
entropy

Article

Multiscale Entropy as a New Feature for EEG and
fNIRS Analysis

Thanate Angsuwatanakul 1,*, Jamie O’Reilly 2, Kajornvut Ounjai 3,
Boonserm Kaewkamnerdpong 3 and Keiji Iramina 1,4

1 Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan;
iramina@inf.kyushu-u.ac.jp

2 College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand; Jamie.o@rsu.ac.th
3 Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi,

Bangkok 10140, Thailand; kajornvut.oun@kmutt.ac.th (K.O.); boonserm.kae@kmutt.ac.th (B.K.)
4 Faculty of Information Sciences and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
* Correspondence: thanate.a@rsu.ac.th

Received: 27 November 2019; Accepted: 6 January 2020; Published: 7 February 2020
����������
�������

Abstract: The present study aims to apply multiscale entropy (MSE) to analyse brain activity in
terms of brain complexity levels and to use simultaneous electroencephalogram and functional
near-infrared spectroscopy (EEG/fNIRS) recordings for brain functional analysis. A memory task
was selected to demonstrate the potential of this multimodality approach since memory is a highly
complex neurocognitive process, and the mechanisms governing selective retention of memories
are not fully understood by other approaches. In this study, 15 healthy participants with normal
colour vision participated in the visual memory task, which involved the making the executive
decision of remembering or forgetting the visual stimuli based on his/her own will. In a continuous
stimulus set, 250 indoor/outdoor scenes were presented at random, between periods of fixation on
a black background. The participants were instructed to make a binary choice indicating whether
they wished to remember or forget the image; both stimulus and response times were stored for
analysis. The participants then performed a scene recognition test to confirm whether or not they
remembered the images. The results revealed that the participants intentionally memorising a visual
scene demonstrate significantly greater brain complexity levels in the prefrontal and frontal lobe than
when purposefully forgetting a scene; p < 0.05 (two-tailed). This suggests that simultaneous EEG and
fNIRS can be used for brain functional analysis, and MSE might be the potential indicator for this
multimodality approach.

Keywords: brain complexity; electroencephalogram (EEG); functional near-infrared spectroscopy
(fNIRS); multiscale entropy (MSE)

1. Introduction

Each neuroimaging modality has its own peculiarities, pros and cons. For example,
electroencephalogram (EEG) recordings give high temporal resolution but low spatial resolution,
whereas functional near-infrared spectroscopy (fNIRS) offers high spatial resolution but relatively low
temporal resolution (compared with EEG). Furthermore, fNIRS does not suffer from electromyographic
(EMG) and blink artefacts. Combining the two modalities of EEG and fNIRS is therefore a complementary
approach for brain function analysis wherein the strengths of each method support the weaknesses of
the other. The simultaneous acquisition of EEG and fNIRS may therefore provide a more complete
picture of brain activity than either of the two individual modalities. In this sense, we believe that
fNIRS should not be considered a competitor of EEG, but rather as a pooling modality for cases in
which one technique is insufficient.
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For an in-depth understanding and insight of what is happening inside the human brain,
both high spatial and high temporal resolutions are likely to be beneficial. Research studies combining
simultaneous EEG/fNIRS to examine memory functions are scant. However, there are a handful of
published studies using simultaneous EEG and fNIRS to assess visual memory function [1–3], which
employ bimodal recordings of EEG and fNIRS to measure and discriminate between levels of mental
workload; promising results for the accurate quantification of mental workload in real-world settings
are reported therein. In addition, Sun et al. [4] proposed a multimodal approach to evaluate EEG and
fNIRS signals for affective state detection. Their results indicate that simultaneous EEG and fNIRS
improves performance over fNIRS or EEG only. Despite using bimodal recordings of EEG and fNIRS,
neither of these studies has explored the application of multiscale entropy (MSE) for signal analysis.

1.1. EEG as Measurement for Brain Complexity

Electroencephalography is regarded as a noninvasive, functional neuroimaging technique [5],
which consists of measuring electrical activity from the brain using electrodes placed on the scalp.
This has been widely applied in order to investigate the underlying processes involved in neural activity.
Since EEG can measure brain activity with high temporal resolution, it is suitable for capturing dynamic
brain activity. Recording EEG remains the most effective technique for observing near-instantaneous
neural responses to visual stimuli [6].

Furthermore, EEG devices are inexpensive and robust for the measurement of brain activity [7].
However, the fundamental limitation of EEG is the low spatial resolution caused by the diffusion of
electrical signals travelling between their intracranial source and the electrodes on the scalp. The inverse
square law of electric fields also limits the influence of subcortical structures on EEG waveforms.
Generally, theta (4–7 Hz) and alpha (8–12 Hz) frequency ranges are dominant during working memory
tasks [8]. Increases in theta range spectral power have been associated with increasing difficulty of
memory tasks [9].

In addition, Zhang et al. [10] evaluated the modulation effects of mental workload on functional
connectivity and found sustained and load-dependent theta power enhancement in the frontal midline
region. In addition, Teng et al. [11] compared EEG recordings recorded during resting and active stages
in elderly people, and they found that beta spectral power significantly decreased. This change may be
a reflection of age-related changes in memory.

1.2. fNIRS as Measurement for Brain Complexity

Near infrared spectroscopy (NIRS) is a relatively recent invention compared with EEG.
It was developed in 1992 and presently multichannel systems are commercially available [12].
As a neuroimaging tool, functional NIRS (fNIRS) offers a number of advantages. For example,
it is noninvasive, easy to set up and does not require a large space [13]. Moreover, it offers a reasonable
trade-off between temporal and spatial resolution [14], improving on the spatial resolution of EEG.
This method is also safe for use with neonates [15] and can be applied to observe brain function over
extended periods.

To perform fNIRS, two near-infrared lights (650 and 1000 nm) are emitted through the scalp.
Photodetectors track the diffusion of NIR light energy through the underlying brain tissue by measuring
light intensity. This measurement relies on the absorption of light and light-scattering properties of the
tissue. Changes in the metabolic activity of the brain induce haemodynamic responses that alter the
rate of NIR light absorption. This influences the level of NIR light intensity being measured, which
provides an index of oxy-haemoglobin (Hb.O2) and deoxy-haemoglobin (Hb.R) concentrations [16,17].
These are related to local neural function and the presumed cause of metabolic demand.

Functional near-infrared spectroscopy (fNIRS) was used by Borfeld et al. [18] to study brain
activity in infants. They found hemispheric asymmetry in the level of Hb.O2, with the left more active
while the infants were watching an animation with speech. Schroeter et al. [19] investigated brain
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functions during a Stroop test using fNIRS. They found a left-lateral difference in the haemodynamic
responses of the prefrontal cortex that emerged with age.

Araki et al. [20] used fNIRS to analyse brain function in children diagnosed with hyperactivity
disorder in response to treatment with atomoxetine. Levels of Hb.O2 showed a significant decrease in
the left ventrolateral prefrontal cortex. This neuroimaging modality has also been applied to investigate
changes in brain activity following rehabilitation therapy in stroke patients.

According to Schreppel et al. [21], fNIRS has been widely used to investigate neural responses.
They identified changes in several brain regions, including the prefrontal cortex, occipital region,
parietal regions and medial temporal areas. Using fNIRS, it has been found that differences in brain
activity of the frontal cortex depend on the level of difficulty of tasks [22]. Additionally, oxy-haemoglobin
concentration during difficult tasks changes more when compared with easy tasks. This has been
confirmed through investigation; for example, a study by Sasabe and Hagiwara [23] characterised and
compared oxygenated haemoglobin concentration changes in the brain using fNIRS measurements.
Their analysis demonstrated a significant correlation between the number of false answers and the
level of Hb.O2, suggesting that Hb.O2 increases with task difficulty level.

Mirelman et al. [24] also found a difficulty-related increase in frontal brain activity while doing
two tasks during walking. Increased Hb.O2 in the frontal cortex was maximal while the participants
were walking and serially subtracting 7s, followed by walking while counting forward, then the lowest
while the participants were walking or standing without performing mental calculations. These kinds
of studies rely on well-defined and separable task difficulties; if tasks are ill defined or too similar,
the analysis may be obscured.

1.3. Potential Application in the Study of Memory

Memory plays a crucial role in human life. It allows us to construct life-narratives by linking
past, present and future events. Past events that we have experienced are important because they
enable us to make educated decisions in the present and to construct mental scenarios in real-time; this
forward thinking, or ability to simulate future events, is a quintessentially human trait [25]. Memory
can be classified into long-term, short-term and working memory (WM) [26]. Long-term memory,
in which information is held indefinitely, encrypts information semantically for storage. In contrast,
short-term memory stores information temporarily for fast response activities. Short-term memory
retains information for a short period, whereas WM manipulates this for temporary storage. In other
words, WM retains and uses, while short-term merely retains. This has been examined in previous
functional neuroimaging studies, which identified the prefrontal cortex (PFC) as the most relevant
cortical locus of activation [27]. Memory also changes through time; some grow stronger and last,
whereas others fade.

Central to the functioning of the mind, memory is associated with abilities and outcomes such as
intelligence and educational achievement and is linked to sensory processes [28]. Different studies
have been carried out to understand memory functions based on fNIRS and EEG independently, all of
which have their own strengths and weaknesses. For example, Aghajani et al. [3] and Aghajani and
Omurtag [29] measured mental workload during a working memory task while recording EEG and
fNIRS and identified some clear differences between the two signals. They correctly point out that
EEG results from the summed electrical potential of large numbers of cortical and some subcortical
neurons with submillisecond temporal resolution. In contrast, fNIRS yields localised measures of
Hb.O2 and Hb.R concentrations, which are considered to reflect metabolic changes associated with
neural activity. Furthermore, the physical measurement of EEG and fNIRS is somewhat different
and requires conductive electrodes and light-sensitive transducers, respectively. This distinction in
the signal acquisition method causes EEG to be prone to distortion from blink and muscle artefacts.
However, it is not the case for fNIRS.
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Coffey et al. [30] used three-channel fNIRS covering the left forehead together with eight EEG
electrodes placed in the frontal and central areas, in an n-back task. They extracted EEG power spectra
and fNIRS Hb amplitude features, and employed them in a linear discriminant analysis classification.
The results from ten participants revealed a maximum accuracy of 79.7% (with fNIRS) and 89.6%
(with EEG). Moreover, Liu et al. [31] employed a 16-optode continuous wave fNIRS system covering
the forehead and 28 EEG electrodes positioned according to the standard 10/20 system in the n-back
task. The results from sixteen participants showed significant correlations between WM load and EEG
as well as Hb.O2 and Hb.R.

1.4. Hypotheses and Objectives

The present study focuses on examining brain activity using simultaneous EEG/fNIRS data
recorded during a behavioural task. Multiscale entropy (MSE) was then applied to analyse these
signals in terms of entropy or brain complexity levels. Brain complexity is considered as an interesting
characteristic since the dynamics of brain activity can illustrate task-related functions. In this study,
a pooling of bioelectricity (EEG) and haemodynamic (fNIRS) signals was used to measure different
perspectives of brain complexity. The scale of data measurement was also adjusted to be consistent
with the entropy scale.

The main aim of the present study was to apply MSE as a new feature for EEG and fNIRS analysis
in respect to brain complexity levels. A null hypothesis is formulated as follows: there is no statistically
significant difference in the participants’ responses to pictures with visual stimuli between MSE analysis
of EEG/fNIRS measurements.

2. Materials and Methods

2.1. Multiscale Entropy (MSE)

The notion of entropy was first introduced by Rudolph Clausius in the context of
thermodynamics [32]. It acts in accordance with the second law of thermodynamics, which states that
the change of the entropy in the volume element is equivalent to the ratio of the heat state changes in
temperature [33]. The term “Entropy” is thus appreciated from the viewpoint of both thermodynamics
and information theory by means of a display of system uncertainty. The concept of information
entropy is proposed by Shannon in 1948, who is regarded as the father of information theory. At present,
the applications of entropy in biomedical signals have received extensive research attention [34–36].
For instance, Pincus [37] proposed the concept of approximate entropy to examine the changes of
heart rate for infantile sudden illness. Approximate entropy is well suited to solve the problem of
common signal with short noise in biomedical signals. Richman and Moorman [38] developed sample
entropy. Sample entropy, compared with approximate entropy, shows better relative consistency and
less dependence on data length [38–40].

On the basis of sample entropy with a multiscale approach on temporal data, MSE has been widely
applied for medical data analysis. This is pertinent given the complexity and nonlinearity of medical
data. Shannon entropy has led to the development of various entropies such as Kolmogorov–Sinai
entropy, Grassberger entropy and approximate entropy. Approximate entropy (ApEn) has been
commonly used to analyse biological data [41,42]. Furthermore, it was developed into sample entropy
(SampEn) [38,42]. In the vein of ApEn, SampEn divides the data into short sequences, called epochs,
and then determines the sample entropy according to Equation (1).

SampEn(m, r, N) = − log
(∑

Ai∑
Bi

)
= − log

A
B

, (1)

where m is template length, r is the tolerance for accepting matches, N is the number of data points,
Ai is the number of matches of length m+1 and Bi is number of matches of length m.
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To determine MSE, the data are coarse-grained by averaging in the range of a specified scale;
for scale 2, two adjacent data points are averaged, thus the number of total data points is reduced to
N/2 if there are originally a total of N data points. Through the scaling process, the new dataset can be
expressed by Equation (2) [38,42–45]. As a result of a large number of recording channels with a high
sampling frequency, multiscale analysis is required to obtain linear MSE graphs. Sample entropy was
therefore selected to optimise efficiency in data processing [38].

y(τ)
j =

1
τ

∑
i = jτ − τ+ 1jτxi, 1 ≤ j ≤

N
τ

, (2)

where τ is the scale level and xi is the original data point, then the new dataset is used to compute
sample entropy in each scale.

Previous studies have shown that SampEn has the acceptable range for m = 2, r = 0.15 × SD of the
time series [38,46]. Adopting the method proposed by Catarino et al. [46], we used m = 2, r = 0.15 × SD
of the time series. For N, we calculated the sampling frequency and epoch length used for quantitative
analysis (12 s).

According to Richman and Moorman [38], the appropriate N size for SampEn analysis must be
a minimum of 10m to 20m, where m = 2; N should be at least 100 to 400 in each scale. When the scale
increases, the number of N in each scale will decrease. For an EEG sampling frequency at 500 Hz,
when calculating the size of N, NEEG is equal to 500 Hz × 12 s = 6000 data points. Considering the 20th
scale, the size of the NEEG is 300, which is still enough for SampEn analysis. With respect to fNIRS,
which has a sampling frequency of only 10 Hz. To calculate the size of N, NfNIRS = 10 Hz × 12s = 60 data
points, which is not enough to perform analysis with SampEn from Scale 1. Therefore, it is necessary
to up-sample by a factor of 10 using the spline interpolation method to get NfNIRS = 1200 data points,
which is enough to analyse with SampEn up to Scale 12. For topographic rendering, the values of MSE
EEG and MSE fNIRS at Scale 10 were used for analysis as the mean values with the sufficient size of N.

2.2. Participants and EEG/fNIRS Recording

The participants of this study were 12 males and 3 females aged from 20 to 30 years old
(males: M = 25.08, SD = 2.19; females: M = 25.00, SD = 1.00), all were students of different ethnicities
(e.g., Japanese, Chinese, Thai and Indonesian). The participants were self-reported right handed,
had normal colour vision with no prior memory disorders and no history of mental illness or
sustained physical illness. In line with the study of Alloway, Gathercole and Pickering [47] in which
they reported that gender differences do not affect memory performance, this was not considered
an exclusionary criterion.

Concerning the relationship between memory function and age, Lambek and Shevlin [48]
suggested that memory growth is constant and begins to level off at the age of twenty. Memory function
is also known to decline in later life. Thus, participants within the age range of 20 to 30 years were
considered for this study. The participants signed an informed consent form before the experiment and
participated in this study voluntarily. The participants were selected based on a purposive sampling
method with the criteria shown in Table 1.

Table 1. Selection criteria of participants.

Criteria

1. Age range 20–30
2. Normal colour vision
3. No prior memory disorders
4. No history of mental illness or sustained physical illness
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The participants were given task-specific instructions as well as a brief practice session to minimise
their bodily movements and control their eye movements during the visual task. In line with the study
by Yoo and Chung [49], they were seated in a comfortable, height-adjustable chair, at a distance of
approximately 50 cm from the computer screen so that their eyes were positioned directly in-line with
the fixation point.

As shown in Figure 1, simultaneous EEG/fNIRS data were recorded from cranial locations
based on the international 10/20 system using a customised head-cap. In a continuous stimulus set,
the participants were asked to look at the screen while each of the 250 indoor/outdoor scenes from
the scene understanding (SUN) database [50] were randomly shown. All stimuli were presented on
a computer screen for 3 s between eye-fixation on a black-coloured background for 9 s. During this
period, the participants were instructed to make a binary choice by clicking the mouse (i.e., the left
button to designate “remember” when they believed the test item was part of the memory set and
would like to remember it, and the right button to designate “forget”, when they believed the test item
was not part of the memory set and would like to forget it). The timing diagram and the sequence of
stimuli are shown in Figure 2.Entropy 2020, 22, x FOR PEER REVIEW 6 of 22 
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After the measurement, the participants rested for 10 min before performing a scene recognition
test. In this part of the task, they had to identify which of the 500 scenes they had previously seen in
the experiment. The recognition test scenes comprised 250 scenes from the previous experiment and
250 new ones.

As noted, Figure 2 illustrates the steps and timing of the experiment. Period t1 is the prestimulus
time before the experiment started. The EEG/fNIRS signals with corrected baseline were then segmented
into epochs; each spanning period t2, the time for visual stimulus, and t3, the time for receiving
response from each participant. EEG data were recorded using a Neurofax 1100 (Nihonkoden, Japan)
at a sampling frequency of 500 Hz.
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All recorded EEG channels were arranged into a topographic figure. Independent component
analysis (ICA) was performed on raw EEG/fNIRS data using the open-source toolbox EEGLAB
v12.0.2.5b [51,52] in MATLAB (R2015b; Mathworks Ltd., Natick, MA, USA). Components relating to
eye blinking and eye movement artefacts were removed. Other noises were also removed with digital
bandpass (0.5 to 50 Hz) and notch (60 Hz) filters. Prestimulus baseline correction was then performed.

All fNIRS data were recorded by fNIRS Hitachi ETG-7100 (Hitachi, Tokyo, Japan) with a 10 Hz
sampling frequency. The discrete wavelet transforms (DWT) was used to remove noise from fNIRS
data. The Daubechies 8 wavelet was selected as the mother wavelet. As the epoch interval was 12 s,
component d6 was identified as the main task-related component, with side components d5 and d7.
Reconstructed signals therefore comprised d5, d6 and d7 components, without the approximated
component for baseline removal. This study was approved by the Ethics Committee at Faculty of
Information Science and Electrical Engineering, Kyushu University.

For each participant, we examined the brain complexity from the results of the participants’
responses on pictures with visual stimuli. A memory “hit” may be defined as a trial in which the
participant chose to remember a visual stimulus in the continuous stimulus set and correctly identified
it in the scene recognition test. Conversely, a memory “miss” occurs when the participant chose to
remember a picture but could not recognise it in the scene recognition test. Overall numbers of memory
hits and misses per participant may be taken to reflect different levels of brain complexity.

After signal reconstruction, all epochs were categorised into four groups: remember and
remembered (RR), remember but forgot (RF), forget and forgot (FF) and forget but remembered
(FR) cases; the first letter indicating the participants’ preference to remember or forget the stimulus,
the second letter indicating their performance (i.e., if they remembered or forgot). The number of
epochs in each group therefore depended on the participants’ decisions during the continuous stimulus
set and subsequent responses in the scene recognition test.

From a total of 3750 trials, there were 1163 (31.01%) RR, 348 (9.28%) RF, 1575 (42.00%) FR,
651 (17.36%) FF and 13 (0.35%) no response. All epochs corresponding to the same category at each
channel were analysed with the MSE approach.

Note that from the total of 3750 trials, we only considered the complete trials and eliminated the
trials that the participants left blank or did not respond to, as shown in Table 2.
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Table 2. Demographic information of participants.

Participants ID Gender Age Remember and
Remembered (RR)

Remember but
Forgot (RF)

Forget but
Remembered (FR)

Forget and
Forgot (FF)

No
Response Total

N0001 M 21 100 36 86 28 0 250
N0002 F 26 15 1 144 90 0 250
N0003 M 22 68 32 90 59 1 250
N0004 M 26 96 24 58 71 1 250
N0005 F 24 48 12 146 44 0 250
N0006 M 25 74 6 148 22 0 250
N0007 M 25 26 3 193 28 0 250
N0008 M 26 63 25 91 69 2 250
N0009 M 24 103 33 79 34 1 250
N0010 M 28 85 27 94 39 5 250
N0011 M 25 90 32 98 30 0 250
N0012 F 25 112 17 80 41 0 250
N0013 M 29 91 54 68 34 3 250
N0014 M 25 86 17 120 27 0 250
N0015 M 25 106 29 80 35 0 250

Total M = 12
F = 3

Male (M = 25.08,
SD = 2.19)

Female (M = 25.00,
SD = 1.00)

1163
(31.01%)

348
(9.28%)

1575
(42.00%)

651
(17.36%)

13
(0.35%)

3750
(100%)

3. Results

Considering a total of 3750 trials from 15 participants, regardless of whether they wished to
remember or forget, the participants remembered 2738 trials or 73.01% of all visual stimuli. This suggests
that the brain has the capacity to retain visual information in this experiment no matter how much
of an intentional mental state is involved. It indicates the large extent to which memory is under
subconscious control.

As shown in Table 3, in terms of pictures viewed per participant, the cohort may be categorised
into two groups: Group A (%R1–%R3 at similar levels, such as N0001 and N0003); Group B (%R1–%R3
at different levels, such as N0002 and N0004).

Table 3. Pictures viewed per participant.

Participant ID %R1 %R2 %R3 Group

N0001 73.53 74.40 75.44 A
N0002 93.75 63.60 61.54 B
N0003 68.00 63.20 60.40 A
N0004 80.00 61.60 44.96 B
N0005 80.00 77.60 76.84 A
N0006 92.50 88.80 87.06 A
N0007 89.66 87.60 87.33 A
N0008 71.59 61.60 56.88 B
N0009 75.74 72.80 69.91 A
N0010 75.89 71.60 70.68 A
N0011 73.77 75.20 76.56 A
N0012 86.82 76.80 66.12 B
N0013 62.76 63.60 66.67 A
N0014 83.50 82.40 81.63 A
N0015 78.52 74.40 69.57 A

Mean 79.07 73.01 70.11 A = 11
SD 8.92 8.98 11.45 B = 4
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By splitting the participants in this manner, we hope to potentially gain insights into the application
of different strategies or memory-boosting mnemonics. As for %R1 to %R3, they can be calculated
from Equations (3)–(5) as follows:

%R1 = %RR/(RR + RF) (3)

%R2 = %(RR + FR)/(RR + RF + FR + FF + No response) (4)

%R3 = %FR/(FR + FF) (5)

where, %R1 = the percentage of memory efficiency, %R2 = the percentage of memory recall, %R3 = the
percentage of accidental memory recall.

3.1. EEG Complexity

In each individual channel, epochs of EEG signals were converted into brain complexity levels
using MSE. These were displayed in accordance with levels of sample entropy from Scale 1 to Scale 20.
Refer to Equations (1) and (2).

The average responses from 15 participants are shown in Figure 3. These graphs provide
an example of MSE with standard error (SE) bars at electrode site F7. In the frontal lobe, which is
associated with WM function, there is a notable gradient between Scale 1 and Scale 3. The remainder
of the response exhibits a lower gradient increase in sample entropy.

The study-averaged MSE responses at channel F7 to each of the four epoch classes (RR, RF, FR
and FF) are plotted for comparison in Figure 4. This figure illustrates that the RF condition produced
the highest level of sample entropy, followed by RR, FR and then FF.

Furthermore, when combined into two groups: Group 1 (RR and RF), and Group 2 (FR and FF);
the findings indicate that attempts to remember (RR and RF) cause greater levels of brain activation
than forgetting.
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3.2. fNIRS Complexity

Similarly to EEG signals, data from 28 fNIRS channels were converted into brain complexity levels
using MSE and displayed in terms of sample entropy from Scale 1 to Scale 20. For comparison, graphs
of Hb.O2 and Hb.R concentrations converted into brain complexity levels are shown in Figures 5–8.
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In line with EEG MSE analysis, Figure 5 shows an example of fNIRS MSE with standard error (SE)
bars at the F7 site. In comparison with EEG MSE, Hb.O2 from fNIRS MSE is more linear, showing
considerably lower levels of entropy due to fNIRS having slow wave characteristics.

Figure 6 shows a graph of fNIRS MSE for Hb.O2 during each epoch type. There is a subtle
difference among each of them, with the intention to remember (RR and RF) producing slightly higher
levels of fNIRS MSE for Hb.O2.

Figures 7 and 8 show equivalent graphs of fNIRS MSE for Hb.R, displaying similar responses to
Hb.O2, both in terms of linearity and sample entropy level. These data mirrored the findings from the
EEG MSE results that revealed RF (remember but forgot) produces more frontal brain activity than the
RR, FR and FF conditions.

3.3. MSE Topography

In order to present a more complete representation of recorded brain activity for each group,
topography maps are used to show 30-channel EEG and 28-channel fNIRS data altogether in Figures 9–11.
These plots are study averages from all participants.

From Scale 1 to Scale 20, the results of MSE taken from Scale 10 or the middle scale are shown in
the topography. In this study, Scale 10 is considered acceptable for the sampling frequency in terms of
both EEG and fNIRS.

Figure 9 shows the brain activity presented in levels of entropy from 1.5 to 2.3. The results revealed
that the brain activation measured in RR (remember and remembered) is higher when compared to RF,
whereas FR and FF are the same.

Figures 10 and 11 show the topography of fNIRS of Hb.O2 and Hb.R presented in levels of entropy
from 0.1 to 0.32, respectively. As shown in Figure 10, for Hb.O2, the results revealed that there is
considerable difference between the (RR and RF) and (FR and FF) epoch classes. As for (FR and FF),
the brain is more active at the motor cortex and the parietal lobe when compared to (RR and RF).

Figure 11 shows the topography of fNIRS in Hb.R. Despite showing a higher complexity level,
it is difficult to differentiate between the four epoch classes.
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3.4. Statistical Analysis: Wilcoxon Signed-Rank Test

For statistical analysis, an IBM SPSS Version 22 was used. This study employed the Wilcoxon
signed-rank test, a nonparametric statistical technique, to compare a repeated measurement in one
sample group to determine the significant difference in mean rank of each pair (i.e., RR-FF, RR-FR,
RR-RF, FF-FR, FF-RF and FR-RF).

The sample size in this study is small (less than 30) so that an assumption of normal distribution
is impossible reach. For this case, the use of the Wilcoxon signed-rank test, which is a substitution of
paired sample t-test in parametric statistics, is therefore considered as a suitable method of data analysis.

This study is based on two nominal variables, that is, memory capacity whether the participants
remembered or forgot each visual stimulus in the tasks (the experiment and the scene recognition test),
and one measurement variable (simultaneous EEG and fNIRS).

A level of difference in median in memory capacity was significant at zero (W = 0, p < 0.05).
The results of the Wilcoxon signed-rank test are shown in Table 4.

As mentioned, this section aims to present a significant difference in six pairs of the participants’
responses (i.e., RR-RF, RR-FR, RR-FF, RF-FR, RF-FF and FR-FF) on 30 channels in EEG, each of the 28
channels in Hb.O2 and Hb.R measurements.

The findings indicate that the responses in the RF group (Md = 0.22) were significantly greater
than those of the RR group (Md = 0.17) in channel F7, Z = −2.73, p = 0.01, r = 0.50.

On the other hand, the levels of change in the participants’ brains in the comparison of the
responses between the RF and RR groups were equal (Md = 0.20) in channel F3, Z = −2.14, p = 0.03,
r = 0.39.



Entropy 2020, 22, 189 15 of 23

Table 4. Results of the Wilcoxon signed-rank test.

Types of Measurements Pairs Median Channels Z Asymp. Sig. (Two-Tailed) r Effect Size

EEG

1
RR 2.09

AF4 −2.07 b 0.04 0.38 mediumRF 2.11

2
RR 2.13

T8 −2.23 b 0.03 0.41 mediumFR 2.15

3
RF 2.13

AF3 −1.95 b 0.05 0.36 mediumFF 2.12

4
RF 2.09

O2 −2.21 b 0.03 0.40 mediumFF 2.09

5
RF 2.14

T7 −2.56 b 0.01 0.47 mediumFF 2.10

Hb.O2

1
RR 0.23

C4 −1.95 b 0.05 0.36 mediumFF 0.21

2
RF 0.20

CP3 −2.05 c 0.04 0.37 mediumFR 0.21

3
RF 0.25

FC3 −2.29 b 0.02 0.42 mediumFF 0.23

4
RF 0.20

CP3 −2.21 c 0.03 0.40 mediumFF 0.20

5
FR 0.20

F3 −1.98 b 0.05 0.36 mediumFF 0.18

6
FR 0.22

C4 −2.10b 0.04 0.38 mediumFF 0.21

Hb.R

1
RR 0.20

F3 −2.14c 0.03 0.39 mediumRF 0.20

2
RR 0.17

F7 −2.73 c 0.01 0.50 large
RF 0.22

3
RR 0.30

P3 −1.96 b 0.05 0.36 mediumFR 0.29

4
RR 0.31

FC4 −2.04 b 0.04 0.37 mediumFF 0.32

5
RF 0.32

P3 −2.34 b 0.02 0.43 mediumFR 0.29

6
RF 0.22

F5 −2.11 b 0.04 0.39 mediumFR 0.20

7
RF 0.18

F7 −2.51 b 0.01 0.46 mediumFR 0.17

8
RF 0.22

F5 −2.54 c 0.01 0.46 mediumFF 0.20

Note. b Based on negative ranks; c Based on positive ranks.

Considering the responses in the pair comparison between the RR and FR groups, the participants’
responses in the RR group (Md = 0.30) showed a significant increase as compared to the responses in
the FR group (Md = 0.29) in channel P3, Z = −1.96, p = 0.05, r = 0.36.

Contrary to this, the responses in the RR group (Md = 0.31) manifested a significant decrease
when compared with the responses of the FF group (Md = 0.32) in channel FC4, Z = −2.04, p = 0.04,
r = 0.37.

As for the pair comparison of the participants’ responses between the FR and RF groups,
the findings show that the responses in the RF group demonstrate a significant increase in three
different channels as compared to the responses in the FR group, that is,

(i) Channel P3; RF (Md = 0.32) and FR (Md = 0.29), Z = −2.34, p = 0.02, r = 0.43;
(ii) Channel F5; RF (Md = 0.22) and FR (Md = 0.20), Z = −2.11, p = 0.04, r = 0.39;
(iii) Channel F7; RF (Md = 0.18) and FR (Md = 0.17), Z = −2.51, p = 0.01, r = 0.46.
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Besides that, the responses in the RF group (Md = 0.22) were significantly greater than those of
the FF group (Md = 0.20) in channel F5, Z = −2.54, p = 0.01, r = 0.46.

To better explain the results from each pair including the significant values, topographical figures
are used, see Figures 12–14.
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4. Discussion and Conclusions

While EEG measures the electrical activity of the brain, providing high temporal resolution but
low spatial resolution, fNIRS measures the haemodynamic activity of the brain, with comparatively
greater spatial resolution and poorer temporal resolution. These two signals complement each other’s
weaknesses, such that they may be combined in a common metric (e.g., MSE) to examine underlying
cognitive processes.
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This study has presented an application of simultaneous EEG and fNIRS recordings, utilising the
metric of MSE to index brain complexity levels. This approach may have potential for the investigation
of other neurophysiological phenomena underlying brain complexity. Electroencephalography and
fNIRS signal coregistration, combining high temporal and spatial resolution, provide a valuable
opportunity for studying localised neurocognitive processes. The combination of these two techniques
imparts the advantages of each, which compensate for the limitations of the other.

In our population analysis of 3750 individual trials, regardless of whether they wished to remember
or forget, the participants remembered a total of 2738 trials or 73.01% of all visual stimuli. This suggests
that the brain has the capacity to remember no matter how much of an intentional mental state is
involved, indicating the large extent to which memory is under subconscious control.

In this study, both signals were converted to the same entropy scale to allow a comparison of
brain activity in a common frame of reference. The maximum level of MSE EEG is approximately 2.3,
however the maximum level of MSE fNIRS is nearly 0.3. The level of MSE reveals the characteristics of
these two signals (e.g., nonlinearity) which are considerably different. This analysis is considered to be
more appropriate than addressing these signals separately in their native format.

Using neuroimaging to track the patterns of brain activity as well as MSE to analyse the EEG,
Hb.O2 and Hb.R data, the results revealed that the RF group showed the highest level followed by the
RR, FR and FF groups, respectively. The brain is more active at (RR and RF) levels when compared
to (FR and FF). In other words, the intention to remember things is likely to take more mental effort,
and therefore more brain activation is shown than when trying to forget them.

Our research findings are in agreement with several studies, including that of Ang et al. [53] in
which the brain is found to be more active during difficult tasks. In this study, RF may be associated
with visual image difficulty. This is because some pictures are more difficult to classify, retrieve and
recall than others. Consequently, oxy-haemoglobin concentration during this task rises.

In this study, topography figures are used to display synchronised data from every channel.
As shown in Figures 12–14, there are significant differences found in a number of pairs. However,
regarding brain regions related to memory function (i.e., hits), there are significant differences between
(RR and RF) at AF4 (EEG), F3 and F7 (Hb.R). As for (RR and FR), there are significant differences at P3
(Hb.R); (RR and FF) at FC4 (Hb.R); (RF and FR) at P3, F5 and F7 (Hb.R); (RF and FF) at AF3 (EEG), FC3
(Hb.O2) and F5 (Hb.R); as well as (FR and FF) at F3 (Hb.O2), p < 0.05 (two-tailed).

As shown in Table 4 and Figures 12–14, the brain activation mostly occurred in the left ventrolateral
prefrontal cortex (VLPFC), which has been associated with a diverse set of cognitive processes, including
actively maintaining information in memory function (AF3, F3, F5, F7 and FC3).

Our findings appear to agree with Schroeter et al. [19], who performed fNIRS during the Stroop
task. They found that differential haemodynamic responses in the left VLPFC correlated with age.
It is worth mentioning that these investigations only reported the fNIRS-measured prefrontal cortex
activity, whereas the current study measures fast EEG (AF3 and AF4) and slower fNIRS (F3, F5, F7,
FC3 and FC4) dominant sites simultaneously using a customised cap. These locations of the frontal
lobes are closely related to memory functions, including short-term, working and episodic long-term
memory [54].

Aside from the prefrontal cortex, other areas related to memory functions were also monitored.
For example, the primary somatosensory cortex (C4 and CP3), which is related to the sense of touch
and finger proprioception caused by mouse clicking to respond whether the participants wished to
remember or not in the experiment. The angular gyrus in the parietal lobe (P3) is associated with spatial
focusing of attention [54], perhaps indicating that the experiment required the participants’ attention.

Moreover, the primary auditory cortex (T7) and middle temporal gyrus (T8) located in the
temporal cortices may have been activated by the operating noise of the fNIRS instrument during the
experiment. Furthermore, the secondary visual cortex in the occipital lobe (O2) was shown to be active
while participants observed scenery on the display screen [54].
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With responses time-locked to the stimuli, the participants demonstrated significantly higher
activation in RF when compared to others in the frontal lobe, a region clearly associated with working
memory systems and cognitive processing. In agreement with several neuroimaging studies [55–57],
the brain activation increased in the frontal area. In addition, a combination of all considerations
suggests that simultaneous EEG and fNIRS should be preferred to only EEG or fNIRS. In particular,
MSE EEG, MSE Hb.O2 and MSE Hb.R can be used for brain analysis.

As a result of the complex and dynamic nature of conscious memory allocation, the participants
may have employed unique strategies to memorise selected images. This could have resulted in
memory processes overlapping across trials, whereby the participants continuously try to remember
a previous stimulus. In this case, the presence of new trials could cause a distraction, which is
known to diminish memory performance [54]. The observations support the hypothesis that MSE
EEG, MSE Hb.O2 and MSE Hb.R can be used to analyse neuronal activity. This remains a promising
finding, and suggests that simultaneous multimodal brain signal recordings of EEG and fNIRS may be
advantageous for brain analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

ApEn Approximate entropy
EEG Electroencephalogram
fNIRS functional Near-Infrared Spectroscopy
Hb.O2 Oxy-haemoglobin
Hb.R Deoxy-haemoglobin
MSE Multiscale Entropy
SampEn Sample Entropy
WM Working memory
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