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Abstract: This study comprehensively explores the generalized form of two-dimensional
peristaltic motions of incompressible fluid through temperature-dependent physical properties
in a non-symmetric channel. Generation of entropy in the system, carrying Joule heat and Lorentz
force is also examined. Viscous dissipation is not ignored, for viewing in-depth, effects of heat
transmission and entropy production. The modeling of equations is tracked first in fixed and then in
wave frame. The resultant set of coupled non-linear equations are solved numerically by utilizing
NDSolve in Mathematica. Comparison between NDSolve and the numerical results obtained through
bvp4c MATLAB is made for the validation of our numerical codes. The attained results are found
to be in excellent agreement. The impact of control parameters on the velocity profiles, pressure
gradient, heat transfer, streamlines and entropy production are studied and discussed graphically.
It is witnessed that entropy production and heat transfer are increased significantly subject to
the enhancement of Hartman number, Brinkman number and electrical conductivity parameter.
Hence, choosing appropriate values of physical parameters, performance and efficiency of flow
structure and system can be improved. The results reported provide a virtuous insight into bio
energy systems providing a useful standard for experimental and extra progressive computational
multiphysics simulations.

Keywords: variable fluid properties; magneto-hydrodynamics (MHD); joule dissipation; entropy
generation; peristaltic flow

1. Introduction

Peristaltic transport is unique way in which fluid like substances are propelled inside the ducts
through progressive wave trains. Basically, it is natural for the muscles and the organs of living beings
to perform peristalsis in order to meet the body’s requirements. Various functions of physiology like
flow of blood through the micro vessels, cilia and ovum’s movement in a fallopian tube, spermatozoa’s
movement, and movement of semen in vas deferens, bile transport in a bile duct, digested food’s
transport in digestive tract and urine transport are performed on the base of this mechanism. Working
of lung-heart machines and blood pumps is also based on the same principle. In order to make sure
that the fluid does not come into contact with machine parts it is recommended to use roller and finger
pumps to propel very clean and acidic material. Therefore, peristalsis is uniquely used naturally (in living
beings) and artificially in biomedical engineering and industry as well. Many studies on peristalsis are
available in the literature due to its wide range of applications. Latham [1] laid the foundation to study
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peristaltic transport of fluids experimentally. Burns and Parkes [2] paved a way to study peristalsis and
integrated wavelength and Reynolds number assumptions for a long way symmetric and asymmetric
channels. Shapiro et al. [3] compared and validated the results with previous ones under the same
assumptions of long wavelength and low Reynolds number. Zien and Ostrach [4] analytically studied
peristalsis in two dimensions with long wave estimations for viscous incompressible fluids. Vries et al. [5]
observed peristalsis exhibited by intrauterine fluid flow in symmetric and asymmetric channels because
of myometrial contractions. Taylor [6] theoretically investigated the motion of microscopic organism
particularly the transport of spermatozoa in asymmetric wave propagation. Carew and Pedley [7]
accounted lubrication theory to study the peristaltic pumping in ureter. Some of the other prominent
works were undertaken by Shukla and Gupta [8], Srivastava and Srivastava [9], Eytan and Elad [10] in
which they have considered different geometries for Newtonian and non-Newtonians fluid models.

Magneto-science is currently one of the key branches of science because of its utility in medical
science and biological systems. Some of its core examples are targeting drugs through magnets,
magnetic cell separation devices, and rate of blood flow adjustment during surgery, transportation of
bio-waste fluids, and magnet control of gastro-intestinal disorders, treatment of tumors, endoscopy
procedure and technique of hyperthermia. Magnetohydrodynamics (MHD) is a branch of science
that addresses the involvement of electrically conducting physiological fluids under the application
of a magnetic field [11]. In medical science, bio-magnet fluids are considered as belonging to the
class of physiological fluids that are highly affected by application of a magnetic field. Sud et al. [12]
studied the effects of magnetic field on the blood flow rate and observed that it accelerates the speed of
blood flow. Agrawal and Anwaruddin [13] studied MHD effect on the blood flow inside a branch
executing peristaltic motion under long wave approximation. Mekheimer [14] applied magnetic field
properties on the peristaltic flow of blood in channel. He observed that the Hartman number increases
the pressure rise per wavelength. Hayat et al. [15] concluded that the Hartman number decreases
the flow rate of fluid when they considered non-Newtonian fluid in channel under the stimulus of
magnetic field. Abd Elmaboud [16] investigated that the magnetic number increases the pressure
gradient wherein he observed peristaltic flow in an annulus with magnetic field effect. Noreen [17]
studied MHD peristaltic flow with Joule heating and convective boundary conditions for couple-stress
fluid. Some other prominent works [18–21] in the learning of MHD peristaltic conveyance are available
in literature wherein various types of geometries and fluid models are considered.

In recent years, paramount attention has been given to the peristaltic flow of Newtonian and
non-Newtonian fluids with variable physical properties. This is because, if there is a huge difference in
temperature inside the medium then it is unavoidable to disregard variable viscosity, variable thermal
conductivity and variable electrical conductivity. Animasaun and Oyem [22] recorded that viscosity of
the fluid decreases 240% when its temperature is raised from 10 ◦C to 50 ◦C. Thus, viscosity decreases
with temperature. The effect of temperature on thermal and electrical conductivity varies for different
substances because of their chemical behavior and physical structure. In the case of fluids, thermal and
electrical conductivity tends to increase on the upsurge of temperature because of free ions’ movement.
Therefore, researchers are convinced of the importance of studying peristalsis and heat transfer
with variable physical properties. Srivastava et al. [23], El Misery et al. [24], El Hakeem et al. [25],
Ali et al. [26] and a few others [27–31] have considered variable viscosity in the peristaltic transport of
fluids. In these cases, a justified relation for variable viscosity is used according to the situation of it
being either space-dependent or varying with temperature. Also, it is surveyed that some authors use
an exponential form of the viscosity relation and others take it to be a linear function. However, variable
thermal conductivity is scarcely accounted for in the previous works. Qamar et al. [32] investigated
Jeffrey fluid with peristalsis by taking both viscosity and thermal conductivity to be functions of
temperature. Qamar et al. [33] again considered variable thermal conductivity with MHD Jeffrey fluid
with heat transfer in peristalsis. Mekheimer and Elmaboud [34] investigated peristalsis with heat
transfer under the influence of variable viscosity and thermal conductivity in a vertical asymmetric
channel. Hayat et al. [35] obtained numerical results for the effects of variable viscosity and variable
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thermal conductivity along with Ohmic heating in an inclined asymmetric channel. In all the above
works, electrical conductivity is continuously taken as a constant property of the fluid. However,
its variable effects are ignored when the flow is accompanied with heat transfer under the effects of
Lorentz strength and Joule heating. Its negligence might be because of the fact that if all properties are
taken variable then the reduced coupled partial differential equations are highly non-linear as they are
not easy to handle with ordinary methods.

Entropy generation, in thermodynamics, measures the heat transfer irreversibility of the system.
System performance badly suffers during the engineering process because of the irreversibility loss
of energy. It is accepted generally that the thermal irreversibility and energy losses due to frictional
forces, temperature difference, viscosity, chemical reaction and so forth, are determined by entropy
generation. Therefore, minimizing entropy generation and increasing machines efficiency is greatly
desired, and this has influenced the scientists and researchers. Thus, in optimization of system
irreversibility, the second law of thermodynamics was deemed to be more efficient compared to the first
law and entropy generation is the only way to handle it. Bejan [36] confirmed that the heat transfer and
viscous shear stresses are responsible for entropy generation. Bejan [37] and Abbasi [38] also proposed
that the irreversibility losses can be acquired and examined by entropy generation which eventually
supplies appropriate implements for optimization analysis, especially for the modeling of fluid flow
and heat transfer devices. Abu-Hijleh [39] numerically investigated natural convection and entropy
generation analysis when fluid flows through a horizontal cylinder. Other researches [40–42] have
contributed a lot in examining the entropy generation with boundary layer flows. Entropy analysis
with peristalsis is also a hot research area of this age. A significant amount work has been done in this
area as well. Qasim et al. [43] carried out the entropy analysis of nanofluids flowing sinusoidal in a
channel. Moreover, Noreen et al. [44] studied the entropy creation in electro-osmotically peristaltically
curving viscous fluid. Abbas et al. [45] studied the second law analysis for the peristaltic motion of
nanofluid inside a non-uniform channel with compliant walls. Maraj [46] theoretically studied the
entropy generation analysis contributed by heat transfer and fluid viscosity during the peristaltic flow
of nanofluid in an asymmetric channel. Munawar et al. [47] attempted to investigate the effects of
variable viscosity on the peristaltic flow and entropy generation of fluid. Narla et al. [48] applied
the second law to investigate entropy generation for the peristaltic flow of incompressible fluid in a
curved channel. Hayat et al. [49] carried out entropy analysis of nanofluid with mixed convection and
peristalsis. Ranjit and Shit [50] studied the entropy generation for the peristaltic flow of biofluid in
a micro-channel.

In view of the above literature, the authors are convinced that no such work has been carried out
yet in which entropy generation analysis has been observed for the peristaltic flow of variable properties
fluid. This paper also focuses on all variable properties including electrical conductivity with peristalsis
and entropy generation in an asymmetric channel. Lorentz force and Joule heating are thus dominating
factors in this problem; these effects contribute variable electrical conductivity in momentum, energy
equations and entropy generation equations. Owing to complexity and non-linearity in resultant
system equations, numerical methods are used to solve this problem. Graphical results are further
plotted to understand the behavior of varying flow properties on velocity profile, pressure gradient
and streamlines based on the variation of appearing parameters.

2. Mathematical Formulation

In the presence of mixed convection, consider the two-dimensional flow of an electrically
conducting fluid flowing through an asymmetric channel of width d1 + d2. Fluid is considered to
move along the centre line of the channel in length direction, i.e., along X − axis. It is further assumed
that, due to low magnetic Reynolds number, an induced magnetic field is not considered so a uniform
magnet field B0 is applied parallel to the Y− axis. Physical and thermal properties like viscosity, thermal
conductivity and electrical conductivity are taken to be temperature dependent. The temperature of the
lower and upper bounds of the conduit are presumed to be T1 and T0, where T1 > T0. The peristaltic
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wave moves on walls of the channel with speed s along its length. Therefore, shape of the walls is
given as:

W1 = d1 + a1cos
[2π
λ

(
X − ct

)]
(1)

W2 = −d2 − a2cos
[2π
λ

(
X − ct

)
+ φ

]
(2)

To ensure that the waves are not intersecting with each other a1, a2, d1, d2 must meet the
condition

[
a2

1 + a2
2 + 2a1a2cos(φ)

]
≤ (d1 + d2)

2, with (φ+ π) the phase difference, limiting 0 ≤ φ ≤ π.
Also, the symmetry of the channel depends on φ, where φ = 0 corresponds to a symmetric channel
with waves out of phase and φ = π is taken for waves in phase. Equations of continuity, motion and
energy in a fixed frame are:
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here Φ = 2
{(

∂U
∂X

)2
+

(
∂V
∂Y

)2
}
+

(
∂V
∂X

+ ∂U
∂Y

)2
represents the viscous dissipation in (6) and

µ
(
T
)

= µ0
[
1− α1

(
T − T0

)]
, k

(
T
)

= k0
[
1 + β1

(
T − T0

)]
, σ

(
T
)

= σ0
[
1 + γ1

(
T − T0

)]
, respectively

are the relations for temperature dependent viscosity [26–31], thermal conductivity [32–35] and
electrical conductivity [51].

Following the trend of transforming equations from fixed frame
(
X, Y

)
to the wave frame (x, y)

we introduce:

U
(
X, Y, t

)
= u(x, y), V

(
X, Y, t

)
= v(x, y), P

(
Y, t

)
= p(y), X = x + ct, Y = y (7)

Utilizing (7) in (3)–(6) in the above Equations
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= 0, (8)
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Introducing the non-dimensional parameters:

x = xλ, y = yd1, u = uc , v = vcδ, p =
(
cλµ/d2

1

)
p, θ =

(
T − T0

)
/
(
T1 − T0

)
,

ψ = ψ/(cd1), u = ∂ψ/∂y, v = −δ∂ψ/∂x, δ = d1/λ, w1 = W1/d1, w2 = W2/d1,
d = d2/d1, a = a1/d1, b = a2/d1, Re = ρcd1/µ0, Ha = B0d1

√
σ0/µ0, Br =

µ0c2/
[
k
(
T1 − T0

)]
, α = α1

(
T1 − T0

)
, β = β1

(
T1 − T0

)
, γ = γ1

(
T1 − T0

) (12)

Thus, using (12) and after employing long wavelength and low Reynolds number
approximation [2], (8)–(11) reduces to:

∂p
∂x

=
∂
∂y

[
µ(θ)

∂2ψ
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]
− (Ha)2σ(θ)

(
∂ψ

∂y
+ 1

)
(13)
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= 0 (14)

∂
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]
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∂2ψ

∂y2

)2

+ σ(θ)Br(Ha)2
(
∂ψ
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+ 1

)2

= 0, (15)

On eliminating pressure gradient, momentum and heat equations become

∂2

∂y2

[
µ(θ)

∂2ψ

∂y2

]
−
∂
∂y

{
(Ha)2σ(θ)

(
∂ψ
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+ 1

)}
= 0, (16)

∂
∂y

[
k(θ)

∂θ
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]
+ µ(θ)Br

(
∂2ψ

∂y2

)2

+ σ(θ)Br(Ha)2
(
∂ψ

∂y
+ 1

)2

= 0. (17)

In Equations (16) and (17) relations for temperature dependent viscosity [26–31], thermal
conductivity [32–35] and electrical conductivity [51] are defined as

µ(θ) = (1− αθ), k(θ) = (1 + βθ), σ(θ) = (1 + γθ). (18)

Deriving the relations for boundary condition, let in fixed frame the volumetric flow rate is defined as:

Q =

∫ w1(X,t)

w2(X,t)
U
(
X, Y, t

)
dY (19)

and in the wave frame it is defined as:

q =

∫ w1(x)

w2(x)
u(x, y)dy (20)

where we know that h1 and h2 are only functions of x, hence using (12), (19) and (20), we have

Q = q + cw1(x) − cw2(x). (21)

Defining the average time flow in a T period at fixed position X is

Q =
1
T

∫ T

0
Qdt. (22)

On making use of (21) in (22) we get

Q = q + cd1 + cd2 (23)
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Defining mean flow rates as

θ∗ =
Q

c d1
And F =

q
cd1

. (24)

Thus, in laboratory and wave frames respectively, we have

θ∗ = F + 1 + d (25)

Finally, we reached boundary conditions of the form

ψ =
F
2

,
∂ψ

∂y
= −1 and θ = 0 at y = w1(x) = 1 + acos2πx (26)

ψ = −
F
2

,
∂ψ

∂y
= −1 and θ = 1 at y = w2(x) = −d− bcos(2πx + φ) (27)

Pressure rise per wavelength and friction forces across the unit wavelength at both walls are

∆Pλ =

∫ 1

0

dp
dx

dx, (28)

For an incompressible Newtonian fluid flow, the volumetric local entropy generation rate is given as:

.
E
′′′

G =
k
(
T
)

T
2

( ∂T

∂X

)2

+

(
∂T

∂Y

)2+ µ
(
T
)

T

2

(
∂U

∂X

)2

+

(
∂V

∂Y

)2+

(
∂V

∂X
+
∂U

∂Y

)2+ σ
(
T
)

T
B2

0U
2

(29)

First, second and third terms of (30) generate entropy in dimensional form owed to heat flow,
fluid resistance irreversibility and magnetic field respectively.

A distinctive (traditionally known as characteristic) entropy generation is given by( .
E
′′′

G

)
0
=

k0

d2
1

(30)

Utilizing (29), (30) and (12), the expression of entropy generation number in dimensionless form as:

DE =

.
E
′′′

G( .
E
′′′

G

)
0

=

 (1 + βθ)

(θ+ ∧)2

(
∂θ
∂y

)2

+ Br
(1− αθ)
(θ+ ∧)

(
∂2ψ

∂y2

)2

+ (Ha)2Br
(1 + γθ)

(θ+ ∧)

(
∂ψ

∂y
+ 1

)2
 (31)

where ∧ is the temperature difference parameter defined by

∧ =
T0

4T
(32)

Therefore, total entropy generation can be written as:

DE = DT + DF + DJM (33)

here in (33) DT represents entropy generation because of heat transfer, DF for entropy production by
reason of fluid friction irreversibility and the entropy produced for Joule heating and magnetic field is
represented by DJM.
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Bejan number [37,38] or the irreversibility ratio is measure of the relative contribution entropy
generations due to heat and other factors like fluid friction and magnetic field thus can be well-defined
as the relation of heat transmission irreversibility to the total irreversibility, mathematically:

Be =
DT

DE
(34)

Be =

(1+βθ)

(θ+∧)2

(
∂θ
∂y

)2

[
(1+βθ)

(θ+∧)2

(
∂θ
∂y

)2
+ Br

(1−αθ)
(θ+∧)

(
∂2ψ
∂y2

)2
+ (Ha)2Br

(1+γθ)
(θ+∧)

(
∂ψ
∂y + 1

)2
] (35)

Be ∈ [0, 1], therefore, correlation between irreversibility of fluid friction heat transfer depends on
the values of Bejan number, thus for

Be =


0, Allotherirreversibilitiesdominatesheattransferirreversibility

1
2 , Allirreversibilitiesequalsheattransferirreversibility

1, Heatflowirreversibilitydominates

3. Solution Methodology

The numerical solution of a nonlinear system of differential Equations (16) and (17) along with
boundary conditions (26) and (27) is obtained by Mathematica through NDSolve [35,43,47,52–54].
The numerical solutions are also computed by using Matlab built-in boundary value solver bvp4c.
Matlab code bvp4c for two-point boundary value problem is a finite difference code based on three-stage
collocation at Lobatto points [55]. Table 1 shows the comparison of present results with the existing
study [56]. The comparison between NDSolve and bvp4c is presented in Table 2 for the validation of
our numerical codes. The achieved results are found to be in excellent agreement.

Table 1. Comparison between Present Results and the Results of Srinivas and Kothandapani [56] for
the Ideal Heat Transfer Coefficient Z = h1x θy(x, h1), in the Special Case of Constant Fluid Properties
(α = β = γ = 0) when Br = PrEc, b = 0.6, d = 1.5 and φ = π/4.

a F M Br
x = 0.1 x = 0.2 x = 0.3

[56] NDSolve [56] NDSolve [56] NDSolve

0.5 −2.0 2.0 1.0 1.0586 1.0586 1.4556 1.4556 1.7596 1.7596
0.7 −2.0 2.0 1.0 1.5418 1.5418 2.0650 2.0650 2.6909 2.6909
0.9 −2.0 2.0 1.0 2.0542 2.0542 2.6953 2.6953 3.8524 3.8524
1.1 −2.0 2.0 1.0 2.5920 2.5920 3.3484 3.3484 5.3457 5.3457

0.5 −0.5 2.0 3.0 8.9333 8.9333 15.9061 15.9061 17.4565 17.4565
0.5 −1.0 2.0 3.0 5.9373 5.9373 9.1554 9.1554 7.6982 7.6982
0.5 −1.5 2.0 3.0 3.6075 3.6075 4.4727 4.4727 2.5390 2.5390
0.5 −2.0 2.0 3.0 1.9440 1.9440 1.8582 1.8582 1.9789 1.9789

0.5 −2.0 0.0 3.0 1.8449 1.8449 1.8352 1.8352 1.9738 1.9738
0.5 −2.0 2.0 3.0 1.9440 1.9440 1.8582 1.8582 1.9789 1.9789
0.5 −2.0 3.0 3.0 2.1353 2.1353 1.9120 1.9120 1.9932 1.9932
0.5 −2.0 4.0 3.0 2.3848 2.3848 1.9920 1.9920 2.0182 2.0182

0.5 −2.0 2.0 1.0 1.0586 1.0586 1.4556 1.4556 1.7596 1.7596
0.5 −2.0 2.0 2.0 1.5013 1.5013 1.6569 1.6569 1.8692 1.8692
0.5 −2.0 2.0 3.0 1.9440 1.9440 1.8582 1.8582 1.9789 1.9789
0.5 −2.0 2.0 4.0 2.3868 2.3868 2.0595 2.0595 2.0885 2.0885



Entropy 2020, 22, 200 8 of 22

Table 2. Effects of Different Physical Parameters on Heat Transfer Rate w1xθy(x, w1), when a = 0.5,
b = 0.6, d = 1.0, x = 0.3 and θ* = 1.5. Comparison between NDSolve and bvp4c.

Parameters h1xθy(x,h1)

M Br α β γ NDSolve bvp4c

0.0 0.3 0.2 0.1 0.1 3.69812 3.69811
1.0 0.3 0.2 0.1 0.1 3.93678 3.93676
2.0 0.3 0.2 0.1 0.1 4.65001 4.65001
0.5 0.0 0.2 0.1 0.1 2.37393 2.37393
0.5 0.1 0.2 0.1 0.1 2.83928 2.83928
0.5 0.3 0.2 0.1 0.1 3.30056 3.30057
0.5 0.3 0.0 0.1 0.1 3.91107 3.91107
0.5 0.3 0.2 0.1 0.1 3.75783 3.75783
0.5 0.3 0.4 0.1 0.1 3.59546 3.59544
0.5 0.3 0.3 0.0 0.1 3.71009 3.71007
0.5 0.3 0.3 0.1 0.1 3.67806 3.67803
0.5 0.3 0.3 0.2 0.1 3.64911 3.64898
0.5 0.3 0.4 0.2 0.0 3.56551 3.56549
0.5 0.3 0.4 0.2 0.3 3.57507 3.57504
0.5 0.3 0.4 0.2 0.6 3.58466 3.58463

4. Discussion

This section is devoted for the outcomes of analysis of various parameters appeared so far in
the flow and the irreversibility examination. Behavioral analysis of flow field, temperature profile,
entropy generation and Bejan number subject to Hartman number

(
Ha2

)
, variable viscosity parameter

(α), variable electrical conductivity parameter (γ), variable thermal conductivity parameter (β) and
Brinkman number (Br) is presented below.

Influence of Hartman number
(
Ha2

)
:

Hartman number appears in analysis due to magnetic fields applied in the fluid flow and it gives
the measurement of relative forces arising due to magnetic and viscous forces. Figure 1 shows the
outcome of Hartman number

(
Ha2

)
on velocity profile, wherein it is observed that the velocity is

dominated by the viscous and magnetic forces, hence it tends to decrease when the Hartman number(
Ha2

)
is increased but near the channel walls the aforementioned forces are dominated by the velocity

profile and present opposite behavior. In Figure 2, it is observed that the temperature profile is boosted
due to an increase in Hartman number

(
Ha2

)
, thus heat flow and Hartman number

(
Ha2

)
are found

to be in good agreement. A unique hydrodynamic property associated to peristaltic transport is
trapping which occasionally occurs while subject to large amplitude ratio. In laboratory frame, the set
of streamlines represent a fluid bolus moving with and within the wave and also while streamlines
bypass the trapped bolus they attain the shape similar to that of the wall’s shape. Figure 3 is to analyze
the effect of Hartman number

(
Ha2

)
on the trapped bolus. Through (3a-3c) it is evident that the size of

trapped bolus shrinks and number of boli(boluses) decreases on increasing values of Hartman number(
Ha2

)
because of weak streamlines circulations. Thus, magnetic field force can be used to control

the bolus formations. Figure 4 shows the effect of Hartman number
(
Ha2

)
on entropy generation

DE, wherein it is observed that the entropy generation DE increases with the increasing strength of
the magnetic field. A measure of the irreversibility ratio or the Bejan number Be with respect to
Hartman number

(
Ha2

)
is seen in Figure 5, as the Hartman number

(
Ha2

)
increases in magnitude,

the irreversibility ratio or the Bejan number Be is seen decreasing in the center of channel but increasing
near the channel walls.
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Figure 3. (a): Influence of Hartman number (𝐻𝑎 =  0.0) on trapping. (b): Influence of Hartman 
number (𝐻𝑎 =  0.5) on trapping. (c): Influence of Hartman number (𝐻𝑎 =  0.0) on trapping. 

Figure 3. (a): Influence of Hartman number (Ha = 0.0) on trapping. (b): Influence of Hartman
number (Ha = 0.5) on trapping. (c): Influence of Hartman number (Ha = 0.0) on trapping.



Entropy 2020, 22, 200 11 of 22
Entropy 2020, 22, 200 11 of 23 

 

 
Figure 4. Entropy Generation Profile for Hartman Number (𝐻𝑎). 

 
Figure 5. Bejan number profile for Hartman number (𝐻𝑎). 

Influence of variable viscosity parameter (𝛼): 
Viscosity offers resistance in the flow of heat and fluids, in Figure 6, as the variable viscosity 

parameter (α) increases the velocity initially increases but decreases later. In other words, velocity 
behaves oppositely near the upper and lower walls, but a negligible effect is observed in the center 
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when the viscosity measure increases, as shown in Figure 7. Streamline circulations get stronger as 
the variable viscosity parameter (α)  increases, hence the size and number of boli increases 
subsequently, as shown in Figure 8a–c. In Figures 8 and 9, entropy generation (𝐷 ) and Bejan 
number(𝐵𝑒) is seen with the increasing effect of variable viscosity parameter (α) respectively. It is 
noted that entropy generation (𝐷 ) is significantly controlled on the increase of variable viscosity 
parameter (α). Converse to the entropy generation (𝐷 ), Bejan number𝐵𝑒 is seen to increase near 
the channel walls but is decreasing in the center as shown in Figure 10. 
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Influence of variable viscosity parameter (α):
Viscosity offers resistance in the flow of heat and fluids, in Figure 6, as the variable viscosity

parameter (α) increases the velocity initially increases but decreases later. In other words, velocity
behaves oppositely near the upper and lower walls, but a negligible effect is observed in the center
of the channel by the increase of variable viscosity parameter (α). Similarly, heat flow drops down
when the viscosity measure increases, as shown in Figure 7. Streamline circulations get stronger as the
variable viscosity parameter (α) increases, hence the size and number of boli increases subsequently,
as shown in Figure 8a–c. In Figures 8 and 9, entropy generation (DE) and Bejan number (Be) is seen
with the increasing effect of variable viscosity parameter (α) respectively. It is noted that entropy
generation (DE) is significantly controlled on the increase of variable viscosity parameter (α). Converse
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to the entropy generation (DE), Bejan number Be is seen to increase near the channel walls but is
decreasing in the center as shown in Figure 10.Entropy 2020, 22, 200 12 of 23 
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Figure 8. (a): Effect of viscosity parameter (𝛼  =   0.0) on trapping. (b): Effect of viscosity parameter (𝛼 =  0.3) on trapping. (c): Effect of viscosity parameter (𝛼 =  0.6) on trapping. 
Figure 8. (a): Effect of viscosity parameter (α = 0.0) on trapping. (b): Effect of viscosity parameter
(α = 0.3) on trapping. (c): Effect of viscosity parameter (α = 0.6) on trapping.
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behavior of heat flow on increasing the said parameter. In Figure 13 streamlines are viewed against 
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entropy generation (𝐷 ) and Bejan number(𝐵𝑒). Both behave oppositely upon the increase of the 
said parameter; entropy generation increases while the Bejan number decreases (Figures 14 and 15). 
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Figure 10. Bejan number profile for viscosity parameter (α).

Influence of variable electrical conductivity parameter (γ):
Electrical conductivity is the measure of degree to which a material conducts electricity. Increasing

the electrical conductivity parameter (γ) may disturb the flow of heat and fluid as well; such effects are
displayed in Figures 11 and 12 Fluid flow reduces when variable electrical conductivity parameter (γ)
is increased whereas the temperature profile shows the increasing behavior of heat flow on increasing
the said parameter. In Figure 13 streamlines are viewed against the increments of variable electrical
conductivity parameter (γ). The figure highlights that the trapping boli reduce both in size and number
when the variable electrical conductivity parameter (γ) is increased. Variable electrical conductivity
parameter (γ) considerably affects the behavior of entropy generation (DE) and Bejan number (Be).
Both behave oppositely upon the increase of the said parameter; entropy generation increases while
the Bejan number decreases (Figures 14 and 15).
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Figure 13. (a): Effect of electrical conductivity parameter (𝛾 =  0.0)  on trapping. (b): Effect of 
electrical conductivity parameter (𝛾 =  0.2)  on trapping. (c): Effect of electrical conductivity 
parameter (𝛾 =  0.4) on trapping. 

Figure 13. (a): Effect of electrical conductivity parameter (γ = 0.0) on trapping. (b): Effect of
electrical conductivity parameter (γ = 0.2) on trapping. (c): Effect of electrical conductivity parameter
(γ = 0.4) on trapping.
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Influence of Brinkman number (Br):
Brinkman number, in the fluid flow, characterizes the viscous dissipation as it is the ratio of viscous

heat generation to the external heating. Figure 16 shows that the heat flow and Brinkman number are
proportional to each other; the temperature profile tends to increase with the upsurge of Brinkman
number (Br). Similar behavior is also reported for entropy generation as shown in Figure 17. On the
contrary, Figure 18 shows that the Bejan number tends to decrease with the increase of Brinkman
number (Br).

Influence of variable thermal conductivity parameter (β):
The heat conduction capability of materials is known as thermal conductivity (β). Naturally,

heat flow reduces when the thermal conductivity increases. In Figure 19, the temperature profile
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decreases as the thermal conductivity parameter is increased. An increase in thermal conductivity (β)

may cause disorder throughout the heat flow process; thus, it may cause entropy generation when
thermal conductivity (β) of the fluids is increased. Figure 20 shows a direct relation between thermal
conductivity (β) and entropy generation. Bejan number/irreversibility also behaves similarly, as does
the entropy generation; in Figure 21, it increases upon the boost of thermal conductivity parameter (β).Entropy 2020, 22, 200 18 of 23 
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5. Conclusions

All variable flow and heat properties are studied in an entropy analysis of MHD peristaltic flow
of incompressible fluids within an asymmetric channel. Thermal analysis is also done with no slip
conditions. Hence, the main results and outcomes can be summarized as follows:

• Fluid flow is observed to reduce when the Hartman number
(
Ha2

)
, viscosity parameter (α) and

electrical conductivity parameters (γ) are enhanced.
• Heat transfer is reported to behave similarly for variation of Hartman number

(
Ha2

)
, electrical

conductivity parameters (γ) and Brinkman number (Br) but it presents opposite behavior in the
case of the viscosity parameter (α).

• Entropy generation is amplified by the variation of Hartman number
(
Ha2

)
, electrical conductivity

parameters (γ) and Brinkman number (Br).
• Bejan number is reduced when Hartman number

(
Ha2

)
, electrical conductivity parameters (γ)

and Brinkman number (Br) are enhanced.
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