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Abstract: A robust approach for the application of audio content classification (ACC) is proposed in
this paper, especially in variable noise-level conditions. We know that speech, music, and background
noise (also called silence) are usually mixed in the noisy audio signal. Based on the findings,
we propose a hierarchical ACC approach consisting of three parts: voice activity detection (VAD),
speech/music discrimination (SMD), and post-processing. First, entropy-based VAD is successfully
used to segment input signal into noisy audio and noise even if variable-noise level is happening.
The determinations of one-dimensional (1D)-subband energy information (1D-SEI) and 2D-textural
image information (2D-TII) are then formed as a hybrid feature set. The hybrid-based SMD is achieved
because the hybrid feature set is input into the classification of the support vector machine (SVM).
Finally, a rule-based post-processing of segments is utilized to smoothly determine the output of the
ACC system. The noisy audio is successfully classified into noise, speech, and music. Experimental
results show that the hierarchical ACC system using hybrid feature-based SMD and entropy-based
VAD is successfully evaluated against three available datasets and is comparable with existing
methods even in a variable noise-level environment. In addition, our test results with the VAD
scheme and hybrid features also shows that the proposed architecture increases the performance of
audio content discrimination.

Keywords: audio content classification; spectral entropy; voice activity detection; speech/music
discrimination; wavelet packet; support vector machine

1. Introduction

With the rapid growth of information technology, multimedia management is a very crucial
task. Multimedia is needed to classify different data types for efficient accessing and/or retrieving.
Knowing how to build a management of multimedia information for AV (audio/video) indexing and
retrieval is becoming extremely important. In the field of AV indexing and retrieval, the speech/music
discrimination (SMD) is a very crucial task for the audio content classification (ACC) system or
general audio detection and classification (GADC) [1–18]. In recently, the SMD literatures have been
presented in different application [19–24] and closely related to retrieval of audio content indexing [20].
In general, audio feature extraction and audio segmentation are two main parts of a content-based
classifier. Different features are presented to describe audio data. These features are mainly categories
characteristic of time-domain and frequency-domain. In terms of feature extraction, the very common
time-domain features are short-time energy (STE) [25,26] and the zero-crossing rate (ZCR) [27,28]. Signal
energy [29–31], fundamental frequency [32], Mel frequency cepstral coefficients (MFCC) [19,33,34] are
the most used frequency-domain features. Recently, a few studies focused on speech and song/music
discrimination [35–37]. Some features such as loudness and sharpness have been incorporated in
the human hearing process to describe sounds [38,39]. In a study by [40], a novel feature extraction
method based on the visual signature extraction is presented. The well-known “spectrogram reading”
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is regarded as visual information and displays the representation of time-frequency. In the visual
domain, the representation of time-frequency successfully stands for the audio signal pattern [40,41].
In addition, various techniques of audio classification are used for characterizing music signals,
such as threshold-based methods or combining the string tokenization method and data mining
technique [42]. Neural network [43], clustering [44], and k-nearest neighbor (k-NN) are used for
speech/music classification, and the decision is made based on a heuristic-based approach [45]. In [46],
the decision relies on the k-NN for classification by using perceptually weighted Euclidean distance.
Gaussian mixture models (GMM) [47], support vector machine (SVM) [48], and fuzzy-rule [49] are
also used for speech/music classification. Such new trends include temporal feature integration
and classifiers aggregation [8–15], novelty audio detection and bimodal segmentation [7,9,16], and
deep learning [5,17]. In recent years deep learning algorithms have been successfully used to solve
numerous speech/noise classification problems, especially the development of deep convolutional
neural networks without any need for careful feature selection [50,51]. However, deep neural networks
are generally known to be more computationally expensive and slower than other more conventional
methods [52]. Apart from the above, innovative techniques utilizing one-class classifiers, perceptual
wavelet-cepstral parameters, hierarchical/multi-resolution thresholding, and other adaptive detection
mechanisms were recently reported [7,9–11].

Up to now, in a real-life environment, the problem of a variable-noise level environment is not
considered for the above-mentioned works. To alleviate this problem, the robust spectral entropy-based
scheme of voice-activity detection (VAD) which distinguishes speech and non-speech segments from
the incoming audio signal is combined with the utilized SMD approach as a front-end of the proposed
system of ACC application. Especially for the VAD case, the idea of using spectral entropy and other
related parameters that monitor spectral variability or flatness has been used for many years [1,3,4].
Our previous research article [53] proved that spectral entropy-based VAD can be successfully applied
to a variable noise-level environment. In addition, the differences on the sound spectrogram between
music and speech are significant. In music, the spectrum’s peak tends to change relatively slowly even
though music is played with various tempos as shown in Figure 1. On the contrary, shorter durations
occur in speech sound events. We know that the spectral envelope of speech varies more frequently
than the spectral envelope of music. Consequently, the rate of change of the spectral envelope (or called
texture diversity) is one of the valid features for characterizing the differences between speech and
music. This type of texture diversity suggests that perceptual wavelet analysis on a spectrogram will
generate highly discriminate features for audio discrimination. Texture diversity is also regarded as 2D
textual image information on a spectrogram and was successfully applied in studies by [54] and [55].
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Figure 1. Sound spectrogram for music and speech. (a) Spectrogram on music and (b) spectrogram
on speech.

Extended from our previous work [56], a hierarchical scheme of the ACC system is proposed
in this paper. In general, audio hierarchically categorizes silence/background noise, various music
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genres, and speech signals. As a result, a three-stage scheme involving speech, music, and other is
adopted herein [9]. In the first stage of the proposed ACC, the incoming audio signal is pre-emphasized
and partitioned. Next, the scheme of VAD is utilized with the Mel-scale spectral entropy to classify
the emphasized audio signal into silence segments and non-silence segments. In the second stage,
the SMD approach comprises of the extraction of hybrid features and SVM-based classification. A novel
technique of hybrid feature extraction is derived from wavelet-spectrogram textual information and
energy information to obtain a set of features including the 1D subband energy information (1D-SEI)
and 2D texture image information (2D-TII).

In order to extract the 2D-TII parameter, we first generated the spectrogram in grayscale. Then,
the local information was captured by zoning the range from 0 kHz to 4 kHz in order to characterize
the discrimination between speech and music [57]. This is so the 2D-texture information [54] can be
analyzed upon the wavelet-spectrogram. Next, the 2D-TII parameter is accurately obtained by using
Laws’ mask through 2D-perceptual wavelet packet transform (PWPT). Consequently, we let three hybrid
feature inputs into an SVM classifier. During the second stage, the noisy audio segments are classified
into speech segments and music segments. In the third stage we improved the discrimination accuracy,
and a rule-based post-processing method was applied to reflect the continuity of audio data in time.

This paper is organized as follows. In Section 2, we introduce the proposed approach of the three-stage
ACC. The approach includes three main stages: pre-processing/VAD, SMD, and post-processing. The VAD
uses the measure of band-spectral entropy to distinguish non-noise segments (noisy audio segment)
from noise segments (silence). Section 3 presents the hybrid-based SMD algorithm. The hybrid features
include 1D subband energy information (1D-SEI) and 2D texture image information (2D-TII). Through
the combination of 1D signal processing and 2D image processing, the hybrid features characterize the
discrimination between speech and music. In Section 4, the rule-based post-processing is presented to
improve the segmentation results in different noise types and levels. Finally, the experiments and results
are presented in Section 5. In this section, the evaluation of the proposed ACC approach is performed
on well-known speech and music databases (e.g., GTZAN dataset) at well-defined signal-to-noise ratio
(SNR) levels. Section 6 provides the discussion and conclusions.

2. The Architecture of Hierarchical Based ACC Approach

Figure 2 shows the block diagram of the audio content classification (ACC) system, which is divided
into three main stages: pre-processing/voice activity detection (VAD), speech/music discrimination
(SMD), and rule-based post-processing. The details are described below.Entropy 2020, 22, 183 4 of 24 
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2.1. Pre-Processing

In order to emphasize the important higher-frequency elements, the speech signal is first high-pass
filtered. The speech frame, x[n], is then divided into several segments. Those segments are chosen as
frame size = 256 samples and 50% overlapping with the neighboring frame. The Hamming window is
applied to each segment after frame partitioning [58].

2.2. Spectral Entropy-Based Voice Activity Detection (VAD)

The VAD differs from speech/music discrimination (SMD). VAD discriminates between noise and
speech while SMD discriminates between speech and music [1–7].

The conventional VAD algorithms rely on short-time energy or spectral energy as the primary
feature parameters with the augmentation of zero-crossing rate, pitch, and duration information [59,60];
yet these features become less reliable in the presence of non-stationary noise and various types of
sound artifacts. Extended from previous works [53,61], a spectral entropy-based voice activity detection
(VAD) scheme was successfully used for segmenting the noisy signal into noise-only segments and
noisy audio segments especially for variable noise-level. Herein, the spectral entropy-based VAD is
utilized in the first stage of the ACC system.

In a previous work [61], the band-partitioning spectral entropy (BSE) parameter, HBSE, was
presented as follows:

HBSE =
∑Nb

m=1
W(m)·P(m)·log[1/P(m)] (1)

where Nb is the total band size of each frame (Nb = 32 uniform-bands). W(m) indicates the weight of
the mth band defined as follows:

W(m) = var[min(Pb)/Pb(m− 1), Pb(m), Pb(m + 1)] (2)

where var(·) represents the variance. Pb(m) represents the probability associated with band energy
described as follows:

Pb(m) = Eb(m)/
∑Nb

k=1 Eb(k), 1 ≤ m ≤ Nb (3)

where Eb(m) represents the band energy of the mth band.
Figure 3 shows that the measurement of spectral entropy is robust against changing signal

levels even though the amplitude of background noise varies with the environmental state because
the spectral entropy depends only on the variation of spectral energy, but not on the amount of
spectral energy.
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3. Hybrid-Based Speech/Music Discrimination (SMD)

The processing flow of the hybrid-based SMD is shown in Figure 4. The SMD is based on a hybrid
feature set, which contains 1D subband energy information (1D-SEI) and 2D texture information
(2D-TII) parameters. For noisy segmented audio input, the composed features are extracted from
the 1D-PWPT and Bark scale spectrogram image, respectively. The hybrid features include 1D-SEI
feature set and 2D-TII feature set. For the feature extraction of 1D-SEI, we used 1D-PWPT (perceptual
wavelet packet transform) to get 24 critical subbands. Through the useful subband selection, the correct
energy information was used to discriminate the difference between speech and music. In the feature
extraction of 2D-TII, gray-scale spectrogram was first generated. Zoning the range from 0 kHz to
4 kHz, the local information is enough to characterize speech and music, respectively. Using 2D-PWPT,
we can get the 2D textural information. Finally, the hybrid features are then fed into the SVM-based
classifier to discriminate their types (speech or music).
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Figure 4. The flowchart of the hybrid-based speech/music discrimination. 1D/2D-PWPT = one/two-
dimensional perceptual wavelet packet transform.

3.1. D-PWPT (Perceptual Wavelet Packet Transform)

In order to mimic the hearing characteristics of human cochlea, the Bark scale, a psychoacoustical
scale proposed by Eberhard Zwicker in 1961, was used [62]. It was found that for the auditory quality
of a speech signal, an analysis on non-uniform frequency resolution is better than on uniformly spaced
frequency resolution [63]. In fact, the selection of the “optimal” decomposition is a classical problem
in order to suppress audible noise and eliminate audible artefacts. According to the Bark scale rules,
the 1D-perceptual wavelet packet transform (PWPT) implemented with an efficient five-stage tree
structure is utilized to split 24 critical subbands for input speech signal. For each stage, the high-pass
filter and low-pass filter are implemented with the Daubechies family wavelet, where the symbol ↓2
denotes an operator of down-sampling by 2 [53]. In Table 1, we see that the Bark scale-based wavelet
decomposition lets every frequency band limit become more and more linear when frequencies are
below 500 Hz; this scale is more or less equal to a logarithmic frequency axis when above about 500 Hz.

Table 1. Frequency bands limits, in Hz, for Bark scale vs. wavelet scale.

Band Index
Bark Scale Wavelet Scale

Bandlimit Bandwidth Bandlimit Bandwidth Transform Stage

1 [0–100] 100 [0–125] 125 #5

2 [100–200] 100 [125–250] 125 #5

3 [125–250] 100 [250–375] 125 #5
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Table 1. Cont.

Band Index
Bark Scale Wavelet Scale

Bandlimit Bandwidth Bandlimit Bandwidth Transform Stage

4 [300–400] 100 [375–500] 125 #5

5 [400–510] 110 [500–625] 125 #5

6 [510–630] 120 [625–750] 125 #5

7 [630–770] 140 [750–875] 125 #5

8 [750–875] 150 [875–1000] 125 #5

9 [920–1080] 160 [1000–1250] 125 #4

10 [1080–1270] 190 [1250–1500] 250 #4

11 [1270–1480] 210 [1500–1750] 250 #4

12 [1480–1720] 240 [1750–2000] 250 #4

13 [1720–2000] 280 [2000–2250] 250 #4

14 [2000–2320] 320 [2250–2500] 250 #4

15 [2320–2700] 380 [2500–3000] 500 #4

16 [2700–3150] 450 [3000–3500] 500 #4

17 [3150–3700] 550 [3500–4000] 500 #4

18 [3700–4400] 700 [4000–5000] 1000 #4

19 [4400–5300] 900 [5000–6000] 1000 #3

20 [5300–6400] 1100 [6000–7000] 1000 #3

21 [6400–7700] 1300 [7000–8000] 1000 #3

22 [7700–9500] 1800 [8000–10,000] 2000 #2

23 [9500–12,000] 2500 [10,000–12,000] 2000 #2

24 [12,000–15,500] 3500 [12,000–16,000] 4000 #2

3.2. Optimal Subband Selection for Useful Information

In previous works [64], an extraction of selecting useful frequency subbands was proposed
to suppress the noise effect on the ACC system, especially at a poor SNR (signal-to-noise ratio).
The process of pure energy on the useful frequency is shown below.

During the initialization period, the noisy signal was assumed to be noise-only, and the noise
spectrum was estimated by averaging the initial 10 frames. To recursively estimate the noise power
spectrum, the subband noise power, Ñ(ζ, m), was adaptively estimated by smoothing filtering.

For the mth frame, the spectral energy of the ζth subband is evaluated by the sum of squares:

E(ζ, m) =
∑ωζ,h

ωζ,l

∣∣∣w(ω, m)
∣∣∣2 (4)

where w(ω, m) means the ωth wavelet coefficient. ωζ,l and ωζ,h denote the lower boundaries and the
upper boundaries of the ζth subband, respectively.

The ζth frequency subbands energy of pure speech signal of the mth frame Ẽ(ζ, m) is estimated:

Ẽ(ζ, m) = E(ζ, m) − Ñ(ζ, m) (5)

where N (ζ, m) is the noise power of the ζth frequency subband.
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According to Wu et al. [65], subbands with a higher energy Ẽ(ζ, m) can stand for a greater amount
of pure speech information. So, the frequency subband should be sorted according to its value of
Ẽ(ζ, m).

That is,
E(I1,m) ≥ E(I2,m) ≥ · · · ≥ E

(
INub(m),m

)
, I ∈

[
I1, I2, I3, · · · , INub(m)

]
(6)

where Ii is the index of the frequency subband with the ith max energy. Nub(m) denotes the number of
useful subbands on the mth frame. I ∈

[
I1, I2, I3, · · · , INub(m)

]
.

In fact, the relation between the number of useful frequency subbands, Nub(m), and the posterior
SNR, SNR(m), has a negative-correlation, as shown in Figure 5.
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Nub(m) and SNR(m).

We see that the number of useful frequency subbands increases with the increase of SNR in
Figure 5a. When SNR(m) = −5, SNR(m) = 10, and SNR(m) = 30dB, the highest accuracy of VAD
appears as Nub(m) = 6, Nub(m) = 12, and Nub(m) = 18, respectively. In order to simulate the
relationship between Nub(m) and SNR(m), a linear function is in the boundary between −5 dB and
30 dB, while the duration between Nub(m) = 6 to Nub(m) = 18 is shown in Figure 5b:

Nub(m) =

6, SNR(m) < −5 dB[
(18− 6) × (SNR(m)−(−5))

30−(−5) + 6
]
, −5 dB ≤ SNR(m) ≤ 30 dB

18, SNR(m) > 30 dB

(7)

where [·] is the round off operator and SNR(m) denotes a frame-based posterior SNR for the mth frame.
SNR(m) is dependent on the summation of subband-based posterior SNR snr(ζ, m) on the ζth useful
subband, defined as:

SNR(m) = 10× log10

∑
ζ∈Nub

snr(ζ, m), (8)

where snr(ζ, m) =
∣∣∣E(ζ, m)

∣∣∣2/Ñ(ζ, m).
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Figure 6 clearly illustrates the example of extracting useful subbands under a different posterior
SNR. We see that the pure subband energy is rearranged after sorting processing among all 24 subbands.
Originally, the first subband index ζ is 1, but the updated first index ζ is 3 when sorting the energy.
Consequently, the useful subband index and number are extracted according to the value of the
posterior SNR.
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3.3. The 1D Subband Energy Informations (1D-SEIs)

It is well-known that the distribution of energy on each frequency band is a very relevant acoustic
cue. After selecting a useful subband, the wavelet energy was calculated from 1D-PWPT to form a 1D
subband energy informations (1D-SEIs): the average of subband energy (ASE), the standard deviation
of subband energy (SDSE), and Teager energy. So, the 1D-SEIs derived from three parameters are
investigated below:

– The average of subband energy (ASE)

Eavg(m) =
∑Nub(m)

1
Ẽ(ζ, m)/Nub(m), ζ ∈

[
I1, I2, I3, · · · , INub(m)

]
. (9)

– The standard deviation of subband energy (SDSE)

Esd(m) = 1 +

√
1
24

∑24

ζ=1

(
Ẽ(ζ, m) − Eavg(m)

)2
. (10)

We see that the speech’s energy exists in a lower frequency band mainly and the music’s energy is
in a wide range of the frequency band.
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– Teager energy
Eteg(m) = Ẽ(ζ, m)2

− Ẽ(ζ, m− 1) × Ẽ(ζ, m + 1). (11)

The discrete Teager energy operator (TEO), introduced by Kaiser [66], allows modulation energy
tracking and gives a better representation of the formant information in the feature vector. So, we can
also successfully use the characteristic to discriminate speech from music.

3.4. Gray-Scale Spectrogram Image Generation

In this subsection, a novel feature extraction is derived from the gray-scale spectrogram images.
As mentioned above, we see the difference between speech and music while relying on the virtual
representation of audio data by spectrogram. In fact, the gray-scale spectrogram images are regarded
as a time-frequency-intensity representation. Since the human perception of sound is logarithmic,
the log-spectrogram is defined as:

Slog(k, t) = log
(∣∣∣X(k, t)

∣∣∣). (12)

The time-frequency-intensity representation is normalized into a grayscale normalized image,
within the range of 0 to 1:

RSpecImg(k, t) =
(
Slog(k, t) − Smin

)
/(Smax − Smin). (13)

3.5. The Zoning for Spectrogram Image

To achieve good results for SMD, the zoning method for spectrogram image was applied [67].
In fact, the textural image information between speech signals and music data is different [68]. It was
found that the music audio data consist of a few silent intervals, and have continuous energy peaks
for a short time and fewer frequency variations, while the speech audio data consist of many silent
intervals and most of the energy is located at the lower frequencies [69]. Accordingly, the spectrogram
image from 0 kHz to 4 kHz is separated to extract textural features as local features by the zoning
method. The feature extraction for the 2D textural image information (2D-TII) is discussed in the
next subsection.

3.6. The 2D Textural Image Information (2D-TII)

In fact, the differences on the sound spectrogram between music and speech are significant.
In music, the spectrum’s peak tends to change relatively slowly even though the music is played
with various tempos. On the contrary, in speech, sound events often have shorter durations but with
more distinctive time-frequency representations. For the above reason, the 2D-TII features can be
successfully derived from the audio spectrogram image through Laws’ masks based on the principle
of texture energy measurement [54] to find the difference between speech and music. It is known that
Laws’ masks are well described for texture energy variation in image processing, and the masks consist
of five masks derived from one-dimensional vectors, such as edge E5, level L5, spot S5, ripple R5, and
wave W5 expressed as Equations (14)–(18):

E5 = Edge detection :
[
−1 −2 0 2 1

]
(14)

L5 = Level detection :
[

1 4 6 4 1
]

(15)

S5 = Spot detection :
[
−1 0 2 0 −1

]
(16)

R5 = Ripple detection :
[

1 −4 6 −4 1
]

(17)

W5 = Wave detection :
[
−1 2 0 −2 1

]
(18)
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The two-dimensional filters of the size 5 × 5 were generated by convoluting any vertical
one-dimensional vector with a horizontal one. Finally, the 25 combinations of two-dimensional masks
are determined [70].

First, we convoluted the image with each two-dimensional mask to extract texture information
from an image I(i, j) of size (M×N). For example, if we used E5E5 to filter the image I(i, j), the result
was a texture image, TIE5E5 , as seen in Equation (19).

TIE5E5 = Ii, j ⊗ E5E5 (19)

All the two-dimensional masks, except L5L5, had a zero mean. According to Laws, texture image
TIL5L5 was used to normalize the contrast of all the texture images TI(i, j), as seen in Equation (20).

Normalize(TImask) = TImask/TIL5L5 . (20)

Next, the outputs (TI) from Laws’ masks were passed to “texture energy measurement” (TEM)
filters. We calculate the non-linear interval by processing TI normalized and yield through “Texture
Energy Measurements, (TEM)” filter. This consisted of a moving non-linear window average of
absolute values, as seen in Equation (21).

TEMi j =
∑u=7

u=−7

∑v=7

v=−7

[
Normalize

(
TIi+u, j+v

)]
. (21)

Since not all mask energy is used as the input basis of texture energy, we take out unchangeable
TR values before and after rotation to obtain a valid TEM. The TR derived from TEM is represented in
Equation (22).

TRE5L5 = (TEME5L5 + TEML5E5)/2 (22)

After Equation (22), the results of the three texture feature values: mean, standard deviance (SD),
and entropy are extracted via Equations (23)–(25) to exploit the variation of texture information.

Mean =
∑M

i=0

∑N

j=0
TRi j/(M×N), (23)

SD =

√∑M

i=0

∑N

j=0

(
TRi j −Mean

)2
/(M×N), (24)

Entropy =
∑M

i=0

∑N

j=0
TRi j

2/(M×N). (25)

Each equation produces feature vectors with 14-dimensional size. Finally, a total of three feature
vectors with 42-dimensional sizes are used as the input data for training the SVM classifier.

3.7. From 2D-PWPT to 2D-TII

To perform texture analysis on multi-resolution, 2D-PWPT is utilized into an audio spectrogram
image, which ranges from 0 to 4 KHz. Figure 7 shows an audio spectrogram image decomposition.
In Figure 7, these subbands are first obtained using one-level wavelet decomposition. These subbands
are labeled as LH1, HL1, and HH1 and represent the detail images, while the sub-band labeled as LL1 is
regarded as the approximation image. The detail images represent the finest scale wavelet coefficients.
Conversely, the approximation image corresponds to coarse level coefficients. The sub-band LL1
alone is further decomposed and critically sampled in order to obtain the next coarse level of wavelet
coefficients. So, this results in two-level wavelet decomposition. Similarly, LL2 is used to obtain further
decomposition. Lastly, the spectrogram image of LL2 is only convoluted by the two-dimensional Laws’
mask to determine the 2D-TII. Compared to the original image size of the spectrogram within 0 to
4 kHz, the LL2 is de-sized. Thus, we can decrease the computing time and get good information
derived from LL2 sub-image that is better than the original image.
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3.8. SVM-Based Classification

Support vector machine (SVM) is well-known effective bi-classification [71–73]. In actuality,
the SVM is better than other conventional classifiers in terms of classification accuracy, computational
time, and stability. In this subsection, the hybrid feature set including 1D-subband energy
information and 2D-texture information, Fhyb = [1D_SEI, 2D_TII], are imported into a discriminative
classifier of the SVM to classify either the speech segment or music segment. Suppose a set
S =

{
(x1, y1), . . . , (xN, yN)

}
of Rn is the training set, where xi is the input signal vector, yi is the

class label for speech or audio, yi ∈ {−1, 1}, and Rn denotes n-dimensional space.
To find the optimal hyper-plane, the support vectors of the dataset maximize the margin, which is

the distance between the hyper-plane and support vectors as follows:

min 1
2‖w‖

2

s.t. yi
(
wTxi + b

)
≥ 1

(26)

The solution to the optimization problem of SVM is given by the Lagrange function as follows:

L(α) =
∑N

i=1
αi −

1
2

∑N

i=1

∑N

j=1
αiα jyiy jK

(
xi, x j

)
(27)

with constraint
∑N

i=1 αiyi = 0 and 0 ≤ αi ≤ C, where C is upper bound of the Lagrange multipliers αi
and the constant C ∈ [0, 1].

As for the kernel function, we consider ERBF and Gaussian function as shown below:

KERBF(x, y) = exp
(
−γ

∣∣∣x− y
∣∣∣/2σ2

)
, (28)

KGaussian(x, y) = exp
(
−γ

∣∣∣x− y
∣∣∣2/2σ2

)
, (29)
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where σ2 is the variance. γ is the additional control parameter.
Potentially, the ERBF function is usually used as the kernel function and vastly improves the

results [74]. Therefore, the SVM which adopts ERBF as a kernel function will be compared to
other classification.

4. The Rule-Based Post-Processing

The purpose of the post-processing step is to reduce possible errors of segmentation and
classification. The errors of segmentation may even be occurred due to abrupt changes in noise level.
Here are some examples of rule-based schemes used in the post-processing step: if a “music” segment
appears separately in a series of speech segments, it merges into that speech segment; if a “speech”
segment appears separately in a series of music segments, it merges into that music segment; if a “music”
segment appears in only two frames or is smaller than two frames, it merges into speech segments.
The kernel of a rule-based engine is regarded as a set of IF-THEN rules. The formulations of a rule-based
engine where speech is ‘S”, music is “M’, noise/silence/other is “N’, and “_” is represented as any audio
type except for noise can be shown below:

R1 : IF N_N THEN NNN
R2 : IF SSMSS THEN SSSSS
R3 : IF MMSMM THEN MMMMM
R4 : IF MMSSS THEN NSSSS
R5 : IF SSSMN THEN SSSSN
R6 : IF NN_NN THEN NNNNNN
R7 : IF SSMMSSS THEN SSSSSSS
R8 : IF SSSMMSS THEN SSSSSSS
R9 : IF NNMMSSS THEN NNSSSSS
R10 : IF SSSMMNN THEN SSSSSNN

(30)

According to R1 to R10 from Equation (30), the procedure of a rule-based post-processing is
fulfilled by the smoothing task as shown in Figure 8. Observing the figure, the hybrid features from
SVM and VAD are regarded as input. After a complete loop over all the rules, the loop is repeated,
until the segmentation remains unchanged.
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5. Experimental Results

5.1. Database Description

To evaluate the proposed algorithm, the database consisted of three different subsets shown in
Table 2. The first one is the well-known Music-Speech GTZAN library [75], which includes 120 tracks,
each lasting 30 s and containing 60 examples of each class (music/speech). The second one is artificial
audio data, which are artificially created by concatenating silence, speech, or music segments. The
last one is real broadcasting recordings, which were collected from BBC radio, NHK, and TTV news.
Subsets #2 and #3 were collected and organized from artificial audio data and real broadcasting
recordings. The speech data come from news programs on the radio and TV stations, talks, as well as
dialogs in movies, and the languages involve English, Chinese, and Japanese. In addition, the music
consists of instrumental music and songs obtained from music CDs covering classic, pop, folk, and
rock. The audio data stream was sampled in 16-bit with 8 kHz. In addition, many publicly available
audio datasets including LVLib-SMO, FMA-small, and RWC Music Database are also introduced in
Subsets #4, #5, and #6.

Table 2. The evaluation dataset.

# Duration Type Subset

1 3840 s Music, speech GTZAN Music-Speech [75]

2 12 min Music, speech, silence Artificial Audio Data

3 14 min Music, Speech, silence, other Real Radio Recordings

4 7 h 37 min Music, speech, other LVLib-SMO [12]

5 8000 tracks of 30 s Top 8 genres, balanced with 1000 clips per
genre, 1 root genre per clip FMA-small dataset [76]

6 91.6 h Popular, classical, and jazz music databases RWC Music Database [77]

5.1.1. Artificial Audio Data

Three test files were artificially created by concatenating silence, speech, or music segments.
The speech signals spoken by a variety of both male and female speakers were taken from 12 to 15 min.
The composition of the data set is shown as follows:

• Arti Num. 1: This is 15 min audio stream with alternate speech, music, and silence segments
of equal (30 s) duration. This data set includes 12.54% of silence, 42.78% of speech, and 44.68%
of music.

• Arti Num. 2: This data set also consists of 15 min audio stream comprising mainly of music data.
In this case, 20 segments of music data are interleaved with shorter segments of speech. Therefore,
this data set is composed of 9.36% of silence, 22.57% of speech, and 68.07% of music.

• Arti Num. 3: This data set also consists of 15 min audio stream comprising mainly of speech
data. In this case, 20 s segments of music data are interleaved with shorter segments of speech.
Therefore, this data set is composed of 11.58% of silence, 64.38% of speech, and 24.04% of music.

The results of three artificial files with different combinations of the sounds are shown in Table 3.

Table 3. The percentage of distribution between speech, music, and noise.

Arti Num. Silence Speech Music

1 12.54% 42.78% 44.68%
2 9.36% 22.57% 68.07%
3 11.58% 64.38% 24.04%
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5.1.2. Real Radio Recordings

The real TV news and real movie clips were recorded from BBC radio, NHK, and TTV news in order
to evaluate the results of the proposed algorithm under realistic noisy environments. The durations of
two real recording files range from 10 to 15 min where the length of the silence segment varies from
1 s to 3 s and the length of speech or music segments vary from 3 s to 10 s. To evaluate whether the
proposed ACC algorithm is valid for a realistic environment, Table 4 shows the real TV news and real
movie clips selected as Real #01 and Real #02, respectively.

Table 4. The composition of real radio recordings.

Real Num. Length Type Source

1 12 min TV news clip NHK and TTV news

2 14 min Movie clip BBC radio

5.2. Evaluation Results of Entropy-Based VAD

In the first evaluation, the experimental results of the entropy-based VAD is presented. The goal
of VAD segmentation is to divide the audio signal into a voice segment (including speech and music)
and non-voiced segment (including noise and background silence). Figure 9 shows segmentation
performance of the entropy-based VAD proposed in our earlier work [53,61] against any variable
noise-level conditions when comparing to the conventional method. It is found that the entropy-based
parameter is related only to the variation of spectral energy but not to the amount of spectral energy,
so the entropy-based algorithm outperforms the energy-based algorithm, especially in changing the
level of noise.
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To further evaluate the performance of the proposed VAD method, the following metrics were
considered:

Accuracy[%] =
TP + TN

TP + FP + TN + FN
(31)

Precision[%] =
TP

TP + FP
(32)

Recall[%] =
TP

TP + FN
(33)

F1−score[%] =
2

1
Precision + 1

Recall

(34)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false negative rates,
respectively. Accuracy[%] denotes the ratio correctly classified as voiced and non-voiced segments.
Precision[%] indicates the ratio correctly classified as voiced segments when predicting a voiced
segment. Recall[%] means the true positive rate when predicting a voiced segment and non-voiced
segment. F1−score[%] is derived by calculation of the harmonic mean value between Precision[%] and
Recall[%] . To examine the effectiveness of the entropy-based VAD, we compared it with other existing
VAD methods. Table 5 shows the performance of the proposed VAD in terms of Acc[%], Pre[%], Rec[%],
and F1[%] averaged over the SNR range from −5 dB to 30 dB testing on artificial audio data mixed
background noise. In terms of accuracy, we found that the proposed entropy-based algorithm obtains
the best Acc[%] with 90.04%. However, accuracy alone is not enough, and it is usually supplemented
by Precision[%], Recall[%], and F1−score[%]. The results clearly show that the proposed entropy-based
VAD is almost superior to other compared VADs.

Table 5. Performance between various VADs under noise conditions.

Method Acc [%] Pre [%] Rec [%] F1 [%]

Sohn [78] 80.66 85.58 85.92 85.75

Ramirez [79] 89.01 88.81 91.22 90.01

G.729B [80] 56.69 78.31 85.33 81.67

AMR[81] 76.52 70.33 95.86 81.14

Tahmasbi [82] 81.01 85.76 85.33 85.55

Proposed 90.04 92.14 92.12 92.13

Acc = accuracy, Pre = precision, Rec = recall, F1 = F1-score.

5.3. The Evaluation of Hybrid-Based SMD

In actually, the Mel-frequency cepstral coefficient (MFCC), zero crossing (ZC), and spectral centroid
(SC) are usually used as important features which are applied in the speech/music discrimination
systems. In order to present the justification of the proposed hybrid features for speech/music
discrimination, a comparison with other commonly used features is tested on data subsets #1, #2, and
#3 and shown in Table 6. We see that the proposed hybrid feature set is superior to several well-known
feature sets in terms of overall accuracy. The classification accuracy with 96.56% is the highest value
while using a hybrid feature set.

In order to evaluate the performance of hybrid-based speech/music discrimination systems using
a SVM classifier with ERBF kernel, the three different statistics are used below:

The percentage of true speech segments identified as speech,

Speech(%) =
Correctly Speci f ied Speech Segments

Total Speech Segments
(35)
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The percentage of true music segments identified as music,

Music(%) =
Correctly Speci f ied Music Segments

Total Music Segments
(36)

The average percentage of correctly identified

Average(%) =
Correctly Speci f ied Segments

Total Segments
(37)

Table 7 shows the performance of hybrid-based SMD approach compared to various classifiers on
GTZAN dataset. We can see from the results that the SVM classifier with ERBF kernel implies a better
performance of the speech/music discriminator. The proposed hybrid-based approach provides the
accuracy in Music as 90.41% due to that it gives rise to an important decrease of the MSE errors. On the
contrary, the proposed hybrid-based approach achieves a highest average accuracy rate of 91.33% (the
accuracy in Speech as 92.26% and in Music as 90.41%) among other classifiers.

Table 6. The classification accuracy under different feature sets.

Feature Set The Overall Accuracy (%)

Mel-frequency cepstral coefficient (MFCC) 88.79

Spectral centroid (SC) 91.67

Zero crossing (ZC) 76.83

MFCC + SC + ZC 92.58

1D-SEI 90.51

2D-TII 94.35

Hybrid feature set: 1D-SEI + 2D-TII 96.56

Table 7. Performance of various classifiers with hybrid features on GTZAN dataset.

Classifiers Speech (%) Music (%) Average (%)

SVM (with ERBF kernel) 92.26 90.41 91.33

GMM [47] 90.44 88.58 89.51

k-NN [46] 83.51 82.12 82.81

GMM = Gaussian mixture models; k-NN = k-nearest neighbor.

5.4. The Robustness Evaluation of ACC System

In this subsection, the robustness performance of the overall system of audio content classification
(ACC) is evaluated against any variable noise-level conditions. Combined with VAD scheme and the
hybrid-based SMD, the hierarchical architecture of audio content classification (ACC) can provide
higher performance. First, in order to perform the cross-validation evaluation on the proposed ACC,
mismatched training and testing data are required. A case for the model testing is on BBC radio and
NHK/TTV news and training is on the well-known GTZAN database. Table 8 shows that the evaluation
of cross-validation is tested on the on BBC radio and NHK/TTV news database when the models
are trained on the GTZAN database. It was found that the proposed ACC system can successfully
divide into speech, music, and noise/silence (the accuracy in speech is 91–92%, Music 89–90%, and
Noise as 91–92%) by using a hierarchical architecture, which combines hybrid- feature extraction and
entropy-based VAD even in the cross-validation evaluation. In addition, we see that the comparison
performance is almost robust against different training and the tested dataset.
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Table 8. Cross-validation evaluation on BBC radio and NHK/TTV news database using the models
trained on the GTZAN database.

Models
Trained on

BBC Radio Test NHK/TTV News Test

Sp (%) Mu (%) No (%) Sp (%) Mu (%) No (%)

GTZAN [75] 91.5 90.4 92.7 92.4 89.2 91.7

Sp (%) = speech (%); Mu (%) = music (%); No (%) = noise/silence (%).

Secondly, Table 9 illustrates that classification error rates on speech, music, and noise segments
are reduced significantly to about a 6% error rate reduction after post-processing. The classification
error rates, CER(%) , is defined below as:

CER(%) =
num. o f f alsely class f ied recordings

total num. o f testing audio recordings
× 100% (38)

Table 9. Comparison with/without post-processing.

With/Without
Post-Processing Scheme Speech CER (%) Music CER (%) Noise CER (%) Overall CER (%)

ACC 17.43 18.62 15.73 17.26

ACC + rule-based
post-processing 11.96 12.73 10.89 11.86

ACC = audio content classification; CER = classification error rates.

Finally, Table 10 shows that the performance of the proposed audio content classification (ACC)
is robust against any variable noise-level conditions under the four types of background noise. Due
to the proposed ACC, which is based on a hierarchical approach, it is firstly combined with the two
schemes of entropy-based VAD and hybrid-based SMD for classifying the audio content. We can
see that the experimental results of the ACC algorithm perform well at four noise types and levels,
especially in realistic or poor SNR conditions. The main reason is attributed to the fact that the utilized
entropy-based VAD segmentation can also perform successfully in real conditions with variable-noise
levels and be excellently applied into the ACC application.

Table 10. The classification error rates of the proposed ACC algorithm under four noise types and levels.

Noise
Type

SNR
(dB)

Dataset Overall
CER (%)Arti #01 Arti #02 Arti #03 Real #01 Real #02

White
Noise

30 10.38 12.56 11.17 11.89 11.73 11.55
10 10.49 12.83 11.39 12.28 11.98 11.79
−5 11.83 14.52 13.58 14.85 13.78 13.71

Vehicle
Noise

30 9.83 11.29 10.52 11.99 11.84 11.09
10 10.13 12.03 11.08 12.83 11.94 11.60
−5 10.52 12.34 11.54 13.69 12.21 12.06

Factory
Noise

30 7.93 9.27 10.93 10.98 10.23 9.87
10 8.18 10.12 11.02 12.19 11.82 10.67
−5 8.34 10.54 11.68 12.43 11.85 10.97

Babble
Noise

30 11.84 11.48 11.62 12.42 12.94 12.06
10 12.49 12.69 12.38 13.82 13.39 12.95
−5 13.53 13.27 13.89 14.59 14.29 13.91

Average 11.85
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5.5. Comparison of Other Classifier Systems

Recently deep convolutional neural networks (deep CNNs) have been very successful at many
tasks. The CNNs are designed and exploited to capture audio-related features for the problem of speech
and music discrimination [83]. The results of the proposed hierarchical ACC method, along with the
other compared methodologies including the deep CNN-based method on the publicly available audio
datasets, are presented in Table 11. Our experimental setup was tested on a CPU 2.7 GHz Intel Core i7
for the whole dataset.

Table 11. Comparisons between the proposed hierarchical method and other systems.

Dataset
Proposed Method k-NN [84] GMM [85] Spectrogram-Based

CNN [83]

Acc (%) T (min) Acc (%) T (min) Acc (%) T (min) Acc (%) T (min)

GTZAN [75] 93.6 18.6 91.3 20.8 90.4 20.5 94.5 30.5
LVLib-SMO [12] 94.6 18.2 90.8 19.6 88.2 21.1 95.2 33.9

RWC [77] 94.2 19.6 92.2 21.8 89.1 20.8 95.8 35.1
FMA-small [76] 94.5 19.5 92.7 23.1 90.2 22.5 95.7 36.2

AVERAGE 94.225 18.8 91.75 20.73 89.475 20.5 95.4 33.925

T (min) = time in minutes, k-NN = k-nearest neighbor, GMM = Gaussian mixture models.

The required computational demands are also evaluated in Table 11. We find that the spectrogram-
based CNN achieves highest average accuracy with 95.4% under these four datasets. However,
the computational time required is also the longest (30.5 min to 36.2 min) to complete the whole
evaluation process for these four methods. The computational time includes spectrogram image
transform and deep network size for learning features. Deep convolutional neural networks are
computationally expensive compared to other systems. They enquire better computing hardware
such as GPUs and neuromorphic chips to overcome this drawback. In addition, the CNN has the
problem of overfitting and it mostly computationally expensive because it needs to take a large
database for training. Compared to the spectrogram-based CNN, the proposed hierarchical ACC
system using hybrid feature-based SMD and entropy-based VAD provides a great trade-off in terms of
the computing complexity and accuracy. The results show that the execution time of the proposed
hierarchical ACC system is almost only half of the spectrogram-based CNN method. Moreover, the
average accuracy (with 94.225%) of the proposed hierarchical ACC system is just a little smaller
than that of the spectrogram-based CNN method. In actuality, the hierarchical classification has
always been one of the great methodologies for audio content analysis. Moreover, a combination of
voice activity detection (VAD), speech/music discrimination (SMD), and post-processing is novelty
applied into the hierarchical classification. Especially, the voice activity detection (VAD) demonstrates
a novel use of entropy. The proposed hierarchical classification system provides a reliable, stable, and
low-performance architecture for the audio content analysis.

6. Conclusions

In this paper, we presented a new algorithm of audio content classification (ACC) for applications
under a variable noise-level environment. A novel hierarchical scene of a three-stage scheme of the
proposed ACC algorithm was described in detail for classifying audio stream into speech, music, and
background noise. In addition, we introduced the hybrid-based feature, which investigates the use of
1D-subband energy information (1D-SEI) and 2D textural image information (2D-TII) as hybrid features
to classify speech or music. It was found that using hybrid-based features can easily discriminate the
noisy audio signal into speech and music. Further, the entropy-based VAD segment indeed provides
high accuracy for application of the ACC. In summary, we conclude that the proposed ACC based
on hybrid features SMD scheme and entropy-based VAD segment can achieve a low error value of
below 13% at a low SNR and variable noise-level according to the above experimental results. It was
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shown that hybrid-based SMD and entropy-based VAD segments can be successfully applied into the
system of audio content classification (ACC). The system was tested with different combinations of
audio styles and different SNR levels. The experimental evaluations were also performed with real
radio recordings from BBC, NHK, and TTV news.

In addition, the proposed hierarchical ACC system was compared with other systems on publicly
available audio datasets. This paper proves that the hierarchical classification is one of the great
methodologies for audio content analysis. Compared to the spectrogram-based CNN, the proposed
hierarchical ACC system using hybrid feature-based SMD and entropy-based VAD can provide
a great trade-off in terms of computing complexity and accuracy. Moreover, a combination of voice
activity detection (VAD), speech/music discrimination (SMD), and post-processing is a novel idea,
applied into the hierarchical classification. Especially, the voice activity detection (VAD) demonstrates
a novel use of entropy. The proposed hierarchical classification system provides a reliable, stable, and
low-performance architecture for contribution of audio content analysis.

In future work, the proposed ACC approach using hybrid-based manner will be appended to
discriminate more audio types with lower SNR levels. In order to apply audio content retrieval, we will
also focus on developing an effective scheme.
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