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Abstract: Modern multimedia communications technology requirements have raised security
standards, which allows for enormous development in security standards. This article presents
an innovative symmetric cryptosystem that depends on the hybrid chaotic Lorenz diffusion stage
and DNA confusion stage. It involves two identical encryption and decryption algorithms, which
simplifies the implementation of transmitting and receiving schemes of images securely as a bijective
system. Both schemes utilize two distinctive non-consecutive chaotic diffusion stages and one DNA
scrambling stage in between. The generation of the coded secret bit stream employs a hybrid chaotic
system, which is employed to encrypt or decrypt the transmitted image and is utilized in the diffusion
process to dissipate the redundancy in the original transmitted image statistics. The transmitted image
is divided into eight scrambled matrices according to the position of the pixel in every splitting matrix.
Each binary matrix is converted using a different conversion rule in the Watson–Crick rules. The DNA
confusion stage is applied to increase the complexity of the correlation between the transmitted image
and the utilized key. These stages allow the proposed image encryption scheme to be more robust
against chosen/known plaintext attacks, differential attacks, cipher image attacks, and information
entropy. The system was revealed to be more sensitive against minimal change in the generated
secret key. The analysis proves that the system has superior statistical properties, bulkier key space,
better plain text sensitivity, and improved key sensitivity compared with former schemes.

Keywords: hybrid chaotic; image; encryption; decryption; secured; communications; DNA

1. Introduction

Securing multimedia communications is a very important process in modern communication
networks [1–5]. Recently, various researches have been dedicated their efforts to developing several
schemes to fortify personal digital images. Digital images have many discriminative properties,
for instance a wide spectrum and high correlation within the neighboring pixels. These properties
make some conventional data encryption schemes not convenient for securing the processing of such
information. Therefore, new schemes and approaches, such as deoxyribonucleic acid (DNA) [6–8]
and chaotic maps [9,10] have been utilized in modern digital image safeguarding schemes. These
approaches help to improve robustness against chosen/known plaintext attacks, enriched statistical
properties, enhanced key space, amended plain text sensitivity, and upgraded key sensitivity than
earlier schemes.
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In [11], Qiang et al. introduced a scheme that depended on a DNA series matrix and chaos
using dual logistic maps to execute a pair process to the DNA sequences. Following [12], Zhang et al.
suggested a new proposal that encoded the plaintext into American Standard Code for Information
Interchange (ASCII) code and then converted it into DNA sequential data which will be combined
using Exclusive OR (XOR) operation and chaotic map. Subsequently, in [13], Wei et al. developed a new
image encryption process reliant on DNA, chaotic images combination, and utilized hamming distance
to generate a robust crypto-keys. Then in [14], Rasul et al. recommended an encryption system with the
aid of chaos function accompanied by a modified genetic algorithm, and DNA structure is employed
for more security. Liu et al. [15] proposed an algorithm depending on a DNA rule merged with chaotic
map. In addition, they constructed a cipher procedure based on a one-time encryption key and the
chaotic maps to improve the safety and the dynamic deprivation of the proposed procedure, where
the primary conditions are created by the MD5 of mouse positions. Later in 2014, Yushu et al. [16]
examined the role of image fusion, which depends on crypto-analysis for the encryption method and
hiding the information using DNA classification combined with the chaotic map for covering the
information [17]. In 2015, Zhang et al. proposed that an image cryptosystem depends on the lookup
table concept. They built a different cipher for a digital image cryptosystem that depends on the
Latin square and chaos theories [18]. Following in 2017, an efficient digital image encryption process
utilizing adaptive rearrangement diffusion and an arbitrary DNA coding is presented [19]. Haider et al.
in 2017 [20] proposed a different hybrid encryption algorithm that employs triangular scrambling
where DNA mapping and the chaotic map was utilized to increase the security of the scheme. These
articles have no robustness against noise, and their conclusions appeared to have a relatively small
local and global entropy of the encoded image. On the other hand, the number of pixel change-rates
(NPCRs) and the unified average changing intensity (UACI) of the resulted cipher image is far off from
the proofed theoretical values, which means that these procedures are not receptive enough to small
variations of the input image.

A perfect cryptosystem must satisfy some performance analysis such as large key space, sensitivity
to slight change in the secret key, and nearly no correlation between two consecutive adjacent pixels [21].
In 2019, Chengqing Li et al. [22] solving scenario-oriented image security problems by introducing an
algorithm with new technologies. In the same year, Zhongyun et al. proposed a cryptosystem that
depends on the principles of the Josephus problem and the filtering tools. The algorithm utilizes a
standard diffusion and confusion configuration [23]. In [24], a new color image scheme with energetic
DNA and a 4D hyperchaotic system is proposed that satisfies the above requirements.

In this article, a new secured encryption algorithm is presented to encrypt an image utilizing an
identical encryption and decryption schemes to improve the performance and the security analysis
by employing a genome scrambling stage that depends on the DNA mutation process to be robust
against several attacks. The plain image is divided into eight scrambled matrices according to the
position of the pixel in every splitting matrix. Then, each binary matrix of the eight scrambled matrices
is converted using a different conversion rule in the Watson–Crick rules. For example, we scrambled
the first matrix with rule 1, the second matrix with rule 2, and so on. This mutation process increases
the complexity of the relationship between the transmitted image and the utilized key and allows the
proposed encryption algorithm to be more robust against chosen/known plaintext attacks.

The presented algorithm is given in an accurate mathematical language with no exceptional
elements and tested against the list given in [25]. It is a bijective algorithm, and its key space is evaluated
and tested. The two diffusion processes are presented in mathematical prepositions and the DNA
diffusion stage is well defined with numerical examples. The procedure follows Kerckhoffs’ principles,
as it does not comprehend any stealthy factors except for the key. It also follows Shannon’s two
primitive proposes as it contains two non-consecutive diffusion stages employing the hybrid chaotic
map and one confusion stage between them via DNA. From the numerical analysis, it passes many
statistical and randomness tests such as histogram analysis, NPCR, UACI, and various correlation
tests, and its scores are better than previously presented schemes in most of the tests. The proposed
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encryption and decryption are more robust against brute force, differential cipher images, and entropy
attacks than previous schemes. It has a bigger key space and it is more sensitive to minimal change in
the chosen secret key than former techniques.

The remainder of the article is structured as follows. Section 2 details the related background for
the employed chaotic map and the DNA cryptography approach. Following is the explanation and
discussion of the proposed encryption/decryption procedure in Section 3. Section 4 gives the numerical
simulation results, while the security performance of the presented scheme is analyzed in Section 5.
Finally, Section 6 presents the whole presented work and conclusions.

2. Related Background

2.1. Employed Chaotic System

Chaotic cryptography is an essential tool to develop fortified encryption schemes that improve
the security analysis performance of cryptographic algorithms where the distinct chaotic assets such
as the nature of determinism, random performance, nonlinear conversion, sensitivity to preliminary
conditions, and structure parameters have approved “chaos” as an encouraging substitute for
conventional and public key cryptographic algorithms. Since Matthews employed chaos into cryptology
for the first time in 1989 [26], many chaotic systems have been employed in image encryption [27–29].
In 1963, Lorenz [30] discovered the three-dimensional (3D) independent chaotic system. Other chaotic
systems introduced in succession include the Chen-Lu chaos system [31] and Liu chaos system [32].
Both employed the 3D chaos system, which provides only a single positive Lyapunov exponent (PLE).
However, the chaotic system with multiple PLE improves the vibrant behaviors of such a structure,
making it more complicated and difficult to predict. Recently, the adaptive control methods for the
four-dimensional (4D) chaotic systems were introduced in [33,34], which are stiffer to expect than
previous systems. In different chaotic image encryption schemes, the chaotic map initial values or
parameters are employed as private keys, and the iterations of chaotic systems are operated as a
producer of pseudo-random sequences that convert original images into noise-like encrypted cipher
images. These systems behave as non-periodic in state space due to their sensitivity to the chaotic
parameters and chaos initial conditions. Wang et al. presented the perceptual conception of artificial
neural network into the chaotic system and proposed that an image chaotic encryption algorithm
relied on perceptron [35]. In addition, they [36,37] have reported the hyper-chaos Lorenz system as

dx
dt

= a(y− x) + w,

dy
dt

= cx− y− xz,

dz
dt

= xy− bz,

dw
dt

= −rw− yz,

(1)

where b > 0, a > 0, r > 0, and c > 0 are the constraints of the Lorenz hyper-chaos structure which
determine the chaotic behaviors and bifurcation of the hyper-chaos Lorenz map. When b = 8/3, a = 10,
c = 28, and r = 1, the system behaves in a hyper-chaotic manner. The actual ranges of primary variables
are as follows: w0 ∈ (− 250, 250), y0 ∈ (− 40, 40), z0 ∈ (1, 81) and x0 ∈ (− 40, 40), which are always
considered as part of the chosen secret key. The step size is equal to 2 × 10−3 when digitizing (1) by the
Runge Kutta method in the fourth order [38].

2.2. DNA Cryptography

DNA cryptography is a promptly emerging technology that depends on theories of DNA structures
and is known as a promising technology for unbreakable robust algorithms. It is defined as hiding
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data in terms of DNA sequences and is used in transmitting or storing data. The DNA is the genetic
material in living organisms, which includes all the essential information to construct and sustain it.
The strands of DNA are long polymers of several units named nucleotides. The nitrogen base consists
of quad nucleic acids: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). The DNA has a
dual helix arrangement formed by coupling dual chains of nucleic acids all together. Every chain is a
complement to the other one; T and A are paired duos, while C and G are alternative paired duos.
The 0 and 1 are a complement pair in a binary operation; thus, 0 0 and 1 1 are a complement pair, and
0 1 and 1 0 are another complement pair. For example, the A, T, G, and C nucleic acid bases can be
encoded as 0 0, 1 1, 1 0, and 0 1, correspondingly. Table 1 indicates the utilized DNA eight possible
encoding guidelines that satisfy complementary rubrics [39].

Table 1. Watson–Crick rubrics.

A T C G

R 01 0 0 1 1 1 0 0 1
R 02 0 0 1 1 0 1 1 0
R 03 1 1 0 0 1 0 0 1
R 04 1 1 0 0 0 1 1 0
R 05 1 0 0 1 0 0 1 1
R 06 0 1 1 0 0 0 1 1
R 07 1 0 0 1 1 1 0 0
R 08 0 1 1 0 1 1 0 0

2.3. Traditional Chaotic Encryption System

The traditional chaotic image encryption algorithm depends on x repeated confusion stages and y
repeated diffusion stages, and both of these stages are reiterated n periods to generate the ciphered
image from the original plain one, as shown in Figure 1a. To recuperate the plain image from the
ciphered one, the chaotic decryption algorithm is applied and it is the contrary of the encryption
algorithm presented in Figure 1b.
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3. Proposed Image Cryptosystem

Let P represent the originally transmitted image, which is exemplified by a matrix with size
W × H where W and H are the size of the columns and rows of the matrix P, respectively. Each
element of the grayscale original image is signified by 8-bit i.e., 256 intensity levels. The presented
encryption scheme is illustrated in Figure 2. Its private key is defined as S =

{
x0, y0, z0, w0, a1, a2

}
,

where y0, x0, z0, and w0 are the initial parameters of the 4D hyperchaotic system, whose value ranges
are y0 ∈ (− 40, 40), x0 ∈ (− 40, 40), w0 ∈ (− 250, 250), and z0 ∈ (1, 81) where a1 and a2 are 8-bit
random numbers selected by the user. The step size of x0, y0, z0 is 10−13, while the step size of w0 is
10−12. In the encryption process, there are dual pseudo-random matrices X and Y that are produced
by repeating the hyperchaotic system to encrypt the original image. In the decryption algorithm, the
pseudorandom matrices are produced by the indistinguishable methods utilized in the encryption
algorithm; then, these matrices are rotated a half cycle to generate new different matrices designated
by YNew and XNew.
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Figure 2. The proposed securing system for images: (a) encryption process, (b) decryption process.

In the presented scheme, the encryption and decryption algorithm are the same, both counting the
exact identical stages of the forward image diffusion stage, circling the resulting image by 180 degrees,
scrambling the outcome with the DNA confusion stage, rotating the consequence by 180 degrees,
utilizing the backward image diffusion, and rotating it by 180 degrees again. The algorithm comprises
four main stages, as portrayed in the subsequent sections.

3.1. Secret Code Stream Generator

There are two pseudo-random matrices are generated using the hyperchaotic Lorenz system given
by Equation (1), represented by X and Y, and both of the size W × H. Iterate this equation beginning
with the four initial values defined in the private key S for a1 + a2 times in order to avoid the ephemeral
values of the hyperchaotic Lorenz system, and then resume iterating for W ×H to get four pseudo-noise
streams, which are designated by {xi}, {yi}, {zi}, and {wi}, i = 1, 2, ···, W × H, separately. Generate the
two matrices X, Y from the sequences {xi}, {yi} by

X(k, l) = Floor((x(k− 1) ×H+l + 500mod1) × 1013)mod256, (2)
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Y(k, l) = Floor((y(k− 1) ×H+l + 500mod1) × 1013)mod256, (3)

where Floor(f) yields the largest principle integer number not as much of f, and “+500” is used to
translate any negative numbers to positive numbers. These two matrices are used for forward and
backward diffusion in the encryption process. However, for the decryption procedure demonstrated
in Figure 2b, new matrices XNew and YNew are generated by spinning the novel matrices X and Y by
180 degrees, correspondingly. They are generated utilizing

XNew(i, j) = X(i, W + 1− j), f or i = 1 . . .H, j = 1 . . .W, (4)

YNew(i, j) = Y(i, W + 1− j), f or i = 1 . . .H, j = 1 . . .W. (5)

3.2. Forward Diffusion Stage

In this stage, the algorithm obtains a new matrix denoted by Q by applying XOR (⊕) operation
between the two matrices of the original image P elements and the pseudo-random matrix X elements
according to the subsequent formulas

Q(1, 1) = P(1, 1) ⊕X(1, 1) ⊕ a1 (6)

Q(1, j) = P(1, j) ⊕X(1, j) ⊕Q(1, j− 1), f or j = 2, 3, . . . , W (7)

Q(i, 1) = P(i, 1) ⊕X(i, 1) ⊕Q(i− 1, 1), f or i = 2, 3, . . . , H (8)

Q(i, j) = P(i, j) ⊕X(i, j) ⊕Q(i− 1, j) ⊕ Q(i, j− 1) ⊕Q(i− 1, j− 1),
f or i = 2, 3, . . . , H, and j = 2, 3, . . . , W

(9)

Then, we rotate matrix Q by 180 degrees to attain a matrix designated by A using

A(i, j) = Q(i, W + 1− j), f or i = 1, 2...H, and j = 1, 2...W (10)

which is the input to the next DNA scrambling stage described in the following subsection.

3.3. DNA Mutation Scrambling Stage

To improve the fight of the encryption process against chosen/known plaintext attacks, we
introduce a new scrambling stage that depends on the DNA mutation process. Utilizing this stage
improves the complex relative between the plain image, the encrypted one, and the utilized key.
A small difference in the original image or key will affect a major divergence in the encrypted image
with assent. The steps to get the scrambled matrix are as follows.

1. Divide matrix A into two equally matrices by selecting the even columns together and create the
first matrix AE; then, select the odd columns and create the second matrix AO. Both matrices
have the size of H ×W/2.

2. Generate two new matrices AOE and AOO from AO by selecting the even rows together and the
odd rows together. Repeat for AE to generate AEE, AEO matrices. The four matrices have the size
W/2×H/2.

3. Repeat Step 2 to generate eight new matrices AEEE, AEEO, AEOE, AEOO, AOEE, AOEO, AOOE each
of size W/2×H/4. Figure 3 illustrates the output of every step applied to matrix A with a size of
10 × 10.

4. Convert each pixel into the eight matrices to 8-bit binary values, each of size 4W × H/4.
For example, the first three elements in matrix AOOO are ‘31’, ‘33’, and ‘35’, which will be
converted to ‘00011111’, ‘00100001’, and ‘00100011’.

5. Encode every binary element in the eight matrices with the DNA encoding rules. Each binary
matrix is encoded using a different conversion rule, as shown in Table 1. For instance, rule 1 is used
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to encode the first matrix, rule 2 is used for the second matrix, etc. The outputs of this stage are
eight DNA encoded matrices with the size of 2W ×H/4. For illustration, ‘00011111’, ‘00100001’,
and ‘00100011’ will be encoded with Rule 8 to ‘GACC’, ‘GTGA’, and ‘GTGC’, respectively.

6. Mutate the existing DNA pairs to their mutated values according to Table 2. For illustration, the
‘GACC’, ‘GTGA’, and ‘GTGC’ will be mutated to ‘CAGC’, ‘CTCA’, and ‘CTCC’, respectively.

7. Convert the mutated DNA values to their corresponding binary values according to Table 1.
For example, ‘CAGC’, ‘CTCA’, and ‘CTCC’ will be mutated to ‘11010011’, ‘11101101’, and
‘11101111’, correspondingly.

8. Concert the binary values to their decimal values in the range from ‘0’ to ‘255’. For instance, the
‘11010011’, ‘11101101’, and ‘11101111’ will be converted to 211, 237, and 239, respectively.

9. Concatenate the eight matrices into one decimal matrix denoted by I of size W ×H with the new
confused values and rotated by 180 degrees to generate a matrix denoted by B fed to the next
stage of backward diffusion.
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10 × 10 matrix.

Table 2. DNA mutation rules.

DNA Mutate DNA Mutate DNA Mutate DNA Mutate

A A T A C A G A G A C A T A A A
A C T C C C G C G C C C T C A C
A G T G C G G G G G C G T G A G
A T T T C T G T G T C T T T A T

3.4. Backward Diffusion Stage

In the backward image diffusion stage, the matrix B is converted into a matrix signified by E, with
the XOR process and the pseudo-noise matrix Y by

E(H, W) = B(H, W) ⊕Y(H, W) ⊕ a1 (11)

E(H, j) = B(H, j) ⊕Y(H, j) ⊕B(H, j + 1), f or j = W − 1, . . . , 1 (12)

E(i, W) = B(i, W) ⊕Y(i, W) ⊕B(i + 1, 1), f or i = H − 1, . . . , 1 (13)

E(i, j) = B(i, j) ⊕Y(i, j) ⊕B(i + 1, j) ⊕B(i, j + 1) ⊕B(i + 1, j + 1),
f or i = H − 1, . . . , 1, f or j = W − 1 , . . . , 1

(14)
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Turn around the matrix E by 180 degrees to get a ciphered image matrix symbolized by C using

C(i, j) = E(i, W + 1− j), f or i = 1, 2...H, and j = 1, 2...W (15)

4. Simulation Effects

The algorithm is carried out on the Lena, Cameraman, and Circuit images. ‘Mathematica 11’
software is used to apply the proposed symmetric encryption and decryption scheme. The utilized
secret symmetric key is set to S = {3.3133, 12.0546, 40.8879, −34.5677, 35, 201}, which is employed in
each encryption and decryption algorithm, and the used plain images with size 200 × 200 pixels are
illustrated in Figure 4a. The corresponding cipher image is generated using the encryption algorithm,
and it is shown in Figure 4b. Then, we decrypted the cipher image Figure 4b with the correct secret key
S to get the perfectly reconstructed image, as shown in Figure 4c. The histograms of the plain images
and the corresponding generated cipher images are shown in Figure 5a,b, respectively. It’s clear from
Figures 4 and 5 that the pattern of the cipher image is noise-like and is not related to the original plain
image. The recovered image is a perfectly reconstructed version of the original plain image, while the
histogram of the cipher image is almost flat, which ensures that no statistical information from the
original image can be discovered consequently.
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5. Performance and Security Analysis

5.1. Key Space

The key space is usually designed to be large enough to prevent an opponent from using a
brute-force attack to find the key used to encrypt the plain images. In this article, the key space of
the presented cryptosystem consisted of the initial conditions of the hyperchaotic Lorenz system
x0, y0, z0, w0, a1 and a2. The value ranges were x0 ∈ (− 40, 40), y0 ∈ (−40, 40), and z0 ∈ (1, 80) each with
a step size of 10−13, while the value range of w0 ∈ (−250, 250) had a step size of 10−12. a1 and a2 are
two 8-bit random numbers whose value ranges are [0,255] with a single step size. Therefore, the key
space of the proposed algorithm is 1.6777× 1064, and that space is large enough to resist brute-force
attacks. It would take 2.03451× 1021 days to crack the systems if 17 billion attempts are tried hourly
using a very high-performance machine.

5.2. Statistical Attacks Analysis

The encryption process should have the ability to struggle against statistical confrontation, and
this can be assessed by histogram analysis and a chi-square test.
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5.2.1. Image Histogram Analysis

The histograms of the original images of Lena, Cameraman, and Circuit shown in Figure 5a are
non-uniform. The characteristic peak is clear and most of the images’ information can be obtained
effortlessly. On the other hand, Figure 5b displays the histograms of the cipher images with a nearly
uniform statistical distribution. These two aspects prove the statement of resisting the statistical attacks
and the cipher images attack in our proposed encryption process. The correlation among nearby pixels
signifies the randomness of the encrypted resulted gray levels. Now, we discuss the correlation in
the horizontal, the vertical and the diagonal directions. Choose a random N duos of nearby pixels,
and (xi, yi) are the concerned pixel values of the i-th pair (i = 1, 2, . . . , N). After that, the correlation
coefficient r can be computed by

r =
∑N

i=1 (xi − x)(yi − y)√∑N
i=1 (xi − x)2

√∑N
i=1 (yi − y)2

(16)

where r is the sample size, (xi, yi) are the distinct sample points with index I, x = 1/N
N∑

i=1
xi is the

sample mean, and similarly for y. Now, let N = 2000, and the resulted different correlation coefficients
of the cipher image and original image are recorded in Table 3. The correlation in the horizontal course
for each image is shown in Figure 6. The correlation of plain images is high and close to 1. In contrast,
the correlation of the cipher images is low and near to 0, which indicates that encrypted pixels are
valued and distributed randomly in the encrypted images.
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Figure 6. Correlation analysis plot. (a) Horizontal direction correlation for plain images Lena,
Cameraman, and Circuit, (b) Horizontal correlation for their cipher images respectively.

Table 3. Calculated correlation coefficients.

Correlation
Plain Image Cipher Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9650 0.9144 0.9056 0.0082 −0.0032 −0.0025
Cameraman 0.9560 0.9140 0.9077 0.0074 −0.0029 −0.0019

Circuit 0.9580 0.9230 0.9118 0.0078 −0.0034 −0.0021

5.2.2. Chi-Square Test

To proof the uniform distribution of the resulted ciphered images in a more precise manner, we
perform the chi-square test to show that the cipher image is a uniform distribution. The chi-square test
is described

χ2 =
L−1∑
i=0

(oi − ei)
2

ei
(17)

where L is the number of pixel grayscale levels, oi is the occurrence frequency of each gray level (0–255)
in the histogram of the resulted encrypted images, and ei is the probable frequency of the uniform
distribution. The uniform distribution of the histogram is assessed with the aid of the chi-square χ2

test. The null hypothesis is only accepted when the p-value is greater than the significance amount
s(s ∈ [0, 1]). Table 4 presents the chi-square score and their p-value for the histogram of the encrypted
Lena, Cameraman, and Circuit images and the significance level amount of 0.05. The obtained score
is smaller than χ2

th (255, 0.05) = 293.247, while their p-value is larger than 0.05. Therefore, the null
hypothesis is achieved, and the histogram of the encrypted images is uniformly distributed. Based on
that, the presented encryption algorithm is strong against statistical attacks.

Table 4. Histogram chi-square test.

Image
χ2 Test

Score p-Value H0

Lena 246.804687 0.6834 Accepted
Cameraman 246.817237 0.6670 Accepted

Circuit 246.794528 0.6754 Accepted

5.3. Key Sensitivity Analysis

To test the key sensitivity of a secret key, we can create a different secret key S2 after the secret
key S =

{
x0, y0, z0, w0, a1, a2

}
by changing {a1, a2} by 1 or any component of

{
x0, y0, z0

}
by 10−13 or w0 by
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10−12. First, encrypt the plaint image P for the presented encryption system with the secret keys of S1

and S2 to get dual cipher images, symbolized by C1 and C2, correspondingly. Contrast C1 and C2 to
get two gauges named Diff 1 and Diff 2 using [40]

Di f f1 =
( 1

W ×H

) W∑
i=1

H∑
j=1

∣∣∣Sign (C1(i, j) −C2(i, j))
∣∣∣× 100% (18)

Di f f2 =
( 1

W ×H

) W∑
i=1

H∑
j=1

∣∣∣C1(i, j) −C2(i, j)
∣∣∣

256
× 100% (19)

where Sign(·) is the sign role, and (W, H) are the width and height of the original image, correspondingly.
Correspondingly, the hypothetical values for Di f f1 and Di f f2 in the case of dual arbitrary images are
99.6094% and 33.3328%.

Another way to assess the secret key sensitivity and secure the plain image P1 utilizing the secret
key S1 of the presented system to get the ciphered image C, and then decrypt the ciphered image C by
the new secret key S2 to retrieve the plain image signified by P2. Compare P1 and P2 to get Di f f3 and
Di f f4 respectively, using [40]

Di f f3 =
( 1

W ×H

) W∑
i=1

H∑
j=1

∣∣∣Sign (P1(i, j) − P2(i, j))
∣∣∣× 100% (20)

Di f f4 =
( 1

W ×H

) W∑
i=1

H∑
j=1

∣∣∣P1(i, j) − P2(i, j)
∣∣∣

256
× 100%. (21)

Assume that the plain image denoted by P1 and another random image is denoted by P2; then,
the hypothetical values of Di f f3 and Di f f4 are 99.6094% and 28.5059%, respectively [40]. To test the
plaintext sensitivity, 100 trials are done for the Lena, Cameraman, and Circuit images and calculate
the average values of Di f f1, Di f f2, Di f f3, and Di f f4. Table 5 shows that the calculated results of
Di f f1, Di f f2, Di f f3, and Di f f4 are nearly equal to their hypothetical values; these values indicators
are designating that the presented scheme is very sensitive to minimal alteration in the generated
secret key.

Table 5. Key sensitivity tests results (%).

Theoretical Values Diff1 (99.6094) Diff2 (33.3328) Diff3 (99.6094) Diff4 (28.5059)

Lena 99.6225 33.3962 99.6250 28.3191
Cameraman 99.6122 33.3876 99.6299 28.3245

Circuit 66.6179 33.3471 99.6134 28.3770

5.4. Differential Attack

An opponent can get valuable information by altering several pixels of the plain image. The NPCR
and UACI are usually employed to measure the resistance of the encrypted image against differential
raids. We utilize the presented encryption scheme to encrypt P1 and P2 to get their corresponding
cipher images denoted by C1 and C2 with the same secret key, where P2 (i, j) = [P1 (i, j) + 1] mod 256.
Then, the NPCR and UACI are given by

NPCR =
1

W ×H

W∑
i=1

H∑
j=1

∣∣∣Sign(C1(i, j) −C2(i, j))
∣∣∣× 100% (22)
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UACI =
1

W ×H

W∑
i=1

H∑
j=1

∣∣∣Sign(C1(i, j) −C2(i, j))
∣∣∣

256
× 100% (23)

The theoretical values of NPCR and UACI for any two random images with 256 gray levels are
99.609% and 33.464%, respectively. The NPCR and UACI test outcomes are presented in Tables 6
and 7, respectively. If one bit of the input image is altered, the NPCR and UACI of traditional methods,
in CCAES [41], CDCP [42], and CHC [43] are close to hypothetical values. DNA-based methods,
C-DNA [44] and HC-DNA [45], have a better noise attack performance than the previous works.
Furthermore, the values are compared against the critical values as in [46,47]. These demonstrate the
capability of the proposed algorithm to stand for differential attacks. So, the presented cryptosystem
attains high performance by getting NPCR values and UACI values near to their hypothetical values.

Table 6. Number of pixel change rat (NPCR) test analysis (%).

Algorithms NPCR (%)
NPCR Critical Values

N*
0.05 99.5693% N*

0.01 99.5527% N*
0.001 99.5341%

Proposed 99.6150 Successful Successful Successful
CCAES [41] 99.5697 Successful Successful Successful
CDCP [42] 100 Successful Successful Successful
CHC [43] 99.6605 Successful Successful Successful

C-DNA [44] 15.25× 10−4 NA NA NA
HC-DNA [45] 59.7406 NA NA NA

Table 7. Unified average changing intensity (UACI) test analysis (%).

Algorithms UACI (%)

UACI Critical Values

U*
± 0.05

+33.2824%
−33.6447%

U*
± 0.01

+33.2255%
−33.7016%

U*
± 0.001

+33.1594%
−33.7677%

Proposed 33.4205 Successful Successful Successful
CCAES [41] 33.4767 Successful Successful Successful
CDCP [42] 33.5752 Successful Successful Successful
CHC [43] 33.4263 Successful Successful Successful

C-DNA [44] 8.97× 10−6 NA NA NA
HC-DNA [45] 25.0487 NA NA NA

5.5. Cipher Image Sensitivity Analysis

To measure the differential attacks based on ciphered image analysis, we obtain the cipher image
C1 by encrypting the plain image P1 using the corresponding secret key S1 Then, generate a new
cipher image C2 from C1 by shifting the randomly selected pixel of the C1(i, j) value by 1 where
C2(i, j) = [C1(i, j) + 1]mod256 for a selected pixel position (i, j) in a random manner. To analyze
cipher image sensitivity firstly, decrypt the ciphered image C2 utilizing the presented algorithm with
the secret key S1 to get P2, which is the recovered image. Analyze the difference between the two
recovered images P1 and P2 by using Equations (15) and (16) to calculate the values of Di f f3 and Di f f4.
Secondly, change any element of the secret key S1 to get new secret key S2, and decrypt C1 and C2

by the proposed scheme with the new secret key S2 to obtain their corresponding recovered images
P3 and P4, correspondingly. Later, compute the indicators named Di f f3 and Di f f4 among P3 and P4.
Finally, reiterate the overhead steps 100 times and compute the middling values. The calculated value
of Di f f3 equal to 99.6150 and Di f f4 equals to 28.4170, which are near its hypothetical values. Therefore,
the presented scheme is shown to be very vulnerable to the slight alteration of cipher images and can
withstand the differential cipher images attacks.
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5.6. Resisting Chosen/Known Plaintext Attacks

The chosen/known plaintext attack [48,49] can occur when an attacker chooses an arbitrary
plaintext and its corresponding cipher text to distinguish the algorithm or the secret key, which allows it
to decrypt any cipher text using this algorithm. Assume that dual plain images P1 and P2 are identical
except for P1 (i, j) , P2 (i, j) where P2 (i, j) = [P1 (i, j) + 1] mod 256. In the forward image diffusion stage,
the plain images P1 and P2 are transformed to matrices denoted by Q1 and Q2 with the XOR logic
process and the pseudo-noise matrix X. Consequently, rotate Q1 and Q2 by 180 degrees to get A1 and
A2. Thus, the pixel located at (1, 1) swaps its position with the pixel located at (w1, h1) in A1, while the
pixel located at location (1, 1) swaps its position with the pixel located at (w2, h2) in A2. After one time
of DNA scrambling operation, on the pixel (1, 1), the value of I1 (1, 1) , I2 (1, 1). In a similar way, the
value of I1 (1, 2) , I2 (1, 2). This means that as for images I1 and I2, we have I1 (i, j) , I2 (i, j). Rotate I1

and I2 by 180 degrees to obtain B1 and B2, respectively; then, we get B1 (i, j) , B2 (i, j) for i = 1, 2, · · ·,
W, j = 1, 2, · · ·, H and B1 (W, 1) , B2 (W, 1). According to Figure 2, by backward diffusion operation, E1

and E2 are generated from B1 and B2 respectively, so according to the proposed algorithm described,
we can get E1 (i, j) , E2 (i, j). Thus, C1 (i, j) , C2 (i, j), i = 1, 2, · · ·, W, j = 1, 2, · · ·, H. These revealed that
for identical plain images P1 and P2 with just one pair of pixels being dissimilar, their ciphered images
C1 and C2 will be unique for each corresponding pixel location, even when they are cyphered with an
identical secret key. Therefore, the presented encryption algorithm can withstand the chosen/known
plaintext attacks.

5.7. Global Information Entropy

The global information entropy indicates the uncertainty of global image information, which is
denoted by H(m) of matrix m, and evaluated as

H(m) = −
∑255

i=0
p(mi) log2((p(mi)) (24)

where p(mi) represents the probability of mi. The theoretical value of the global information entropy
intended for an 8-bit grayscale random image is nearer to 8. The global information entropy calculated
results are presented in Table 8. We take the plain image Lena and the corresponding ciphered image as
an example with a grayscale level L of 256. In the proposed system, the information entropy of the plain
image is equal to 7.4430 and the entropy of the cipher image is equal to 7.9882, which demonstrates
that the proposed cryptosystem can resist entropy attacks efficiently.

Table 8. Information entropy.

Average
Performance

Proposed System CCAES
[41]

CDCP
[42]

CHC
[43]

C-DNA
[44]

HC-DNA
[45]Lena Cameraman Circuit

Plain 7.443 7.432 7.438 7.422 7.438 7.441 7.428 7.431
Cipher 7.988 7.997 7.995 7.997 7.966 7.997 7.996 7.996

5.8. Local Shannon Entropy

Wu et al. [50] have expressed a new entropy gauge to regulate the real randomness by picking the
non-overlapping blocks inside the encrypted image. The local Shannon entropy (LSE) is computed by
calculating the mean of several global Shannon entropies on every one of the building blocks. Taking
into account the randomness of the ciphered image, but the global entropy analysis in the previous
section, the LSE can be defined by

Hk,l(m) = −
k∑

i=0

H(mi)

k
(25)
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where m1, m2, . . . , mk are k selected image blocks, while l is the amount of pixels for each block.
The local entropy values for the encrypted image are presented in Table 9. It can be shown that the local
entropy value is nearer to the optimum hypothetical value (≈8). Therefore, the proposed algorithm has
good randomness.

Table 9. Local Shannon entropy.

Image Proposed System [51] [52] [53] [54]

Lena 7.903462 7.902838 7.900975 7.904512 7.904671

5.9. Complexity Analysis

To compute the complications of performing the presented algorithm, the image size as W × H is
taken into consideration. Let n indicate the quantity of pixels inside the image. The complexity of the
presented algorithm can be determined by the following discussed operations. These operations consist
of binary data conversion, DNA scrambling operation, secret key generation, forward and backward
image diffusion, and decimal data conversion. The complexity of binary data conversion is O(n2) and
that of the DNA scrambling operation is equal to O(4n2). The secret key creation process consists of
tri-sub-operations such as pseudo-random sequence production, binary transformation, and DNA
scrambling with a complexity of O(6n2). In contrast, the complexity of forward and backward diffusion
operations is O(62n2). The conversions from DNA to binary data and binary data to decimal data take
O(5n2). Therefore, the overall complexity of the presented image encryption scheme is O(78n2).

5.10. Encryption and Decryption Speed

The computer used was constructed with Intel Duo Core I7 M460@2.53 GHz, 8 GB DDR3 RAM,
Windows 10. For the encryption time TE and decryption time TD, the effect of a1 + a2 can be neglected
due to its very small value contrasted to the effect of the original image size. So, we put the values
of a1 and a2 to 128. We made the experiments on the pictures with the size of 200 × 200 pixels and
recorded the encryption/decryption algorithm duration in Table 10.

Table 10. Encryption/Decryption time.

Algorithms Proposed
System

CCAES
[41]

CDCP
[42]

CHC
[43]

C-DNA
[44]

HC-DNA
[45]

Time 0.19253 2.9 2.70264 3.17265 2.15572 0.27783

From Table 10, we can see that for 1000 pieces of images encrypting or decrypting, the execution
times of different encryption schemes was listed. As can be seen, the encryption speed of our proposed
algorithm is sufficiently fast to meet real-time performance necessities.

6. Conclusions

This article introduced a new bijective algorithm which is dedicated to secure image transmission
over the data communication systems. Both encryption and decryption algorithms are identical
and each have two diffusion processes and one DNA confusion process, which reduces hardware
implementation complexity according to Shannon’s’ proposal. The diffusion process employs the
hyperchaotic system and the confusion process uses the DNA, which both enhance the proposed
algorithm security. When compared with former algorithms, the statistical tests proved that the
proposed cryptosystem has a larger key space to resist brute-force attack, and the randomness
tests showed that the encrypted pixels are distributed more randomly through the ciphered image.
In addition, the proposed system was revealed to be more sensitive than former techniques against
minimal change in secret key and better resistance against the known plaintext, the chosen plaintext,
the differential cipher image attacks, and entropy attacks.
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Finally, as future research, we advise an additional investigation of the simulation analysis of
the chaotic performance by using an exponential chaotic model and other confusion techniques to
generate a robust chaotic image encryption technique with the addition of fault-tolerance technology
for the purpose of enhanced transmission of high-quality and secure data.
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