

i. For a ∈ I1,

E[(X̂n,k)2] =

(
2k −Φ1(logp/q n(1 + log p))

nν√
log n

(
1 + O

(
1√

log n

)))2

.

ii. For a ∈ I2,

E[(X̂n,k)2] = Φ2
1(logp/q n(1 + log p))

n2ν

log n

(
1 + O

(
1

log n

))
.

ii. For a ∈ I3,

E[(X̂n,k)2] = n2 + O(n2ν0).

The periodic function Φ1(x) in Theorems 3, and 4 is shown in Figure 2.

Figure 2. Left: Φ1(x) at p = 0.90, and various levels of r0. The amplitude increases as r0 increases.
Right: Φ1(x) at r0 = 1, and various levels of p. The amplitude tends to zero as p→ 1/2+.

The results in Theorem 4 will follow for the second moment of the kth Subword Complexity as
the analysis can be easily extended from the second factorial moment to the second moment. The
variance however, as seen in Figure 3, does not show the same asymptotic behavior as the variance of
kth Subword Complexity.
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Figure 3. Approximated second moments (left), and variances (right) of the kth Subword Complexity
(red), and the kth Prefix Complexity (blue), for n=4000, at different probability levels, averaged over
10,000 iterations.

3. Proofs and Methods

3.1. Groundwork

We first introduce a few terminologies and lemmas regarding overlaps of patterns and their
number of occurrences in texts. Some of the notations we use in this work are borrowed from [18]
and [21].

Definition 2. For a binary word w = w1...wk of length k, The autocorrelation set Sw of the word w is defined
in the following way.

Sw = {wi+1..wk |w1...wi = wk−i+1..wk}. (4)

The autocorrelation index set is

P(w) = {i |w1...wi = wk−i+1..wk}, (5)

And the autocorrelation polynomial is

Sw(z) = ∑
i∈P(w)

P(wi+1...wk)zk−i. (6)

Definition 3. For the distinct binary words w = w1...wk and w′ = w′1...w′k, the correlation set Sw,w′ of the
words w and w′ is

Sw,w′ = {w′i+1...w′k |w
′
1...w′i = wk−i+1...wk}. (7)

The correlation index set is

P(w, w′) = {i |w′1...w′i = wk−i+1..wk}, (8)

The correlation polynomial is

Sw,w′(z) = ∑
i∈P(w,w′)

P(w′i+1...w′k)z
k−i. (9)
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The following two lemmas present the probability generating functions for the number of
occurrences of a single pattern and a pair of distinct pattern, respectively, in a random text of length n.
For a detailed dissection on obtaining such generating functions, refer to [18].

Lemma 1. The Occurrence probability generating function for a single pattern w in a binary text over a
memoryless source is given by Fw(z, x− 1), where

Fw(z, t) =
1

1− A(z)− tP(w)zk

1− t(Sw(z)− 1)

, (10)

The coefficient [znxm]Fw(z, x− 1) is the probability that a random binary string of length n has m occurrences
of the pattern w.

Lemma 2. The Occurrence PGF for two distinct Patterns of length k in a Bernoulli random text is given by
Fw,w′(z, x1 − 1, x2 − 1) where,

Fw,w′(z, t1, t2) =
1

1− A(z)−M(z, t1, t2)
, (11)

and

M(z, t1, t2) =
(

P(w)zkt1 P(w′)zkt2

)(
I−

(
(Sw(z)− 1)t1 Sw,w′(z)t2

Sw′ ,w(z)t1 (Sw′(z)− 1)t2

))−1(
1
1

)
.

The coefficient [znxm1
1 xm2

2 ]Fw,w′(z, x1 − 1, x2 − 1) is the probability that there are m1 occurrences of w and m2

occurrences of w′ in a random string of length n.

The above results will be used to find the generating functions for the first two factorial moments
of the kth Subword Complexity in the following section.

3.2. Derivation of Generating Functions

Lemma 3. For generating functions Hk(z) = ∑n≥0 E[Xn,k]zn and Gk(z) = ∑n≥0 E[(Xn,k)2]zn, we have

i.

Hk(z) = ∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
, (12)

where Dw(z) = P(w)zk + (1− z)Sw(z), and

ii.

Gk(z) = ∑
w,w

′∈Ak

w 6=w′

(
1

1− z
− Sw(z)

Dw(z)
−

Sw′ (z)
Dw′(z)

+
Sw(z)Sw′ (z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
, (13)

where

Dw,w′(z) = (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
)

. (14)
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Proof. i. We define

X(w)
n,k =

{
1 if w appears at least once in string X

0 otherwise.

This yields

E[X(w)
n,k ] = P(X(w)

n,k = 1)

= 1− P(X(w)
n,k = 0)

= 1− [znx0]Fw(z, x). (15)

We observe that [znx0]Fw(z, x) = [zn]Fw(z, 0). By defining fw(z) = Fw(z, 0) and from (10), we obtain

fw(z) =
Sw(z)

P(w)zk + (1− z)Sw(z)
. (16)

Having the above function, we derive the following result.

H(z) = ∑
n≥0

E[Xn,k]zn

= ∑
n≥0

∑
w∈Ak

(1− [zn] fw(z))zn

= ∑
w∈Ak

(
1

1− z
− fw(z)

)
= ∑

w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
. (17)

ii. For this part, we first note that

E[(Xn,k)2] = E[X2
n,k]− E[Xn,k]

= E
[
(X(w)

n,k + ... + X(w(r))
n,k )2

]
− E

[
X(w)

n,k + ... + X(w(r))
n,k

]
= ∑

w∈Ak

E
[
(X(w)

n,k )
2
]
+ ∑

w,w′∈Ak

w 6=w′

E
[

X(w)
n,k X(w′)

n,k

]
− ∑

w∈Ak

E
[

X(w)
n,k

]

= ∑
w,w′∈Ak

w 6=w′

E
[

X(w)
n,k X(w′)

n,k

]
. (18)

Due to properties of indicator random variables, we observe that the expected value of the second
factorial moment has only one term:

E[(Xn,k)2] = ∑
w,w′∈Ak

w 6=w′

E
[

X(w)
n,k X(w′)

n,k

]
. (19)

We proceed by defining a second indicator variable as following.

X(w)
n,k X(w′)

n,k =

{
1 if X(w)

n,k = X(w′)
n,k = 1

0 otherwise,
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This gives

E[X(w)
n,k X(w′)

n,k ] = P
(

X(w)
n,k = 1, X(w′)

n,k = 1
)

= 1− P
(

X(w)
n,k = 0∪ X(w′)

n,k = 0
)

= 1− P
(

X(w)
n,k = 0

)
− P

(
X(w′)

n,k = 0
)
+ P

(
X(w)

n,k = 0, X(w′)
n,k = 0

)
.

Finally, we are able to express E[(Xn,k)2] in the following

E[(Xn,k)2] = ∑
w,w′∈Ak

w 6=w′

(1− [zn] fw(z)− [zn] fw′(z) + [zn] fww′(z)) , (20)

where fw,w′(z) = Fw,w′(z, 0, 0) and [zn]Fw,w′(z, 0, 0) = [znx0
1x0

2]Fw,w′(z, x1, x2). By (11) we have

fw,w′(z) =
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)
(21)

Having the above expression, we finally obtain

Gk(z) = ∑
n≥0

E[(Xn,k)2]zn

= ∑
w,w

′∈Ak

w 6=w′

∑
n≥0

(
1− [zn] fw(z)− [zn] fw′ (z) + [zn] fw,w′ (z)

)
zn

= ∑
w,w

′∈Ak

w 6=w′

(
1

1− z
− fw(z)− fw′ (z) + fw,w′ (z)

)

= ∑
w,w

′∈Ak

w 6=w′

(
1

1− z
− Sw(z)

Dw(z)
−

Sw′ (z)
Dw′(z)

+
Sw(z)Sw′ (z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
. (22)

In the following lemma, we present the generating functions for the first two factorial moments
for the kth Prefix Complexity in the independent model.

Lemma 4. For Ĥk(z) = ∑n≥0 E[X̂n,k]zn and Ĝk(z) = ∑n≥0 E[(X̂n,k)2]zn, which are the generating functions
for E[X̂n,k] and E[(X̂n,k)2] respectively, we have

i.

Ĥk(z) = ∑
w∈Ak

(
1

1− z
− 1

1− (1− P(w))z

)
. (23)

ii.

Ĝk(z) = ∑
w,w

′∈Ak

w 6=w′

(
1

1− z
− 1

1− (1− P(w))z
− 1

1− (1− P(w′))z

)

+ ∑
w,w

′∈Ak

w 6=w′

1
1− (1− P(w)− P(w′))z

. (24)
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Proof. i. We define the indicator variable X̂(w)
n,k as follows.

X̂(w)
n,k =

{
1 if w is a prefix of at least one string in P

0 otherwise.

For each X̂(w)
n,k , we have

E[X̂(w)
n,k ] = P(X̂(w)

n,k = 1)

= 1− P(X̂(w)
n,k = 0)

= 1− (1− P(w))n . (25)

Summing over all words w of length k, determines the generating function Ĥ(z):

Ĥ(z) = ∑
n≥0

E[X̂n,k]zn

= ∑
w∈Ak

(
1

1− z
− 1

1− (1− P(w))z

)
. (26)

ii. Similar to in (18) and (20), we obtain

E[(X̂n,k)2] = ∑
w,w′∈Ak

w 6=w′

E[X̂(w)
n,k X̂(w′)

n,k ]

= ∑
w,w

′∈Ak

w 6=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n) . (27)

Subsequently, we obtain the generating function below.

Ĝ(z) = ∑
n≥0

E[(X̂n,k)2]zn

= ∑
w,w

′∈Ak

w 6=w′

∑
n≥0

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n) zn

= ∑
w,w

′∈Ak

w 6=w′

(
1

1− z
− 1

1− (1− P(w))z
− 1

1− (1− P(w′))z

)

+ ∑
w,w

′∈Ak

w 6=w′

1
1− (1− P(w)− P(w′))z

. (28)

Our first goal is to compare the coefficients of the generating functions in the two models. The
coefficients are expected to be asymptotically equivalent in the desired range for k. To compare the
coefficients, we need more information on the analytic properties of these generating functions. This
will be discussed in Section 3.3.

3.3. Analytic Properties of the Generating Functions

Here, we turn our attention to the smallest singularities of the two generating functions given in
Lemma 3. It has been shown by Jacquet and Szpankowski [21] that Dw(z) has exactly one root in the
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disk |z| ≤ ρ. Following the notations in [21], we denote the root within the disk |z| ≤ ρ of Dw(z) by
Aw, and by bootstrapping we obtain

Aw = 1 +
1

Sw(1)
P(w) + O

(
P(w)2

)
. (29)

We also denote the derivative of Dw(z) at the root Aw, by Bw, and we obtain

Bw = −Sw(1) +
(

k− 2S′w(1)
Sw(1)

P(w)

)
+ O

(
P(w)2

)
. (30)

In this paper, we will prove a similar result for the polynomial Dw,w′(z) through the following work.

Lemma 5. If w and w′ are two distinct binary words of length k and δ =
√

p, there exists ρ > 1, such that
ρδ < 1 and

∑
w∈Ak

[[|Sw,w′(ρ)| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk. (31)

Proof. If the minimal degree of Sw,w′(z) is greater than > bk/2c, then

|Sw,w′(ρ)| ≤ (ρδ)kθ. (32)

for θ = (1− p)−1. For a fixed w′, we have

∑
w∈Ak

[[Sw,w′(z) has minimal degree ≤ bk/2c ]] P(w)

=
bk/2c

∑
i=1

∑
w∈Ak

[[Sw,w′(z) has minimal degree = i]] P(w)

=
bk/2c

∑
i=1

∑
w1...wi∈Ai

P(w1...wi)

∑
wi+1...wk∈Ak−i

[[Sw,w′(z) has minimal degree = i]]P(wi+1...wk)

≤
bk/2c

∑
i=1

∑
w1..wi∈Ai

P(wi+1...wk)pk−i

=
bk/2c

∑
i=1

pk−i ∑
w1..wi∈Ai

P(w1...wi)

=
bk/2c

∑
i=1

pk−i ≤ pk−bk/2c

1− p
. (33)

This leads to the following

∑
w∈Ak

[[ every term of Sw,w′(z) is of degree > bk/2c]]P(w)

= 1− ∑
w∈Ak

[[Sw,w′(z) has a term of degree ≤ bk/2c]]P(w)

≥ 1− pdk/2e

1− p
≥ 1− θδk. (34)
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Lemma 6. There exist K′ > 0, and ρ > 1 such that pρ < 1, and such that, for every pair of distinct words w,
and w′ of length k ≥ K′, and for |z| ≤ ρ, we have

|Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)| > 0. (35)

In other words, Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z) does not have any roots in |z| ≤ ρ.

Proof. There are three cases to consider :
Case i. When either Sw(z) = 1 or Sw′(z) = 1, then every term of Sw,w′(z)Sw′ ,w(z) has degree k or larger,
and therefore

|Sw,w′(z)Sw′ ,w(z)| ≤ k
(pρ)k

1− pρ
. (36)

There exists K1 > 0, such that for k > K1, we have limk→∞ k
(pρ)k

1− pρ
= 0. This yields

|Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)| ≥ |Sw(z)Sw′(z)| − |Sw,w′(z)Sw′ ,w(z)|

≥ 1− k
(pρ)k

1− pρ
> 0. (37)

Case ii. If the minimal degree for Sw(z)− 1 or Sw′(z)− 1 is greater than bk/2c, then every term of
Sw,w′(z)Sw′ ,w(z) has degree at least k/2. We also note that, by Lemma 9, |Sw(z)Sw′(z)| > 0. Therefore,
there exists K2 > 0, such that

|Sw(z)Sw′(z)− Sw′ ,w(z)Sw,w′(z)| ≥ |Sw(z)Sw′(z)| − |Sw′ ,w(z)Sw,w′(z)|
> 0 for k > K2. (38)

Case iii. The only remaining case is where the minimal degree for Sw(z)− 1 and Sw′(z)− 1 are both
less than or equal to bk/2c. If w = w1...wk, then w′ = uw1...wk−m, where u is a word of length m ≥ 1.
Then we have

Sw′ ,w(z) = P(wk−m+1...wk)zm
(

Sw(z)−O
(
(pz)k−m

))
. (39)

There exists K3 > 0, such that

|Sw′ ,w(z)| ≤ (pρ)m (|Sw(z) |+ O
(
(pρ)k−m

)
= (pρ)m|Sw(z)|+ O

(
(pρ)k

)
< |Sw(z)| for k > K3 . (40)

(41)

Similarly, we can show that there exists K′3, such that |Sw,w′(z)| < |Sw′(z)|. Therefore, for k > K′3
we have

|Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)| ≥ |Sw(z)||Sw′(z)| − |Sw,w′(z)||Sw′ ,w(z)|
> |Sw(z)||Sw′(z)| − |Sw(z)||Sw′(z)| = 0. (42)

We complete the proof by setting K′ = max{K1, K2, K3, K′3}.
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Lemma 7. There exist Kw,w′ > 0 and ρ > 1 such that pρ < 1, and for every word w and w′ of length
k ≥ Kw,w′ , the polynomial

Dw,w′(z) = (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
)

, (43)

has exactly one root in the disk |z| ≤ ρ.

Proof. First note that

|Sw(z)− Sw′ ,w(z)| ≤ |Sw(z)|+ |Sw′ ,w(z)|

≤ 1
1− pρ

+
pρ

1− pρ
=

1 + pρ

1− pρ
. (44)

This yields ∣∣∣zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
)∣∣∣

≤ (pρ)k (|Sw(z)− Sw′ ,w(z)|+ |Sw′(z)− Sw,w′(z)|
)

≤ (pρ)k
(

2(1 + pρ)

1− pρ

)
. (45)

There exist K′, K′′ large enough, such that, for k > K′, we have

|(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))| ≥ β > 0,

and for k > K′′,

(pρ)k
(

2(1 + pρ)

1− pρ

)
< (ρ− 1)β.

If we define Kw,w′ = max{K′, K′′}, then we have, for k ≥ Kw,w′ ,

(pρ)k
(

2(1 + pρ)

1− pρ

)
< (ρ− 1)β

< |(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))|. (46)

by Rouché’s theorem, as (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)) has only one root in |z| ≤ ρ, then also
Dw,w′(z) has exactly one root in |z| ≤ ρ.

We denote the root within the disk |z| ≤ ρ of Dw,w′(z) by αw,w′ , and by bootstrapping we obtain

αw,w′ = 1 +
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′) + O(p2k). (47)

We also denote the derivative of Dw,w′(z) at the root αw,w′ , by βw,w′ , and we obtain

βw,w′ = Sw,w′(1)Sw′ ,w(1)− Sw(1)Sw′(1) + O(kpk). (48)

We will refer to these expressions in the residue analysis that we present in the next section.

3.4. Asymptotic Difference

We begin this section by the following lemmas on the autocorrelation polynomials.
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Lemma 8 (Jacquet and Szpankowski, 1994). For most words w, the autocorrelation polynomial Sw(z) is
very close to 1, with high probably. More precisely, if w is a binary word of length k and δ =

√
p, there exists

ρ > 1, such that ρδ < 1 and

∑
w∈Ak

[[|Sw(ρ)− 1| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk, (49)

where θ = (1− p)−1. We use Iverson notation

[[A]] =

{
1 if A holds

0 otherwise

Lemma 9 (Jacquet and Szpankowski, 1994). There exist K > 0 and ρ > 1, such that pρ < 1, and for every
binary word w with length k ≥ K and |z| ≤ ρ, we have

|Sw(z)| > 0. (50)

In other words, Sw(z) does not have any roots in |z| ≤ ρ.

Lemma 10. With high probability, for most distinct pairs {w, w′}, the correlation polynomial Sw,w′(z) is very
close to 0. More precisely, if w and w′ are two distinct binary words of length k and δ =

√
p, there exists ρ > 1,

such that ρδ < 1 and

∑
w∈Ak

[[|Sw,w′(ρ)| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk (51)

We will use the above results to prove that the expected values in the Bernoulli model and the
model built over a trie are asymptotically equivalent. We now prove Theorem 1 below.

Proof (of Theorem 1). From Lemmas 3 and 4, we have

H(z) = ∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
,

and

Ĥ(z) = ∑
w∈Ak

(
1

1− z
− 1

1− (1− P(w))z

)
.

subtracting the two generating functions, we obtain

H(z)− Ĥ(z) = ∑
w∈Ak

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
. (52)

We define

∆w(z) =
1

1− (1− P(w))z
− Sw(z)

Dw(z)
. (53)

Therefore, by Cauchy integral formula (see [20]), we have

[zn]∆w(z) =
1

2πi

∮
∆w(z)

dz
zn+1 = Resz=0 ∆w(z)

dz
zn+1 , (54)
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where the path of integration is a circle about zero with counterclockwise orientation. We note that the

above integrand has poles at z = 0, z =
1

1− P(w)
, and z = Aw (refer to expression (29)). Therefore,

we define

Iw(ρ) :=
1

2πi

∫
|z|=ρ

∆w(z)
dz

zn+1 , (55)

where the circle of radius ρ contains all of the above poles. By the residue theorem, we have

Iw(ρ) = Resz=0
∆w(z)
zn+1 + Resz=Aw

∆w(z)
zn+1 + Resz=1/1−P(w)

∆w(z)
zn+1

= [zn]∆w(z)− Resz=Aw

Hw(z)
zn+1 + Resz=1/1−P(w)

Ĥw(z)
zn+1 (56)

We observe that

Resz=Aw

∆w(z)
zn+1 =

Sw(Aw)

Bw An+1
w

, where Bw is as in (30)

Resz=1/1−P(w)
Ĥw(z)
zn+1 = −(1− P(w))n+1.

Then we obtain

[zn]∆w = Iw(ρ)− Sw(Aw)

Bw An+1
w
− (1− P(w))n+1, (57)

and finally, we have

[zn](H(z)− Ĥ(z)) = ∑
w∈Ak

[zn]∆w

= ∑
w∈Ak

Iw
n (ρ)− ∑

w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)

. (58)

First, we show that, for sufficiently large n, the sum ∑w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)

approaches

zero.

Lemma 11. For large enough n, and for k = Θ(log n), there exists M > 0 such that

∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)
= O(n−M). (59)

Proof. We let

rw(z) = (1− P(w))z +
Sw(Aw)

Bw Az
w

. (60)

The Mellin transform of the above function is

r∗w(s) = Γ(s) log−s
(

1
1− P(w)

)
− Sw(Aw)

Bw
Γ(s) log−s(Aw). (61)

We define

Cw =
Sw(Aw)

Bw
=

Sw(Aw)

−Sw(1) + O(kP(w))
, (62)
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which is negative and uniformly bounded for all w. Also, for a fixed s, we have

ln−s
(

1
1− P(w)

)
= ln−s

(
1 + P(w) + O

(
P(w)2

))
=
(

P(w) + O
(

P(w)2
))−s

= P(w)−s (1 + O (P(w)))−s

= P(w)−s (1 + O (P(w))) , (63)

ln−s(Aw) = ln−s
(

1−
(
− P(w)

Sw(1)
+ O

(
P(w)2

)))
=

(
P(w)

Sw(1)
+ O

(
P(w)2

))−s

=

(
P(w)

Sw(1)

)−s
(1 + O (P(w)))−s

=

(
P(w)

Sw(1)

)−s
(1 + O (P(w))) , (64)

and therefore, we obtain

r∗w(s) = Γ(s)P(w)−s
(

1− 1
Sw(1)−s

)
O(1). (65)

From this expression, and noticing that the function has a removable singularity at s = 0, we can see
that the Mellin transform r∗w(s) exists on the strip where <(s) > −1. We still need to investigate the
Mellin strip for the sum ∑w∈Ak r∗w(s). In other words, we need to examine whether summing r∗w(s)
over all words of length k (where k grows with n) has any effect on the analyticity of the function. We
observe that

∑
w∈Ak

|r∗w(s)| = ∑
w∈Ak

|Γ(s)P(w)−s
(

1− 1
Sw(1)−s

)
O(1)|

≤ |Γ(s)| ∑
w∈Ak

P(w)−<(s)
(

1− 1
Sw(1)−<(s)

)
O(1)

= (qk)−<(s)−1|Γ(s)| ∑
w∈Ak

P(w)(1− Sw(1)<(s))O(1).

Lemma 8 allows us to split the above sum between the words for which Sw(1) ≤ 1 + O(δk) and
words that have Sw(1) > 1 + O(δk).

Such a split yields the following

∑
w∈Ak

|r∗w(s)| = (qk)−<(s)−1|Γ(s)|O(δk). (66)

This shows that ∑w∈Ak r∗w(s) is bounded above for <(s) > −1 and, therefore, it is analytic. This
argument holds for k = Θ(log n) as well, as (qk)−<(s)−1 would still be bounded above by a constant
Ms,k that depends on s and k.
We would like to approximate ∑w∈Ak r∗w(s) when z→ ∞. By the inverse Mellin transform, we have

∑
w∈Ak

rw(z) =
1

2πi

∫ c+i∞

c−i∞

(
∑

w∈Ak

r∗w(s)
)

z−sds. (67)
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We choose c ∈ (−1, M) for a fixed M > 0. Then by the direct mapping theorem [22], we obtain

∑
w∈Ak

rw(z) = O(z−M). (68)

and subsequently, we get

∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)
= O(n−M). (69)

We next prove the asymptotic smallness of Iw
n (ρ) in (55).

Lemma 12. Let

Iw
n (ρ) =

1
2πi

∫
|z|=ρ

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
dz

zn+1 . (70)

For large n and k = Θ(log n), we have

∑
w∈Ak

Iw
n (ρ) = O

(
ρ−n(ρδ)k

)
. (71)

Proof. We observe that

|Iw
n (ρ)| ≤

1
2π

∫
|z|=ρ

∣∣∣∣∣∣
P(w)z

(
zk−1 − Sw(z)

)
Dw(z)(1− (1− P(w))z)

1
zn+1

∣∣∣∣∣∣ dz. (72)

For |z| = ρ, we show that the denominator in (72) is bounded away from zero.

|Dw(z)| = |(1− z)Sw(z) + P(w)zk|
≥ |1− z||Sw(z)| − P(w)|zk|
≥ (ρ− 1)α− (pρ)k, where α > 0 by Lemma 9 .

> 0, we assume k to be large enough such that (pρ)k < α(ρ− 1). (73)

To find a lower bound for |1− (1− P(w))z|, we can choose Kw large enough such that

|1− (1− P(w))z| ≥ |1− (1− P(w))|z||
≥ |1− ρ(1− pKw)|
> 0. (74)

We now move on to finding an upper bound for the numerator in (72), for |z| = ρ.

|zk−1 − Sw(z)| ≤ |Sw(z)− 1|+ |1− zk−1|
≤ (Sw(ρ)− 1) + (1 + ρk−1)

= (Sw(ρ)− 1) + O(ρk). (75)
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Therefore, there exists a constant µ > 0 such that

|Iw
n | ≤ µρP(w)

(
(Sw(ρ)− 1) + O(ρk)

) 1
ρn+1

= O(ρ−n)
(

P(w)(Sw(ρ)− 1) + P(w)O(ρk)
)

. (76)

Summing over all patterns w, and applying Lemma 8, we obtain

∑
w∈Ak

|Iw
n (ρ)| = O(ρ−n) ∑

w∈Ak

P(w)(Sw(ρ)− 1) + O(ρ−n+k) ∑
w∈Ak

P(w)

= O(ρ−n)

(
θ(ρδ)k +

pρ

1− pρ
θδk
)
+ O(ρ−n+k)

= O(ρ−n(ρδ)k), (77)

which approaches zero as n→ ∞ and k = Θ(log n). This completes the proof of of Theorem 1.

Similar to Theorem 1, we provide a proof to show that the second factorial moments of the kth Subword
Complexity and the kth Prefix Complexity, have the same first order asymptotic behavior. We are now
ready to state the proof of Theorem 2.

Proof (of Theorem 2). As discussed in Lemmas 3 and 4, the generating functions representing
E[(Xn,k)2] and E[(X̂n,k)2] respectively, are

G(z) = ∑
w,w′∈Ak

w 6=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′(z)

Dw′(z)
+

Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)
Dw,w′(z)

)
,

and

Ĝ(z) = ∑
w,w′∈Ak

w 6=w′

(
1

1− z
− 1

1− (1− P(w))z
− 1

1− (1− P(w′))z

)

+ ∑
w,w′∈Ak

w 6=w′

1
1− (1− P(w)− P(w′))z

.

Note that

G(z)− Ĝ(z) = ∑
w′∈Ak

w 6=w′

∑
w∈Ak

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
(78)

+ ∑
w∈Ak

w 6=w′

∑
w′∈Ak

(
1

1− (1− P(w′))z
− Sw′(z)

Dw′(z)

)
(79)

+ ∑
w,w′∈Ak

w 6=w′

(
1

1− (1− P(w)− P(w′))z
−

Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)
Dw,w′(z)

)
(80)

In Theorem 1, we proved that for every M > 0 (which does not depend on n or k), we have

H(z)− Ĥ(z) = ∑
w∈Ak

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
= O(n−M).
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Therefore, both (78) and (79) are of order (2k − 1)O(n−M) = O(n−M+a log 2) for k = a log n. Thus, to
show the asymptotic smallness, it is enough to choose M = a log 2 + ε, where ε is a small positive
value. Now, it only remains to show (80) is asymptotically negligible as well. We define

∆w,w′(z) =
1

1− (1− P(w)− P(w′))z
−

Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)
Dw,w′(z)

. (81)

Next, we extract the coefficient of zn

[zn]∆w,w′(z) =
1

2πi

∮
∆w,w′(z)

dz
zn+1 , (82)

where the path of integration is a circle about the origin with counterclockwise orientation. We define

Iw,w′
n (ρ) =

1
2πi

∫
|z|=ρ

∆w,w′(z)
dz

zn+1 , (83)

The above integrand has poles at z = 0, z = αw,w′ (as in (47)), and z = 1
1−P(w)−P(w′) . We have chosen ρ

such that the poles are all inside the circle |z| = ρ. It follows that

Iw,w′
n (ρ) = Resz=0

∆w,w′(z)
zn+1 + Resz=αw,w′

∆w,w′(z)
zn+1 + Resz= 1

1−P(w)−P(w′)

∆w(z)
zn+1 , (84)

and the residues give us the following.

Resz= 1
1−P(w)−P(w′)

1
1− (1− P(w)− P(w′))z)zn+1 = −(1− P(w)− P(w′))n+1,

and

Resz=αw,w′
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)
=

Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
n+1
w,w′

,

where βw,w′ is as in (48). Therefore, we get

∑
w,w′∈Ak

w 6=w′

[zn]∆w,w′(z) = ∑
w,w′∈Ak

w 6=w′

Iw,w′
n (ρ)

− ∑
w,w′∈Ak

w 6=w′

(
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
n+1
w,w′

+ (1− P(w)− P(w′))n+1

)
. (85)

We now show that the above two terms are asymptotically small.

Lemma 13. There exists ε > 0 where the sum

∑
w,w′∈Ak

w 6=w′

(
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
n+1
w,w′

+ (1− P(w)− P(w′))n+1

)

is of order O(n−ε).
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Proof. We define

rw,w′(z) =
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
z
w,w′

+ (1− P(w)− P(w′))z.

The Mellin transform of the above function is

r∗w,w′(s) = Γ(s) log−s
(

1
1− P(w)− p(w′)

)
+ Cw,w′Γ(s) log−s(αw,w′), (86)

where Cw,w′ =
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′
. We note that Cw,w′ is negative and

uniformly bounded from above for all w, w′ ∈ Ak.For a fixes s, we also have,

ln−s
(

1
1− P(w)− P(w′)

)
= ln−s

(
1 + P(w) + P(w′) + O

(
p2k
))

=
(

P(w) + P(w′) + O
(

p2k
))−s

= (P(w) + P(w′))−s
(

1 + O
(

pk
))−s

= (P(w) + P(w′))−s
(

1 + O
(

pk
))

, (87)

and

ln−s(αw,w′) =
( Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′) + O(p2k)

)−s

=
( Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′)

)−s (
1 + O(pk)

)
. (88)

Therefore, we have

r∗w,w′(s) = Γ(s)
(
P(w) + P(w′)

)−s
(1 + O(pk))

− Γ(s)

(
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′)

)−s (
1 + O(pk)

)
O(1).

(89)

To find the Mellin strip for the sum ∑w∈Ak r∗w,w′(s), we first note that

(x + y)a ≤ xa + ya, for any real x, y > 0 and a ≤ 1.

Since −<(s) < 1, we have(
P(w) + P(w′)

)−<(s) ≤ P(w)−<(s) + P(w′)−<(s), (90)
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and (
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)ßn +

Sw(1)− Sw′ ,w(1)
Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)

P(w′)

)−<(s)

≤
(

Sw′(1)− Sw,w′(1)
Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)

P(w)

)−<(s)

+

(
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′)

)−<(s)
. (91)

Therefore, we get

∑
w,w′∈Ak

w 6=w′

|r∗w,w′(s)| ≤ |Γ(s)|O(1)

(
∑

w,w′∈Ak

w 6=w′

P(w)−<(s)
(

1−
(

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
Sw′(1)− Sw,w′(1)

)<(s))

+ ∑
w,w′∈Ak

w 6=w′

P(w′)−<(s)
(

1−
(

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
Sw(1)− Sw′ ,w(1)

)<(s)))

≤ (qk)−<(s)−1|Γ(s)|O(1)(
∑

w′∈Ak

w 6=w′

∑
w∈Ak

P(w)

(
1− (Sw(1))<(s)

(
1−

Sw,w′(1)
Sw′(1)

)−<(s))
(92)

+ ∑
w′∈Ak

w 6=w′

∑
w∈Ak

P(w)Sw,w′(1)
<(s)

(
Sw′(1)− Sw,w′(1)

Sw′ ,w(1)

)−<(s)
(93)

+ ∑
w∈Ak

w 6=w′

∑
w′∈Ak

P(w′)

(
1− (Sw′(1))

<(s)
(

1−
Sw′ ,w(1)
Sw(1)

)−<(s))
(94)

+ ∑
w∈Ak

w 6=w′

∑
w′∈Ak

P(w′)Sw′ ,w(1)
<(s)

(
Sw(1)− Sw′ ,w(1)

Sw,w′(1)

)−<(s) )
. (95)

By Lemma 10, with high probability, a randomly selected w has the property Sw,w′(1) = O(δk) , and
thus (

1−
Sw,w′(1)
Sw′(1)

)−<(s)
= 1 + O(δk).

With that and by Lemma 8, for most words w,

1− Sw(1)<(s)(1 + O(δk)) = O(δk).
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Therefore, both sums (92) and (94) are of the form (2k − 1)O(δk). The sums (93) and (95) are also of
order (2k − 1)O(δk) by Lemma 10. Combining all these terms we will obtain

∑
w,w′∈Ak

w 6=w′

|r∗w,w′(s)| ≤ (2k − 1)(qk)−<(s)−1|Γ(s)|O(δk)O(1). (96)

By the inverse Mellin transform, for k = a log n, M = a log 2 + ε and c ∈ (−1, M), we have

∑
w,w′∈Ak

w 6=w′

rw,w′(z) =
1

2πi

∫ c+i∞

c−i∞

(
∑

w,w′∈Ak

w 6=w′

r∗w,w′(s)
)

z−sds = O(z−M)O(2k)

= O(z−ε). (97)

In the following lemma we show that the first term in (86) is asymptotically small.

Lemma 14. Recall that

Iw,w′
n (ρ) =

1
2πi

∫
|z|=ρ

∆w,w′(z)
dz

zn+1 .

We have

∑
w,w′∈Ak

w 6=w′

Iw,w′
n (ρ) = O

(
ρ−n+2kδk

)
. (98)

Proof. First note that

∆w,w′(z) =
1

1− (1− P(w)− P(w′))z
−

Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)
Dw,w′(z)

=
zP(w)

(
Sw,w′(z)Sw′ ,w(z)− Sw(z)Sw′(z) + zk−1Sw′(z)− zk−1Sw,w′(z)

)
(1− (1− P(w)− P(w′))z) Dw,w′(z)

+
zP(w′)

(
Sw′ ,w(z)Sw,w′(z)− Sw′(z)Sw(z) + zk−1Sw(z)− zk−1Sw′ ,w(z)

)
(1− (1− P(w)− P(w′))z) Dw,w′(z)

. (99)

We saw in (74) that |1− (1− P(w′))z| ≥ c2, and therefore, it follows that

|1− (1− P(w)− P(w′))z| ≥ c1 (100)

For z = ρ, |Dw,w′(z)| is also bounded below as the following

|Dw,w′(z)| =
∣∣(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
) ∣∣

≥ |(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))|

−
∣∣∣zk
∣∣∣ ∣∣(P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))

)∣∣
≥ (ρ− 1)β− (pρ)k

(
2(1 + pρ)

1− pρ

)
, (101)
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which is bounded away from zero by the assumption of Lemma 7. Additionally, we show that the
numerator in (99) is bounded above, as follows

|Sw,w′(z)Sw′ ,w(z)− Sw(z)Sw′(z) + zk−1Sw′(z)− zk−1Sw,w′(z)| ≤
|Sw′(z)(z

k−1 − Sw(z))|+ |Sw,w′(z)(Sw′ ,w(z)− zk−1)|

≤ Sw′(ρ)
(
(Sw(ρ)− 1) + O(ρk)

)
+ Sw,w′(ρ)

(
Sw′ ,w(ρ) + O(ρk)

)
. (102)

This yields

∑
w,w′∈Ak

w 6=w′

|Iw,w′
n | ≤ O(ρ−n) ∑

w′∈Ak

w 6=w′

Sw′(ρ) ∑
w∈Ak

P(w)
(
(Sw(ρ)− 1) + O(ρk)

)

+ O(ρ−n) ∑
w′∈Ak

w 6=w′

∑
w∈Ak

P(w)Sw,w′(ρ)
(

Sw′ ,w(ρ) + O(ρk)
)

. (103)

By (76), the first term above is of order (2k − 1)O(ρ−n+k) and by Lemma 10 and an analysis similar
to (76), the second term yields (2k − 1)O(ρ−n+k) as well. Finally, we have

∑
w,w′∈Ak

w 6=w′

|Iw,w′
n | ≤ O(ρ−n+2kδk).

Which goes to zero asymptotically, for k = Θ(log n).

This lemma completes our proof of Theorem 2.

3.5. Asymptotic Analysis of the kth Prefix Complexity

We finally proceed to analyzing the asymptotic moments of the kth Prefix Complexity. The
results obtained hold true for the moments of the kth Subword Complexity. Our methodology
involves poissonization, saddle point analysis (the complex version of Laplace’s method [23]), and
depoissonization.

Lemma 15. (Jacquet and Szpankowski, 1998) Let G̃(z) be the Poisson transform of a sequence gn. If G̃(z) is
analytic in a linear cone Sθ with θ < π/2, and if the following two conditions hold:
(I) For z ∈ Sθ and real values B, r > 0, ν

|z| > r → |G̃(z)| ≤ B|zν|Ψ(|z|), (104)

where Ψ(x) is such that, for fixed t, limx→∞
Ψ(tx)
Ψ(x)

= 1;

(O) For z /∈ Sθ and A, α < 1

|z| > r → |G̃(z)ez| ≤ Aeα|z|. (105)

Then, for every non-negative integer n, we have

gn = G̃(n) + O(nν−1Ψ(n)).
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On the Expected Value: To transform the sequence of interest, (E[X̂n,k])n≥0, into a Poisson model, we
recall that in (25) we found

E[X̂n,k] = ∑
w∈Ak

(
1− (1− P(w))n) .

Thus, the Poisson transform is

Ẽk(z) =
∞

∑
n=0

E[X̂n,k]
zn

n!
e−z

=
∞

∑
n=0

∑
w∈Ak

(1− (1− P(w))n)
zn

n!
e−z

= ∑
w∈Ak

(
1− e−zP(w)

)
. (106)

To asymptotically evaluate this harmonic sum, we turn our attention to the Mellin Transform once
more. The Mellin transform of Ẽk(z) is

Ẽ∗k (s) = −Γ(s) ∑
w∈Ak

P(w)−s

= −Γ(s)(p−s + q−s)k, (107)

which has the fundamental strip s ∈ 〈−1, 0〉. For c ∈ (−1, 0), the inverse Mellin integral is the
following

Ẽk(z) =
1

2πi

∫ c+i∞

c−i∞
Ẽ∗k (s) · z

−sds

=
−1
2πi

∫ c+i∞

c−i∞
z−sΓ(s)(p−s + q−s)kds

=
−1
2πi

∫ c+i∞

c−i∞
Γ(s)e−k(s log z

k −log(p−s+q−s))ds

=
−1
2πi

∫ c+i∞

c−i∞
Γ(s)e−kh(s)ds, (108)

where we define h(s) =
s
a
− log(p−s + q−s) for k = a log z. We emphasize that the above integral

involves k, and k grows with n. We evaluate the integral through the saddle point analysis. Therefore,
we choose the line of integration to cross the saddle point r0. To find the saddle point r0, we let
h′(r0) = 0, and we obtain

(p/q)−r0 =
a log p−1 − 1
1− a log q−1 , (109)

and therefore,

r0 =
−1

log p/q
log
(

a log q−1 − 1
1− a log p−1

)
, (110)

where
1

log q−1 < a <
1

log p−1 .

By (109) and the fact that (p/q)itj = 1 for tj =
2π j

log p/q
and j ∈ Z, we can see that there are actually

infinitely many saddle points zj of the form r0 + itj on the line of integration.
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We remark that the location of r0 depends on the value of a. We have r0 → ∞ as a → 1
log q−1 , and

r0 → −∞ as a → 1
log p−1 . We divide the analysis into three parts, for the three ranges r0 ∈ (0, ∞),

r0 ∈ (−1, 0), and r0 ∈ (−∞,−1).
In the first range, which corresponds to

1
log q−1 < a <

2
log q−1 + log p−1 , (111)

we perform a residue analysis, taking into account the dominant pole at s = −1. In the second range,
we have

2
log q−1 + log p−1 < a <

1
q log q−1 + p log p−1 , (112)

and we get the asymptotic result through the saddle point method. The last range corresponds to

1
q log q−1 + p log p−1 < a <

1
log p−1 , (113)

and we approach it with a combination of residue analysis at s = 0, and the saddle point method. We
now proceed by stating the proof of theorem 3.

Proof (of Theorem 3). We begin with proving part ii which requires a saddle point analysis. We
rewrite the inverse Mellin transform with integration line at <(s) = r0 as

Ẽk(z) =
−1
2π

∫ ∞

−∞
z−(r0+it)Γ(r0 + it)(p−(r0+it) + q−(r0+it))kdt

=
−1
2π

∫ ∞

−∞
Γ(r0 + it)e−k((r0+it) log z

k −log(p−(r0+it)+q−(r0+it)))dt. (114)

Step one: Saddle points’ contribute to the integral estimation
First, we are able to show those saddle points with |tj| >

√
log n do not have a significant asymptotic

contribution to the integral. To show this, we let

Tk(z) =
∫
|t|>
√

log n
z−r0−itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (115)

Since |Γ(r0 + it)| = O(|t|r0− 1
2 e
−π|t|

2 ) as |t| → ±∞, we observe that

Tk(z) = O

(
z−r0(p−r0 + q−r0)k

∫ ∞
√

log n
tr0/2−1/2e−πt/2dt

)

= O

(
z−r0(p−r0 + q−r0)k(log n)r0/4−1/4

∫ ∞
√

log n
e−πt/2dt

)
= O

(
z−r0(p−r0 + q−r0)k(log n)r0/4−1/4e−π

√
log n/2

)
= O

(
(log n)r0/4−1/4e−π

√
log n/2

)
, (116)

which is very small for large n. Note that for t ∈ (
√

log n, ∞), tr0/2−1/2 is decreasing, and bounded
above by (log n)r0/4−1/4.
Step two: Partitioning the integral
There are now only finitely many saddle points to work with. We split the integral range into



Entropy 2020, 22, 207 26 of 34

sub-intervals, each of which contains exactly one saddle point. This way, each integral has a contour
traversing a single saddle point, and we will be able to estimate the dominant contribution in each
integral from a small neighborhood around the saddle point. Assuming that j∗ is the largest j for

which
2π j

log p/q
≤
√

log n, we split the integral Ẽk(z) as following

Ẽk(z) = −
1

2π

 ∑
|j|<j∗

∫
|t−tj |≤ π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt


− 1

2π

∫
π

log p/q≤|t
∗
j |<
√

log n
Γ(r + it)z−r0+it(p−r0−it + q−r0−it)kdt. (117)

By the same argument as in (116), the second term in (117) is also asymptotically negligible. Therefore,
we are only left with

Ẽk(z) = ∑
|j|<j∗

Sj(z), (118)

where Sj(z) = −
1

2π

∫
|t−tj |≤ π

log p/q
z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt).

Step three: Splitting the saddle contour
For each integral Sj, we write the expansion of h(t) about tj, as follows

h(t) = h(tj) +
1
2

h
′′
(tj)(t− tj)

2 + O((t− tj)
3). (119)

The main contribution for the integral estimate should come from an small integration path that
reduces kh(t) to its quadratic expansion about tj. In other words, we want the integration path to be
such that

k(t− tj)
2 → ∞, and k(t− tj)

3 → 0. (120)

The above conditions are true when |t − tj| � k−1/2 and |t − tj| � k−1/3. Thus, we choose the
integration path to be |t− tj| ≤ k−2/5. Therefore, we have

Sj(z) = −
1

2π

∫
|t−tj |≤k−2/5

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt

− 1
2π

∫
k−2/5<|t−tj |< π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (121)

Saddle Tails Pruning.
We show that the integral is small for k−2/5 < |t− tj| <

π

log p/q
. We define

S(1)
j (z) = − 1

2π

∫
k−2/5<|t−tj |< π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (122)

Note that for |t− tj| ≤
π

log p/q
, we have
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|p−r0−it + q−r0−it| = (p−r0 + q−r0)

√
1− 2p−r0 q−r0

(p−r0 + q−r0)2 (1− cos (t log p/q))

≤ (p−r0 + q−r0)

(
1− p−r0 q−r0

(p−r0 + q−r0)2 (1− cos
(
t− tj) log p/q

))
since

√
1− x ≤ 1− x

2
for x ∈ [0, 1]

≤ (p−r0 + q−r0)

(
1− 2p−r0 q−r0

π2(p−r0 + q−r0)2 ((t− tj) log p/q)2
)

since 1− cos x ≥ 2x2

π2 for |x| ≤ π

≤ (p−r0 + q−r0)e−γ(t−tj)
2
, (123)

where γ =
2p−r0 q−r0 log2 p/q
π2(p−r0 + q−r0)2 . Thus,

S(1)
j (z) = O

(
z−r0 |Γ(r0 + it)|

∫
k−2/5<|t−tj |< π

log p/q

|p−r0−it + q−r0−it|dt

)

= O
(

z−r0(p−r0 + q−r0)k
∫ ∞

k−2/5
e−γku2

du
)

= O
(

z−r0(p−r0 + q−r0)kk−3/5e−γk1/5
)

, since erf(x) = O
(

e−x2
/x
)

. (124)

Central Approximation.
Over the main path, the integrals are of the form

S(0)
j (z) = − 1

2π

∫
|t−tj |≤k−2/5

Γ(r0 + it)z−r0+it(p−r0−it + q−r0−it)kdt

= − 1
2π

∫
|t−tj |≤k−2/5

Γ(r0 + it)e−kh(t)dt.

We have

h
′′
(tj) =

log2 p/q
((p/q)−r0/2 + (p/q)r0/2)2 , (125)

and

p−r0−itj + q−r0−itj = p−itj(p−r0 + q−r0). (126)

Therefore, by Laplace’s theorem (refer to [22]) we obtain

S(0)
j (z) =

1√
2πkh′′(tj)

Γ(r0 + itj)e
−kh(tj)(1 + O(k−1/2))

=
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

× z−r0(p−r0 + q−r0)kΓ(r0 + itj)z
−itj p−iktj k−1/2

(
1 + O

(
1√
k

))
. (127)

We finally sum over all j (|j| < j∗), and we get
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Ẽk(z) =
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

× ∑
|j|<j∗

z−r0(p−r0 + q−r0)kΓ(r0 + itj)z
−itj p−iktj k−1/2

(
1 + O

(
1√
k

))
. (128)

We can rewrite Ẽk(z) as

Ẽk(z) = Φ1((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
, (129)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2
√

2aπ log p/q
∑
|j|<j∗

Γ(r0 + itj)e−2πijx. (130)

For part ii, we move the line of integration to r0 ∈ (0, ∞). Note that in this range, we must consider
the contribution of the pole at s = 0. We have

Ẽk(z) = Ress=0Ẽ∗k (s)z
−s +

∫ r0+i∞

r0−i∞
Ẽ∗k (z)z

−sds. (131)

Computing the residue at s = 0, and following the same analysis as in part i for the above integral, we
arrive at

Ẽk(z) = 2k −Φ1((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
. (132)

For part iii. of Theorem 3, we shift the line of integration to c0 ∈ (−2,−1), then we have

Ẽk(z) = Ress=−1Ẽ∗k (s)z
−s +

∫ c+i∞

c−i∞
Ẽ∗k (z)z

−sds

= z + O
(

z−c0(p−c0 + q−c0)k
)

= za log 2 + O(zν0), (133)

where ν0 = −c0 + a log(p−c0 + q−c0) < 1.

Step four: Asymptotic depoissonization
To show that both conditions in (15) hold for Ẽk(z), we extend the real values z to complex values
z = neiθ , where |θ| < π/2. To prove (104), we note that

|e−iθ(r0+it)Γ(r0 + it)| = O(|t|r0−1/2etθ−π|t|/2), (134)

and therefore

Ẽk(neiθ) =
1

2π

∫ ∞

−∞
e−iθ(r0+it)n−r0−itΓ(r0 + it)(p−r0−it + q−r0−it)kdt (135)

is absolutely convergent for |θ| < π/2. The same saddle point analysis applies here and we obtain
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|Ẽk(z)| ≤ B
|zν|√
log n

, (136)

where B = |Φ1((1 + a log p) logp/q n)|, and ν is as in 129. Condition (104) is therefore satisfied. To
prove condition (105) We see that for a fixed k,

|Ẽk(z)ez| ≤ ∑
w∈Ak

|ez − ez(1−P(w))|

≤ 2k+1e|z| cos(θ). (137)

Therefore, we have

E[X̂n,k] = Ẽ(n) + O

(
nν−1√
log n

)
. (138)

This completes the proof of Theorem 3.

On the Second Factorial Moment: We poissonize the sequence (E[(X̂n,k)2])n≥0 as well. By the analysis
in (27),

E[(X̂n,k)2] = ∑
w,w′∈Ak

w 6=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n) ,

which gives the following poissonized form

G̃(z) = ∑
n≥0

E[(X̂n,k)2]
zn

n!
e−z

= ∑
w,w′∈Ak

w 6=w′

1− e−P(w)z − e−P(w′)z + e−(P(w)+P(w′))z

= ∑
w,w′∈Ak

w 6=w′

(
1− e−P(w′)z) (1− e−P(w)z

)

=

(
∑

w∈Ak

(
1− e−P(w)z))2

− ∑
w∈Ak

(
1− e−P(w)z)2

= (Ẽk(z))2 − ∑
w∈Ak

(
1− e−P(w)z)2

= (Ẽk(z))2 − ∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
. (139)

We show that in all ranges of a the leftover sum in (139) has a lower order contribution to G̃k(z)
compared to (Ẽk(z))2. We define

L̃k(z) = ∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
. (140)
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In the first range for k, we take the Mellin transform of L̃k(z), which is

L̃∗k (s) = −2Γ(s) ∑
w∈Ak

P(w)−s + Γ(s) ∑
w∈Ak

(2P(w))−s

= −2Γ(s)(p−s + q−s)k + Γ(s)2−s(p−s + q−s)k

= Γ(s)(p−s + q−s)k(2−s−1 − 1), (141)

and we note that the fundamental strip for this Mellin transform of is 〈−2, 0〉 as well. The inverse
Mellin transform for c ∈ (−2, 0) is

L̃k(z) =
1

2πi

∫ c+i∞

c−i∞
L̃∗k (s)z

−sds

=
1

πi

∫ c+i∞

c−i∞
Γ(s)(p−s + q−s)k(2−s−1 − 1)z−sds (142)

We note that this range of r0 corresponds to

2
log q−1 + log p−1 < a <

p2 + q2

q2 log q−1 + p2 log p−1 . (143)

The integrand in (142) is quite similar to the one seen in (108). The only difference is the extra term
2−s−1 − 1. However, we notice that 2−s−1 − 1 is analytic and bounded. Thus, we obtain the same

saddle points with the real part as in (110) and the same imaginary parts in the form of
2πij

log p/q
,

j ∈ Z. Thus, the same saddle point analysis for the integral in (108) applies to L̃k(z) as well. We avoid
repeating the similar steps, and we skip to the central approximation, where by Laplace’s theorem (ref.
[22]), we get

L̃k(z) =
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

× ∑
|j|<j∗

z−r0(p−r0 + q−r0)k(2−r0−1−itj − 1)

× Γ(r0 + itj)z
−itj p−iktj k−1/2

(
1 + O

(
1√
k

))
, (144)

which can be represented as

L̃k(z) = Φ2((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
, (145)

where

Φ2(x) =
(p/q)−r0/2 + (p/q)r0/2
√

2aπ log p/q
∑
|j|<j∗

(2−r0−1−itj − 1)Γ(r0 + itj)e−2πijx. (146)

This shows that L̃k(z) = O

(
zν√
log n

)
, when

2
log q−1 + log p−1 < a <

p2 + q2

q2 log q−1 + p2 log p−1 .
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Subsequently, for
1

log q−1 < a <
2

log q−1 + log p−1 , we get

L̃k(z) = 2k −Φ2((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
, (147)

and for
p2 + q2

q2 log q−1 + p2 log p−1 < a <
1

log p−1 , we get

L̃k(z) = O(n2). (148)

It is not difficult to see that for each range of a as stated above, L̃k(z) has a lower order contribution to
the asymptotic expansion of G̃k(z), compared to (Ẽk(z))2. Therefore, this leads us to Theorem 4, which
will be proved bellow.

Proof (of Theorem 4). It is only left to show that the two depoissonization conditions hold: For
condition (104) in Theorem 15, from (136) we have

|G̃k(z)| ≤ B2 |z2ν|
log n

, (149)

and for condition (105), we have, for fixed k,

|G̃k(z)ez| ≤ ∑
w,w′∈Ak

w 6=w′

∣∣∣ez − e(1−P(w))z − e(1−P(w′))z + e(1−(P(w)+P(w′)))z
∣∣∣

≤ 4ke|z| cos θ . (150)

Therefore both depoissonization conditions are satisfied and the desired result follows.

Corollary. A Remark on the Second Moment and the Variance
For the second moment we have

E
[
(X̂n,k)

2
]
= ∑

w,w′∈Ak

w 6=w′

E
[

X̂(w)
n,k X̂(w′)

n,k

]
+ ∑

w∈Ak

E[X̂(w)
n,k ]

= ∑
w,w′∈Ak

w 6=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n)

+ ∑
w∈Ak

(
1− (1− P(w))n) . (151)

Therefore, by (106) and (139) the Poisson transform of the second moment, which we denote by G̃(2)
k (z)

is

G̃(2)
k (z) = (Ẽk(z))2 + Ẽk(z)− ∑

w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
, (152)

which results in the same first order asymptotic as the second factorial moment. Also, it is not difficult
to extend the proof in Chapter 6 to show that the second moments of the two models are asymptotically
the same. For the variance we have
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Var[X̂n,k] = E
[
(X̂n,k)

2
]
−
(
E
[
X̂n,k

])2

= ∑
w,w′∈Ak

w 6=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n)

+ ∑
w∈Ak

(
1− (1− P(w))n)

− ∑
w,w′∈Ak

w 6=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n)

− ∑
w∈Ak

(
1− (1− P(w))n − (1− P(w))n + (1− P(w))2n

)
= ∑

w∈Ak

(
(1− P(w))n − (1− P(w))2n

)
. (153)

Therefore the Poisson transform, which we denote by G̃var
k (z) is

G̃var
k (z) = ∑

w∈Ak

(
e−P(w)z − e−(2P(w)+(P(w))2)z

)
. (154)

The Mellin transform of the above function has the following form

G̃∗var
k (z) = Γ(s)(p−s + q−s)k(−1 + O(P(w))). (155)

This is quite similar to what we saw in (107), which indicates that the variance has the same asymptotic
growth as the expected value. But the variance of the two models do not behave in the same way (cf.
Figure 2).

4. Summary and Conclusions

We studied the first-order asymptotic growth of the first two (factorial) moments of the kth
Subword Complexity. We recall that the kth Subword Complexity of a string of length n is denoted
by Xn,k, and is defined as the number of distinct subwords of length k, that appear in the string. We
are interested in the asymptotic analysis for when k grows as a function of the string’s length. More
specifically, we conduct the analysis for k = Θ(log n), and as n→ ∞.

The analysis is inspired by the earlier work of Jacquet and Szpankowski on the analysis of suffix
trees, where they are compared to independent tries (cf. [14]). In our work, we compare the first two
moments of the kth Subword Complexity to the kth Prefix Complexity over a random trie built over
n independently generated binary strings. We recall that we define the kth Prefix Complexity as the
number of distinct prefixes that appear in the trie at level k and lower.

We obtain the generating functions representing the expected value and the second factorial
moments as their coefficients, in both settings. We prove that the first two moments have the same
asymptotic growth in both models. For deriving the asymptotic behavior, we split the range for k into
three intervals. We analyze each range using the saddle point method, in combination with residue
analysis. We close our work with some remarks regarding the comparison of the second moment and
the variance to the kth Prefix Complexity.

5. Future Challenges

The intervals’ endpoints for a in Theorems 3 and 4 are not investigated in this work. The
asymptotic analysis of the end points can be studied using van der Waerden saddle point method [24].
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The analogous results are not (yet) known in the case where the underlying probability source
has Markovian dependence or in the case of dynamical sources.
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