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Abstract: What are relevant levels of description when investigating human language? How are
these levels connected to each other? Does one description yield smoothly into the next one such
that different models lie naturally along a hierarchy containing each other? Or, instead, are there
sharp transitions between one description and the next, such that to gain a little bit accuracy it is
necessary to change our framework radically? Do different levels describe the same linguistic aspects
with increasing (or decreasing) accuracy? Historically, answers to these questions were guided by
intuition and resulted in subfields of study, from phonetics to syntax and semantics. Need for research
at each level is acknowledged, but seldom are these different aspects brought together (with notable
exceptions). Here, we propose a methodology to inspect empirical corpora systematically, and to extract
from them, blindly, relevant phenomenological scales and interactions between them. Our methodology
is rigorously grounded in information theory, multi-objective optimization, and statistical physics. Salient
levels of linguistic description are readily interpretable in terms of energies, entropies, phase transitions,
or criticality. Our results suggest a critical point in the description of human language, indicating that
several complementary models are simultaneously necessary (and unavoidable) to describe it.

Keywords: syntax; Pareto-optimality; bottleneck method; phase transitions; statistical mechanics

1. Introduction

What is the “right” level of description for the faculty of human language? What would allow
us to properly describe how it operates given the multiple scales involved—from letters and words to
whole sentences? This nested character of language organization (Figure 1) pervades the great challenge
of understanding how it originated and how we could generate it artificially. The standard answer to
these and similar questions is given by rules of thumb that have helped us, historically, to navigate the
linguistic complexities. We have identified salient aspects (e.g., phonetics, formal grammars, etc.) to which
whole fields are devoted. In adopting a level of description, we hope to encapsulate a helpful snippet
of knowledge. To guide these choices we must broadly fulfill two goals: (i) the system under research
(human language) must be somehow simplified and (ii) despite that simplification we must still capture as
many relevant, predictive features about our system’s unfolding as possible. Some simplifications work
better than others. In general, opting for a specific level does not mean that another one is not informative.
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Figure 1. Different levels of grammar. Language contains several layers of complexity that can be gauged
using different kinds of measures and are tied to different kinds of problems. The background picture
summarizes the enormous combinatorial potential connecting different levels, from the alphabet (smaller
sphere) to grammatically correct sentences (larger sphere). On top of this, it is possible to describe each
layer by means of a coarse-grained symbolic dynamics approach. One particularly relevant level is the one
associated to the way syntax allows generating grammatically correct strings x(t). As indicated in the left
diagram, symbols succeed each other following some rules φ. A coarse-graining π groups up symbols in a
series of classes such that the names of these classes; xR(t) also generate some symbolic dynamics whose
rules are captured by ψ. How much information can the dynamics induced by ψ recover about the original
dynamics induced by φ? Good choices of π and ψ will preserve as much information as possible despite
being relatively simple.

A successful approach to explore human language is through networks. Nodes of a language web
can be letters, syllables, or words; links can represent co-occurrences, structural similarity, phonology,
or syntactic or semantic relations [1–7]. Are these different levels of description nested parsimoniously
into each other? Or do sharp transitions exist that establish clear phenomenological realms? Most of the
network-level topological analyses suggest potential paths to understand linguistic processing and hint at
deeper features of language organization. However, the connection between different levels are seldom
explored, with few exceptions based on purely topological patterns [8]; or some ambitious attempts to
integrate all linguistic scales from the evolutionary one to the production of phonemes [9,10].

In this paper, we present a methodology to tackle this problem in linguistics: When are different
levels of description pertinent? When can we forgo some details and focus on others? For example, when
do we need to attend to syntactic constraints, and when do we need to pay attention to phonology? How
do the descriptions at different levels come together? This interplay can be far from trivial: note, e.g.,
how phonetics dictates the grammatical choice of the determiner form “a” or “an” in English. Similarly,
phonetic choices with no grammatical consequence can evolve into rigid syntactic rules in the long term.
Is the description at a higher level always grounded in all previous stages, or do descriptions exist that do
not depend on details from other scales? Likely, these are not all or nothing question. Therefore, rather,
how many details in a given description do we need to carry on to the next one?
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To exemplify how these questions can be approached, we look at written corpora as symbolic series.
There are many ways in which a written corpus can be considered a symbolic series. For example, we can
study the succession of letters in a text. Then, the available vocabulary consists of all letters in the alphabet
(often including punctuations marks):

χletters ≡ {a, b, . . . , z, !, ?, . . . }. (1)

Alternatively, we can consider words as indivisible. In such cases, our vocabulary (χwords) would consist
of all entries in a dictionary. We can study even simpler symbolic dynamics, e.g., if we group together all
words of each given grammatical class and consider words within a class equal to each other. From this
point of view, we do not gain much by keeping explicit words in our corpora. We can just substitute each
one by its grammatical class, for example,

green colorless ideas sleep furiously −→ adj adj noun verb adv. (2)

After this, we can study the resulting series that have as symbols elements of the coarse-grained vocabulary:

χgrammar ≡ {noun, verb, adj, adv, prep, . . . }. (3)

Further abstractions are possible. For example, we can introduce a mapping that retains the difference
between nouns and verbs, and groups all other words in an abstract third category:

adj adj noun verb adv −→ cat3 cat3 noun verb cat3. (4)

It is fair to ask which of these descriptions are more useful, when to stop our abstractions, whether
different levels define complementary or redundant aspects of language, etc. Each of these descriptions
introduces an operation that maps the most fine-grained vocabulary into less detailed ones, for example,

π : χwords → χgrammar. (5)

To validate the accuracy of this mapping, we need a second element. At the most fundamental level,
some unknown rules φ exist. They are the ones connecting words to each other in real language and
correspond to the generative mechanisms that we would like to unravel. At the level coarse-grained by
a mapping π, we can propose a description Ψ (Figure 1) that captures how the less-detailed dynamics
advance. How well can we recover the original series depends on our choices of π and Ψ. Particularly
good descriptions at different scales conform the answers to the questions raised above. The φ and Ψ
mappings play roles similar to language grammar, i.e., sets of rules that tell us what words can follow
each other. Some rules show up in actual corpora more often than others. Almost every sentence needs
to deal with the Subject-Verb-Object (SVO) rule, but only seldom do we find all types of adjectives in a
same phrase. If we would infer a grammar empirically by looking at English corpora, we could easily
oversee that there is a rule for adjective order too. However, as it can be so easily missed, this might not be
as important as SVO to understand how English works.

Here, we investigate grammars, or sets of rules, that are empirically derived from written corpora.
We would like to study as many grammars as possible, and to evaluate numerically how well each of
them works. In this approach, a wrong rule (e.g., one proposing that sentence order in English is VSO
instead of SVO) would perform poorly and be readily discarded. It is more difficult to test descriptive
grammars (e.g., a rule that dictates the adjective order), so instead we adopt abstract models that tell us
the probability that classes of words follow each other. For example, in English, it is likely to find an
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adjective or a noun after a determiner, but it is unlikely to find a verb. Our approach is inspired by the
information bottleneck method [11–15], rate distortion theory [16,17], and similar techniques [18–22]. In
all these studies, arbitrary symbolic dynamics are divided into the observations up to a certain point,←−x ,
the dynamics from that point onward, −→x , and some coarse-grained model R (which plays the role of our
π and Ψ combined) that attempts to conceptualize what has happened in←−x to predict what will happen
in −→x . This scheme allows us to quantify mathematically how good is a choice of R ≡ {π, Ψ}. For example,
it is usual to search for models R that maximize the quantity:

I(←−x : R) + αI(←−x : −→x |R) (6)

for some α > 0. The first term captures the information that the model carries about the observed dynamics
←−x , the second term captures the information that the past dynamics carry about the future given the filter
imposed by the model R, and the metaparameter α weights the importance of each term towards the
global optimization.

We will evaluate our probabilistic grammars in a similar (yet slightly different) fashion. For our
method of choice, we first acknowledge that we are facing a Pareto, or Multi-Objective Optimization
(MOO) problem [23–25]. In this kind of problem we attempt to minimize or maximize different traits
of the model simultaneously. Such efforts are often in conflict with each other. In our case, we want to
make our models as simple as possible, but in that simplicity we ask that they retain as much of their
predictive power as possible. We will quantify how different grammars perform in both these regards,
and rank them accordingly. MOO problems rarely present global optima, i.e., we will not be able to find
the best grammar. Instead, MOO solutions are usually embodied by Pareto-optimal trade-offs. These are
collections of designs that cannot be improved in both optimization targets simultaneously. In our case
these will be grammars that cannot be made simpler without losing some accuracy in their description of
a text, or that cannot be made more accurate without making them more complicated.

The solutions to MOO problems are connected with statistical mechanics [25–29]. The geometric
representation of the optimal trade-off reveals phase transitions (similar to the phenomena of water
turning into ice or evaporating promptly with slight variations of temperature around 0 or 100 degrees
Celsius) and critical points. In our case, Pareto optimal grammars would give us a collection of linguistic
descriptions that simultaneously optimize how simply language rules can become while retaining as much
of their explanatory power as possible. The different grammars along a trade-off would become optimal
descriptions at different levels, depending on how much detail we wish to track about a corpus. Positive
(second order) phase transitions would indicate salient grammars that are adequate descriptions of a
corpus at several scales. Negative (first order) phase transitions would indicate levels at which the optimal
description of our language changes drastically and very suddenly between extreme sets of rules. Critical
points would indicate the presence of somehow irreducible complexity in which different descriptions of a
language become simultaneously necessary, and aspects included in one description are not provided by
any other. Although critical points seem a worst-case scenario towards describing language, they are a
favorite of statistical physics. Systems at a critical point often display a series of desirable characteristics,
such as versatility, enhanced computational abilities, and optimal handling of memory [30–38].

In Section 2 we explain how we infer our π and Ψ (i.e., our abstract “grammatical classes” and
associated grammars), and the mathematical methods used to quantify how simple and accurate they are.
In Section 3, we present some preliminary results, always keeping in mind that this paper is an illustration
of the intended methodology. More thorough implementations will follow in the future. In Section 4, we
reflect about the insights that we might win with these methods, how they could integrate more linguistic
aspects, and how they could be adapted to deal with the complicated, hierarchical nature of language.
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2. Methods

2.1. Corpus Description and Preparation

We took a sample of 49 newspaper articles from the Corpus of Contemporary American English [39].
The articles were selected such that they did not contain foreign (non-English) words or symbols. We
substituted by a period every punctuation mark that indicated the end of a sentence and removed any
other punctuation mark except for the apostrophes indicating a contraction (e.g., “don’t”) or a genitive
(e.g., “someone’s”). Ideally, we would like to use raw texts and see Pareto optimal grammars emerging
from them. These should also include instructions about how alien symbols or words (loosely speaking,
any items that are not proper of English language, e.g., french terms, accent marks, etc.) are treated.
However, these are rather minor details. Effective grammars should specify first how its own words are
articulated.

Table 1. Grammatical classes present in the most fine-grained level of our corpora.

Conjunction Adverb
Cardinal number Adverb, comparative
Determiner Adverb, superlative
Existential there to
Preposition Interjection
Adjective Verb, base form
Adjective, comparative Verb, past tense
Adjective, superlative Verb, gerund or present participle
Modal Verb, past participle
Noun, singular Verb, non-3rd person singular present
Noun, plural Verb, 3rd person singular present
Proper noun, singular Wh-determiner
Proper noun, plural Wh-pronoun
Predeterminer Possessive wh-pronoun
Possessive ending Wh-adverb
Personal pronoun None of the above
Possessive pronoun ‘.’

Our more basic level of analysis will already be a coarse-grained one. Again, ideally, we would
present our methods with texts in which each word is explicitly expelled out. Our blind techniques should
then infer grammatical classes (if any were useful) based on how different words correlate. For example,
we expect that our blind methods would be able, at some point, to group all nouns together based on their
syntactic regularities. While this is possible, it is very time- and resource-consuming for the demonstration
intended here. Therefore, we preprocessed our corpus using Python’s Natural Language Processing
Toolkit [40] to map every word into one of the NG = 34 grammatical classes shown in Table 1. We then
substituted every word in the corpus by its grammatical class. The resulting texts constitute the symbolic
dynamics that we analyze.

2.2. Word Embeddings and Coarse-Graining

We would like to explore the most general grammars possible. However, as advanced above, to make
some headway we restrict ourselves to grammar models that encode a tongue’s rules in a probabilistic
way, telling us how likely it is that words follow each other in a text. Even in this narrower class there
is an inscrutably large number of possibilities depending, e.g., on how far back we look into a sentence
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to determine the next word’s likelihood, on whether we build intermediate phrases to keep track of the
symbolic dynamics in a hierarchical way, etc. Here, we only attempt to predict the next word given the
current one. We will also restrict ourselves to maximum entropy (MaxEnt) models, which are the models
that introduce less further assumptions provided a series of observations [37,41–49]. We explain these
kind of models in the next subsection. First, we need to introduce some notation and a suitable encoding
of our corpus so we can manipulate it mathematically.

We use a one-hot embedding, which substitutes each word in a text by a binary string that consists
of all zeros and exactly one 1. The position of the 1 indicates the class of word that we are dealing with.
Above, we illustrated several levels of coarse-graining. In a very fundamental one, each word represents a
class of its own. Our vocabulary in the simple example sentence “green colorless ideas sleep furiously”
consists of

χwords ≡ {ideas, sleep, green, colorless, f uriously} (7)

which in its binary form becomes

χ̃words = {10000, 01000, 00100, 00010, 00001}. (8)

We also illustrated a level of coarse-graining in which nouns and verbs are retained, but all other words
are grouped together in a third category (equation 4). The corresponding vocabulary

χ ≡ {noun, verb, cat3} (9)

becomes, through the one-hot embedding:

χ̃ = {100, 010, 001}. (10)

Throughout this paper, we will note by χλ the vocabulary (set of unique symbols) at a description
level λ, and we will refer by χ̃λ to its one-hot representation. We will name cλ

j ∈ χλ, with j ∈ {1, . . . , Nλ},
to each of the Nλ unique symbols at description level λ. Each of these symbols stands for an abstract class
of words, which might or might not correspond to actual grammatical classes in the standard literature.
The binary representation of each class is correspondingly noted by σλ

j ∈ χ̃λ.
To explore models of different complexity we start with all the grammatical classes outlined in table

1 and proceed by lumping categories together. We will elaborate a probabilistic grammar for each level
of coarse-graining. Later, we will compare the performance of all descriptions. In lumping grammatical
classes together there are some choices more effective than others. For example, it seems wise to group
comparative and superlative adverbs earlier than nouns and verbs. We expect the former to behave more
similarly than the later, and therefore to lose less descriptive power when treating both comparative
and superlative adverbs as one class. In future versions of this work, we intend to explore arbitrary
lumping strategies. Here, to produce results within a less demanding computational framework, we use
an informed shortcut. We build the maximum entropy model of the least coarse-grained category (which,
again, in this paper consists of the grammatical classes in Table 1). Through some manipulations explained
below, this model allows us to extract correlations between a current word and the next one (illustrated in
Figure 2). These correlations allow us to build a dendogram (Figure 3a) based on how similarly different
grammatical classes behave.

This dendogram suggests an order in which to merge the different classes, which is just a good
guess. There are many reasons why the hierarchy emerging from the dendogram might not be the best
coarse-graining. We will explore more exhaustive possibilities in the future. In any case, this scheme
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defines a series of functions πλ (which play the role of π in Figure 1) that map the elements of the most
fine-grained vocabulary χ0 ≡ χgrammar (as defined by the classes in Table 1) into a series of each time more
coarse-grained and abstract categories χλ, with λ = 1, . . . , NG − 1 indicating how many categories have
been merged at that level.

2.3. Maximum-Entropy Models

To build the MaxEnt model at a given level λ of coarse-graining, we substitute every word in our
corpus by its binary representation. Our text then becomes a binary string. For example, with the
coarse-graining in which nouns and verbs are kept, and all other words are abstracted into cat3, we have

green colorless ideas sleep furiously −→ 001 001 100 010 001. (11)

We indicate the i-th word in a text by w(i). Its grammatical class in the description level λ is noted:

cλ(i) ≡ πλ(w(i)), (12)

and its binary representation:

σλ(i) ≡ π̃λ(w(i)). (13)

Both mappings πλ and π̃λ contain the same information, and both of them play the role of π in figure
1. Note that cλ(i) = cλ

j for some j, and that although i ∈ {1, . . . , Nw} indexes words as they happen in a

text (of length Nw), j ∈ {1, . . . , Nλ} indexes unique grammatical classes in χλ. Each binary representation
consists of Nλ bits. When necessary, we will use a subindex k to label σλ

j,k as the k-th bit of the j-th class’s
binary representation at a given coarse-graining level λ.

We next produce binary samples that include each word and the one next to it in a text:〈
σλ(i)|σλ(i + 1)

〉
, where 〈·|·〉 indicates concatenation. Thus, the coarse-grained sentence from equation 11

yields the samples:

{001001, 001100, 100010, 010001}. (14)

Each sample has size 2Nλ (when needed, the index k over bits will also label positions from 1 to 2Nλ).
Large corpora will produce huge collections of such samples. We can summarize these collections by giving
the empirical frequency F

(〈
σλ

j |σλ
j′

〉)
with which each of the

(
Nλ
)2 possible bit strings with length 2Nλ

shows up. These collections behave as samples of what is known as spin glasses in statistical mechanics.
We have powerful mathematical tools to infer MaxEnt models for spin glasses – therefore all these efforts.
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3. Results

E, M
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Figure 2. Interactions between spins and word classes. (a) A first crude model with spins encloses more
information than we need for the kind of calculations that we wish to do right now. (b) A reduced version
of that model gives us an interaction energy between words or classes of words. These potentials capture
some non-trivial features of English syntax, e.g., the existential “there” in “there is” or modal verbs (marked
E and M respectively) have a lower interaction energy if they are followed by verbs. Interjections present
fairly large interaction energy with any other word, perhaps as a consequence of their independence within
sentences.

Using the methodology described above, we have coarse-grained the words of a written corpus, first,
into the 34 grammatical classes shown in Table 1. This process is illustrated by Equation 2. The resulting
symbolic series was binarized to create samples akin to spin glasses, a well studied model from statistical
mechanics that allows us to use powerful mathematical tools on our problem. This process was then
repeated at several levels of coarse graining as words were further lumped into abstract grammatical
categories (e.g., as in Equation (4)). At each level of description, the inferred spin glass model plays the
role of a grammar that constrains, in a probabilistic fashion, how word classes can follow each other in a
text. These mathematical tools from spin glass theory allow us to test grammars from different description
levels against each other as will become clear now.

In spin glasses, a collection of little magnets (or spins) is arranged in space. We say that a magnet
is in state σ = 1 if its north pole is pointing upwards and in state σ = −1 if its pointing downwards
(these are equivalent to the 1s and 0s in our word samples). Two of these little magnets interact through
their magnetic fields. These fields build up a force that tends to align both spins in the same direction,
whichever it is, just as two magnets in your hand try to fall along a specific direction with respect to each
other. On top of this, the spins can interact with an external magnetic field—bringing in a much bigger
magnet which orientation cannot be controlled. This external field tends to align the little spins along its
fixed, preferred direction. Given the spin states σ1 and σ2, the energy of their interaction with the external
magnetic field and with each other can be written as

E(σ1, σ2) = −1
2
(2h1σ1 + σ1 J12σ2 + σ2 J21σ1 + 2h2σ2) =

= −1
2
(J11σ1 + σ1 J12σ2 + σ2 J21σ1 + J22σ2) . (15)

J12 and J21 (with J12 = J21) denote the strength of the interaction between the spins, and J11 ≡ 2h1 and
J22 = 2h2 denote the interaction of each spin with the external field. The terms h1 and h2 are also known
as biases. If the spins are aligned with each other and with the external field, the resulting energy is the
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lowest possible. Each misalignment increases the energy of the system. In physics, states with less energy
are more probable. Statistical mechanics allows us to write precisely the likelihood of finding this system
in each of its four ({1, 1}, {1,−1}, {−1, 1}, and {−1,−1}) possible states:

P(σ1, σ2) =
e−βE(σ1,σ2)

Z
, (16)

where β = 1/T is the inverse of the temperature. The term

Z = e−βE(1,1) + e−βE(1,−1) + e−βE(−1,1) + e−βE(−1,−1)

= ∑
σ1, σ2=±1

e−βE(σ1,σ2) (17)

is known as the partition function and is a normalizing factor that guarantees that the probability
distribution in Equation (16) is well defined.

Back to our text corpus in its binary representation, we know the empirical frequency F
(〈

σλ
j |σλ

j′

〉)
with which each of the possible spin configurations shows up—we just need to read it from our corpus. We
can treat our collection of 0s and 1s as if they were ±1 samples of a spin glass, and attempt to infer the βλ

and Jλ which (through a formula similar to Equation (16)) more faithfully reproduce the observed sample
frequencies. The superindex in βλ and Jλ indicates that they will change with the level of coarse-graining.
Inferring those βλ and Jλ amounts to finding the MaxEnt model at that coarse-grained level. As advanced
above, MaxEnt models are convenient because they are the models that introduce less extra hypotheses
given some observations. In other words, if we infer the MaxEnt model for some λ, any other model with
the same coarse-graining would be introducing spurious hypotheses that are not suggested by the data.
To infer MaxEnt models, we used Minimum Probability Flow Learning (MPFL [50]), a fast and reliable
method that infers the Jλ given a sufficiently large sample.

Each grammatical class is represented by Nλ spins at the λ-th coarse-graining. This implies, as we
know, that our samples consists of 2Nλ spints. MPFL returns a matrix Jλ of size 2Nλ × 2Nλ. This matrix
embodies our abstract, probabilistic grammar (and plays the role of Ψ in figure 1). Each entry Jλ

kk′ of this
matrix tells us the interaction energy between the k-th and k′-th bits in a sample (with k, k′ = 1, . . . , 2Nλ).
However, each grammatical class is represented not by one spin, but by a configuration of spins that has
only one 1. To obtain the interaction energies between grammatical classes (rather than between spins), we
need to compute

Vλ(cλ
j , cλ

j′) =
1
2 ∑

k,k′
σλ

j,k Jλ
kk′σ

λ
j′ ,k′ . (18)

This energy in turn tells us the frequency with which we should observe each pair of words according to
the model:

Pλ
(〈

cλ
j |cλ

j′

〉)
=

1
Zλ

e
βVλ(cλ

j ,cλ
j′ ). (19)

We inferred MaxEnt models for the more fine-grained level of description (χ0 as given by the
grammatical classes in Table 1), as well as for every other intermediate level χλ. Figure 2a shows the
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emerging spin-spin interactions for l = 15, which consists of only 19 (versus the original 34) grammatical
classes. This matrix presents a clear box structure:

Jλ =

[
2hλ −→

∂ λ

ine
←−
∂ λ 2h̄λ

]
. (20)

The diagonal blocks (2hλ and 2h̄λ) represent the interactions between all spins that define, separately,
the first and second words in each sample. As our corpus becomes infinitely large, hλ → h̄λ. These terms
do not capture the interaction between grammatical classes. In the spin-glass analogy, they are equivalent
to the interaction of each word with the external magnet that biases the presence of some grammatical
classes over others. Such biases affect the frequencies Pλ(cλ

j ) with which individual classes show up, but

not the frequency with which they are paired up. Therefore, the hλ and h̄λ are not giving us much syntactic
information.

60 40 20 0

5.5

6.0

6.5

7.0

Energy

E
n
tr

o
p

y

Verbs

Wh- words

Proper names

Adjectives

Determiners
Possessives

a b

Figure 3. Pareto optimal maximum entropy models of human language. Among all the models that we try
out, we prefer those Pareto optimal in energy minimization and entropy maximization. (a) These reveal a
hierarchy of models in which different word classes group up at different levels. The clustering reveals
a series of grammatical classes that belong together owing to the statistical properties of the symbolic
dynamics, such as possessives and determiners which appear near to adjectives. (b) A first approximation
to the Pareto front of the problem. Future implementations will try out more grammatical classes and
produce better quality Pareto fronts, establishing whether phase transitions or criticality are truly present.

More interesting for us are the interaction terms stored in
−→
∂ λ and

←−
∂ λ. The inference method used

guarantees that
−→
∂ λ = (

←−
∂ λ)T . It is from these terms that we can compute the part of Vλ(cλ

j , cλ
j′) (shown in

Figure 2b) that pertains to pairwise interaction alone (i.e., the energy of the spin system when we discount
the interaction with the external field). Vλ(cλ

j , cλ
j′) encodes the energy of two word classes when they are

put next to each other in a text. The order in which words appear after each other is relevant, therefore
that matrix is not symmetric. These energies reflect some of the rules of English. For example, the first
row (labeled “E, M”) is a class that has lumped together the existential “there” (as in “there is” and “there
are”) with all modal verbs. These tend to be followed by a verb in English, thus the matrix entry coding
for 〈“E, M′′|“verb′′〉 (marked in red) is much lower than most entries for any other 〈“E, M′′|·〉. The blue
square encompasses verbs, nouns, and determiners. Although the differences there are very subtle, the
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energies reflect that it is more likely to see a noun after a determiner and not the other way around, and
also that it is less likely to see a verb after a determiner.

It is not straightforward to compare all energies because they are affected by the raw frequency with
which pairs of words show up in a text. In that sense, our corpus size might be sampling some pairings
insufficiently so that their energies do not reflect proper English use. On the other hand, classes such as
nouns, verbs, and determiners happen so often (and so often combined with each other) that they present
very low energies as compared with other possible pairs. This makes the comparison more difficult by
visual inspection.

It is possible to use Vλ(cλ
j , cλ

j′) to generate a synthetic text T̃λ and evaluate its energy E0(T̃λ) using the

most fine-grained model J0. If the coarse-grained model Vλ(cλ
j , cλ

j′) retains a lot of the original structure,

the generated text will fit gracefully in the rules dictated by J0—just as magnets falling into place. Such
texts would present very low energy when evaluated by J0. If the coarse-grained model has erased much
of the original structure, the synthetic text will present odd pairings. These would feel similar to magnets
that we are forcing into a wrong disposition, therefore resulting in a large energy when J0 is used. In other
words, this energy reflects how accurate each coarse-grained model is.

That accuracy is one of the targets in our MOO problem, in which we attempt to retain as much
information as possible with models as simple as possible. To quantify that second target, simplicity, we
turn to entropy. The simplest model possible generates words that fall in either class of χ0 randomly and
uniformly, thus presenting the largest entropy possible. More complex models, in their attempt to remain
accurate, introduce constraints as to how the words in the coarse-grained model must be mapped back
into the classes available in χ0. That operation would be the reverse of πλ. This reverse mapping, however,
cannot be undone without error because the coarse-graining erases information. Entropy measures the
amount of information that has been erased, and therefore how simple the model has been made.

Figure 3b shows the energy E0(Tλ) and entropy S0(Tλ) for synthetic texts generated with the whole
range of coarse-grainings explored. In terms of Pareto optimality, we expect our models to have as low an
energy as possible while having the largest entropy compatible with each energy—just as thermodynamic
systems do. Such models would simultaneously optimize their simplicity and accuracy. Within the sample,
some of these models are Pareto dominated (crosses in Figure 3b) by some others. This means that for
each of those models at least some other one exists that is simpler and more accurate at the same time.
These models are suboptimal regarding both optimization targets, so we do not need to bother with
them.The non-dominated ones (marked by circles in Figure 3b) capture better descriptions in both senses
(accuracy and simplicity). They are such that we cannot move from one to another without improving
an optimization target and worsening the other. They embody the optimal trade-off possible (of course,
limited by all the approximations made in this paper), and we cannot choose a model over the others
without introducing some degree of artificial preference either for simplicity or accuracy.

In statistical mechanics the energy and entropy of a system are brought together by the free energy:

F = E− T̂S = E− S/β̂. (21)

Here, T̂ plays a role akin to a temperature and β̂ plays the role of its inverse. We noted β̂ 6= β to indicate
that these temperature and inverse temperature are different from the ones in Equation (19). Those
temperatures control how often a word shows up given a model, whereas β̂ controls how appropriate
each level of description is. When β̂ is low (and T̂ is large), a minimum free energy in Equation (21) is
attained by maximizing the entropy rather than minimizing the energy. This is, low β̂ selects for simpler
descriptions. When β̂ is large (and T̂ is small), we prefer models with lower energy, i.e., higher accuracy.

By varying β̂ we visit the range of models available, i.e., we visit the collection of Pareto optimal
grammars (circles in Figure 3b). In statistical mechanics, by varying the temperature of a system we visit
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a series of states of matter (this is, we put, e.g., a glass of water at different temperatures and observe
how its volume and pressure change). At some relevant points, called phase transitions, the states of
matter change radically, e.g., water freezes swiftly at 0 degrees Celsius, and evaporates right at 100 degrees
Celsius. The geometry of Pareto optimal states of matter tells us when such transitions occur [25–29].

Similarly, the geometric disposition of Pareto optimal models in Figure 3b tells us when a drastic
change in our best description is needed as we vary β̂. Relevant phase transitions are given by cavities
and salient points along the Pareto optimal solutions. In the first approach, we observe several cavities.
More interestingly, perhaps, is the possibility that our Pareto optimal models might fall along a straight
line; one has been added as a guideline in Figure 3b. Although there are obvious deviations from it, such
description might be feasible at large. Straight lines in this plot are interesting because they indicate the
existence of special critical points [28,37,46–48]. In the next section, we discuss what criticality might mean
in this context.

4. Discussion

In this paper, we study how different hierarchical levels in the description of human language are
entangled with each other. Our work is currently at a preliminary stage, and this manuscript aims at
presenting overall goals and a possible methodological way to tackle relevant questions. Some interesting
results are presented as an illustration and discussed in this section to exemplify the kind of debate that
this line of research can spark.

Our work puts forward a rigorous and systematic framework to tackle the questions introduced
above, namely, what levels of description are relevant to understand human language and how do these
different descriptions interact with each other. Historically, we have answered these questions guided by
intuition. Some aspects of language are so salient that they demand a sub-field of their own. Although this
complexity and interconnectedness is widely acknowledged, its study is still fairly compartmentalized.
The portray of language as a multilayered network system is a recent exception [8], as it is the notable
and lasting effort by Christiansen et al. [9,10] to link all scales of language production, development, and
evolution in a unified frame.

We generated a collection of models that describe a written English corpus. These models trade
optimally a decreasing level of accuracy by increasing simplicity. By doing so, they gradually lose track of
variables involved in the description at more detailed levels. For example, as we saw above, the existential
“there” is merged with modal verbs. Indeed, these two classes were lumped together before the distinction
between all other verbs was erased. Although those grammatical classes are conceptually different, our
blind methodology found convenient to merge them earlier in order to elaborate more efficient compact
grammars.

Remaining as accurate as possible while becoming as simple as possible is a multi-objective
optimization problem. The conflicting targets are captured by the energy and entropy that artificial
texts generated by a coarse-grained model have when evaluated at the most accurate level of description.
We could have quantified these targets in other ways (e.g., counting the number of grammatical classes
to quantify complexity, and measuring similarity between synthetic and real texts for accuracy). Those
alternative choices should be explored systematically in the future to understand which options are more
informative. Our choices, however, make our results easy to interpret in physical terms. For example,
improbable (unnatural) texts have high energies in any good model.

The grammars that optimally trade between accuracy (low energy) and simplicity (high entropy)
conform the Pareto front (i.e., the solution) of the MOO problem. Its shape in the energy-entropy plane
(Figure 3) is linked to phase transitions [25–29]. According to this framework, we do not find evidence of a
positive (second order) phase transition. What could such a transition imply for our system? The presence
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of a positive phase transition in our data would suggest the existence of a salient level of description
capable of capturing a large amount of linguistic structure in relatively simple terms. For example, if a
unique grammatical rule would serve to connect words together disregarding of the grammatical classes
in which we have split our vocabulary. We would expect that to be the case, e.g., if a single master rule
such as merge would serve to generate all the complexity of human language without further constraints
arising. This does not seem to be the case. However, this does not rule out the existence of the relevant
merge operation, nor does it deny its possible fundamental role. Indeed, Chomsky proposes that merge is
the fundamental operation of syntax, but that it leaves the creative process of language underconstrained
[51–53]. As a result, actual implementations (i.e., real languages) see a plethora of further complexities
arising in a phenomena akin to symmetry breaking.

The presence of a negative (first order) phase transition would acknowledge several salient levels
of description needed to understand human language. These salient descriptions would furthermore
present an important gap separating them. This would indicate that discrete approaches would be possible
to describe language without missing any detail by ignoring the intermediate possibilities. If that were
the case, we would still need to analyze the emerging models and look at similarities between them to
understand whether both models capture a same core phenomenology at two relevant (yet distant) scales;
or whether each model focuses on a specific, complementary aspect that the other description has no
saying about. Some elements in Figure 3b are compatible with this kind of phase transition.

However, the disposition of several Pareto optimal grammars along a seemingly straight line rather
suggests the existence of a special kind of critical phenomenon [28,37,46–48]. Criticality is a worst-case
scenario in terms of description. It implies that there is no trivial model, nor couple of models, nor relatively
small collection that can capture the whole of linguistic phenomenology at any level. A degenerate number
of descriptions is simultaneously necessary, and elements trivial in a level can become cornerstones of
another. Also, potentially, constraints imposed by a linguistic domain (e.g., phonology) can penetrate all
the way and alter the operating rules of other domains (e.g., syntax or semantics). We can list examples of
how this happens in several tongues (such as the case of determiners “a” and ‘an’ in English mentioned
above). The kind of criticality suggested by our results would indicate that such intrusions are the
norm rather than the exception. Note that this opportunistic view of grammar appears compatible with
Christiansen’s thesis that language evolved, as an interface, to make itself useful to our species, necessarily
exploiting all kinds of hacks along its way [9].

Zipf’s law is a notable distribution in linguistics [54,55]. It states that the n-th most abundant word in
a text shows up with a frequency that is inversely proportional to that word’s rank (i.e., n). The presence
of this distribution in linguistic corpora has been linked to an optimal balance between communicative
tensions [54,56,57]. It has also been proved mathematically that Zipf’s law is an unavoidable feature
of open-ended evolving systems [58]. Languages and linguistic creativity are candidates to present
open-ended evolution. Could this open-endedness be reflected also in the diversity of grammatical rules
that form a language? Could we expect to find a power-law in the distribution of word combinations with
a given energy? If that were the case, Bialek et al. [37,47] proved mathematically that the relationship
between energy and entropy of such grammars must be linear and therefore critical. In other words, our
observation of criticality in this work, if confirmed, would be a strong hint (yet not sufficient) that the
relevant Zipf distribution may also be lurking behind grammars derived empirically from written corpora.

Numerous simplifications were introduced to produce the preliminary results in this paper. We
started our analysis with words that have already been coarse-grained into 34 grammatical classes, barring
the emergence of further intermediate categories dictated, e.g., by semantic use. We know that semantic
considerations can condition combinations of words, such as what verbs can be applied to what kinds of
agents [59]. The choice of words as units (instead of letters or syllables) is another limiting factor. Words
are symbols whose meanings do not depend on physical correlates with the objects signified [60]. In
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that sense, their association to their constituent letters and phonems is arbitrary. Their meaning is truly
emergent and not rooted in their parts. Introducing letters, syllables, and phonetics in our analysis might
reveal and allow us to capture that true emergence.

To do this it might be necessary to work with hierarchical models that allow correlations beyond
the next and previous words considered here. This kind of hierarchy, in general, is a critical aspect of
language [53] that our approach should capture in due time. We have excluded it in this work to attain
preliminary results in a reasonable time. Although hierarchical models are likely to be more demanding
(in computational terms), they can be parsimoniously incorporated in our framework. A possibility is
to use epsilon machines [61–63], which naturally lump together pieces of symbolic dynamics to find out
causal states. These causal states act as shielding units that advance a symbolic dynamics in a uniquely
determined way—just like phrases or sentences provide a sense of closure at their end, and direct the
future of a text in new directions.
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