
entropy

Article

Electromagnetically Induced Transparency in Media
with Rydberg Excitons 2: Cross-Kerr Modulation

David Ziemkiewicz * , Sylwia Zielińska - Raczyńska
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Abstract: By mapping photons into the sample of cuprous oxide with Rydberg excitons, it is possible
to obtain a significant optical phase shift due to third-order cross-Kerr nonlinearities realized under
the conditions of electromagnetically induced transparency. The optimum conditions for observation
of the phase shift over π in Rydberg excitons media are examined. A discussion of the application of
the cross-phase modulations in the field of all-optical quantum information processing in solid-state
systems is presented.
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1. Introduction

The recent development of various light manipulation techniques arising from electromagnetically
induced transparency (EIT) has made it possible to slow down the pulse (photons), store, and retrieve
them, preserving the phase relations [1]. At the level of single photons, the EIT enables the quantum
information carried by photons to be mapped in the form of quantum coherences inside the medium,
effectively creating a quantum memory. It allows one to transfer quantum states between photons and
matter. Recently, it has been shown that EIT significantly enhances the optical nonlinearity [2]. EIT
has been proposed as a way to greatly enhance cross-phase modulation (XPM), which refers to the
phenomenon where the phase of one photon is modulated by another photon [3]. One of the widely
explored schemes to enhance cross-phase modulation is based on the Kerr-EIT-like interaction between
two weak optical fields [4]. Recently, Bai et al. [5] considered strong Rydberg–Rydberg interactions
which are the source of third- and even fifth-order Kerr nonlinearities. Interactions between photons
realized by nonlinear optical mechanisms are essential to quantum information processing, quantum
teleportation, and quantum logic gates [6–8]. Due to the large nonlinear susceptibilities at low light
levels, the EIT-based XPM in atomic vapors makes single-photon operations feasible and can lead to
applications in quantum information manipulation. XPM has been considered as a promising means
of quantum communication and quantum computation. The large nonlinearity at the single-photon
level could pave the way for the implementation of universal quantum gates. However, realizing large
nonlinearity at such low light levels has been a great challenge for scientists in the past decade [9,10].

Solid bulk media are systems well worth considering for storing and processing quantum
information because they have a number advantages over atomic gases, where many experiments have
been done (for a recent review see Ref. [11]). They are easy to prepare, diffusion processes are not very
fast, and much higher densities of interacting particles can be achieved [12]. One common class of solids
used within the quantum information context are the rare-earth-metal-doped crystals, where a long
time period of information storage has been achieved (i.e., over one minute) [13,14] Nitrogen-vacancy
centers in diamond are also of interest [15], which have a relatively long spin coherence. Another
class of solid-state systems where EIT occurs are so-called artificial atoms [16–19]. Recently, the

Entropy 2020, 22, 160; doi:10.3390/e22020160 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-9908-2138
https://orcid.org/0000-0003-0889-2093
http://dx.doi.org/10.3390/e22020160
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 160 2 of 10

Rydberg excitons (REs) have attracted a great deal of attention due to their exciting features: the
distinct combination of their long radiative life-times, sensitivity to external fields, and strong dipolar
interactions [20] could be exploited to realize quantum interfaces for quantum information processing.
Rydberg excitonic samples smaller than other solid-state systems mentioned above. The observation
of dipolar blockade in bulk Cu2O [21], quantum coherence [22], and single-photon source based on RE
blockade [23] were performed in samples of micrometer scale. The realization of these experiments has
unlocked a plethora of dynamic effects which might be observed in Rydberg excitons media [24–27].
One example is the electromagnetically induced transparency discussed in our previous paper [28], the
performance of which in Cu2O bulk crystal will be the next step towards the potential implementation
of this medium for quantum information processing. This paper follows up our previous work [28],
where the optimal conditions for performing EIT in the linear regime were discussed. Here, by
expanding these considerations and results, we propose to explore the scheme that enables one to
induce a substantial nonlinear interaction and cross-phase modulation between two slow-light narrow
pulses, realized in a cuprous oxide crystal with RE. This nonlinearity may be reached by disturbing the
two-photon resonance condition in a two-ladder configuration while keeping the absorption negligible.
Our simulations demonstrate the feasibility of achieving large cross-phase modulation in the system
with small absorption.

Because slow light experiments can be performed under Autler–Townes or EIT conditions [29–31],
which are often confused, it should be stressed that in this paper we discuss the case of narrow band
operations, for which EIT is the most suitable [32].

Furthermore, we present an overview of the impact of parameters (excitonic states, control field
intensities, temperature, or sample size) and provide a realistic example of a system to facilitate an
experimental demonstration of XPM for RE in Cu2O. The proposed scheme could possibly be used to
implement photon–photon quantum gates, demonstrating the potential of Rydberg excitons media as
a platform for quantum communications and quantum networking.

Our paper is organized as follows. In Section 2 we outline the theory of cross-phase modulation
in an inverted Y system. Then, in Section 3 the results of calculations for a chosen excitonic state
combination are presented and the impacts of various conditions on the system are discussed.

2. Theory

In the following, we consider a Cu2O crystal as a medium with Rydberg excitons, where the XPM
under conditions imposed by EIT in the linear regime can be realized. We use the so-called inverted Y
configuration, which consists of two subsystems of ladder configuration (Figure 1). The whole system
is composed of four levels a1, a2, b, and c. As in our previous works on Rydberg excitons [28], we
focus our attention on the yellow excitonic series. We chose the valence band as the b state. As a
practical example, the n1P and n2S excitonic states and dipole-allowed transitions WEre chosen. The
description of the optically allowed transitions in this system is as follows: the ground state b, which is
identified with the valence band, is coupled by two weak probe and signal beams of Rabi frequencies
Ω1 and Ω3 with states a1 and a2. These two states are the sublevels of a state a obtained by applying a
constant external magnetic field producing Zeeman splitting of the P-exciton levels [33], which in our
case applies only to the a (n1P) excitonic state. Note that these two weak beams are slightly detuned
from the a− b resonance. The two empty upper states a and c are coupled by the control field of Rabi
frequency Ω2. If one of the weak (signal or probe) fields is missing, the system reduces to a standard
ladder-type three-level EIT configuration (in the linear case), driven by the control field, which has
been considered in our previous paper [28]. With the three fields shown in Figure 1, our scheme
acts as a double EIT system with two independent probe and signal fields propagating in the two
transparency windows sharing the common control field. In such a situation, we deal with the case of
multi-channel propagation under EIT conditions, so two different weak light pulses centered at two
independent transparency frequencies travel with slow group velocities through the RE medium.
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Figure 1. Schematic of the considered inverted Y configuration.

In order to study the propagation and interaction of the signal and probe fields inside the medium,
the set Bloch equations of the form similar to that considered in our previous paper [28] (in the
stationary case for the linear EIT regime) is accompanied by the Maxwell propagation equations for
the Rabi frequency Ω1 and Ω3 of the probe and signal pulses, which in the slowly varying envelope
approximation read (

∂

∂t
+ c

∂

∂z

)
Ω1,3(z, t) = −iκ2

1,3σba1,2 , (1)

where κ2
1,3 =

N|da1,2b |2ω1,3

2h̄ε0
. N is the density of excitons and da1,3b are the transition dipole matrix

elements of specific transitions, ω1,3 are the probe and signal frequencies and ε0 is the vacuum
dielectric permittivity. σij(z, t), i, j ∈ {a1, a2, b, c} denotes the density matrix for an exciton at position
z and time t.

Ω1,3(z, t) =
da1,3b ε1,3(z,t)

h̄ and Ω2(z, t) = dacε2(z,t)
h̄ are the Rabi frequencies of the probe, signal and

control fields corresponding to the particular couplings. The key of cross-Kerr nonlinearity lies in the
fact that the phase of one light field is modified by an amount determined by the intensity of another
optical field. The necessary conditions to achieve a significant cross-phase modulation (over π) are
the small absorption and a steep dispersion, which are accomplished due to the EIT. A considerable
reduction of the group velocities for both pulses traveling inside the medium allows these two optical
fields to mutually interact in a common transparency window for a sufficiently long time. Rebic et
al. have shown that by slightly departing from exact resonance conditions, one can obtain a group
velocity matching and strong cross-Kerr modulation [34], which facilitates the phase gate operation in
this system.
To theoretically describe the setup in the inverted Y configuration, we used the standard method to
derive the formula for the susceptibilities, solving the set of stationary Bloch equations in the limit of
low probe and signal intensities [35]. The derivation of susceptibility proceeds in a similar way as it
was shown in [28]. We expand the system considered in [28] with an additional energy level and after
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solving the set of Bloch equations in the stationary regime (neglecting nonlinear potential), we obtain
the susceptibilities for both probe and signal fields Ω1 and Ω3 in the form [36]:

χ1(δ1, δ3, Ω1, Ω3) =
N|dba1 |

2

h̄ε0

σa1b

Ω1
,

χ3(δ1, δ3, Ω1, Ω3) =
N|dba2 |

2

h̄ε0

σa2b

Ω3
. (2)

Because the probe and signal fields are weaker than the control one |Ω1|2, |Ω3|2 << |Ω2|2, the above
expressions for susceptibilities can be expanded into Taylor series

χ1 ≈ χ
(1)
1 + χ

(3)
11 |Ω1|2 + χ

(3)
13 |Ω3|2,

χ3 ≈ χ
(1)
3 + χ

(3)
33 |Ω3|2 + χ

(3)
31 |Ω1|2, (3)

where χ
(1)
1 and χ

(1)
3 are the linear part of electric susceptibilities, χ

(3)
11 and χ

(3)
33 describe self-Kerr phase

modulation (i.e., when an optical field modifies its own phase), and χ
(3)
13 , χ

(3)
31 are responsible for

cross-phase modulation. The various detunings and relaxation rates present in the system can be
grouped in the following notation:

∆a1b = −δ1 + iΓa1b,

∆cb = −δ2 + iγcb,

∆a2b = −δ3 + iΓa1b,

∆a1c = −δ1 − δ2 + iΓa2b,

∆a1a2 = −δ1 − δ3,

∆ca2 = −δ3 − δ2 + iΓa2b. (4)

where the parameters Γij, i 6= j describe the damping of exciton states and are determined by
temperature-dependent homogeneous broadening due to phonons and broadening due to structural
imperfections and eventual impurities. The relaxation damping rates for the coherence are denoted by
γij ≈ Γij/2, i 6= j [37]. To simplify the expressions describing the susceptibility, we define the following
functions of the probe field Ω1:

O1 = Ω1 + ∆a1b,

O2 = Ω1 + ∆a1c,

O3 = Ω1 + ∆∗a2b,

O4 = Ω1 + ∆ca2 . (5)

After some calculations, we arrive at the linear, self-Kerr, and cross-Kerr parts of susceptibility
(Equation (3)) in the following forms:

χ
(1)
1 =

χ0

O1 −
Ω2

2
O2

,

χ
(3)
11 =

0.5χ0Ω2
1

∆∗ca1

χ0

O1 −
Ω2

2
O2

, (6)

χ
(3)
13 = χ0

∆∗a2b

∆∗cb

1

O1 −
Ω2

2
O2

 0.5

O1 −
Ω2

2
O2

+
0.5

O3 −
Ω2

2
O4

− 0.5
∆∗ca2

Ω2
3

(O1 −
Ω2

2
O2

)(O3 −
Ω2

2
O4

)

 ,
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where χ0 is a constant given by [27]

χ0 =
N|dbai

|2

h̄ε0
, (i = 1, 2). (7)

In analogy to the procedure presented above, with the following functions of the signal Rabi frequency
Ω3

O′1 = Ω3 + ∆a2b,

O′2 = Ω3 + ∆ca2 ,

O′3 = Ω3 + ∆∗a1b,

O′4 = Ω3 + ∆ca1 , (8)

one arrives at the expressions for the three parts of electric susceptibility for the signal field Ω3

χ
(1)
3 =

χ0

O′1 −
Ω2

2
O′2

,

χ
(3)
33 =

0.5χ0Ω2
3

∆∗ca2

χ0

O′1 −
Ω2

2
O′2

, (9)

χ
(3)
31 = χ0

∆∗a1b

∆∗cb

1

O′1 −
Ω2

2
O′2

 0.5

O′1 −
Ω2

2
O′2

+
0.5

O′3 −
Ω2

2
O′4

− 0.5
∆∗ca2

Ω2
1

(O′1 −
Ω2

2
O′2

)(O′3 −
Ω2

2
O′4

)

 .

Although formulas for susceptibilities in Equations (6) and (9) have a complex form, their dependence
on detunings is visible. The resonance or equal detunings give rise to similar dispersive properties
for both 1 and 3 fields, while the nonlinear susceptibility vanishes and the XPM will not occur.
Disturbing the EIT conditions by choosing different, but sufficiently small (to still remain in the
common transparency window and preserving small absorption) detunings enables one to obtain a
nonlinear contribution to susceptibility. The refraction indices n1,3 =

√
εb + χ1,3, where εb = 7.5 is the

bulk permittivity of Cu2O, together with the definition of the group velocity

vg =
c

ng
=

c
n + ω dn

dω

, (10)

where ng is the group index, enables one to obtain the expressions for the group velocities of the
propagating pulses

v(1)g =
A

ω1|da1b|2
(Ω2

2 + Ω2
3) (11)

v(3)g =
A

ω3|da2b|2
(Ω2

2 + Ω2
1),

where A = 4πcε0
N . From the above equations it follows that, because the orders of dipole moments are

almost equal, changing the intensity of the control field and the probe or signal fields, it is possible
to match in such a way their group velocities and therefore they can interact mutually in transparent
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medium for a sufficiently long time. The propagation equations for fields Ω1 and Ω3 have the following
form: (

i
∂

∂z
+

δ1

c
− ∆ω1

c

)
Ω1 = −ω1

2c
χ1Ω1,(

i
∂

∂z
+

δ3

c
− ∆ω3

c

)
Ω3 = −ω3

2c
χ3Ω3,

where ∆ωi = ω2 −ωi. Even inside the transparency window, a realistic medium is characterized by
non-zero absorption coefficients

α1,3 =
ω1,3

c
Im
√

1 + χ1,3. (12)

Assuming that both pulses propagate in the z-direction through the sample of length L, their amplitudes
are constant (Ω01,3 = Ω1,3(z = 0, δ1,3) = const). The transmissions coefficients for probe and signal
fields are defined by the following formulae:

T1(δ1) =
Ω1(L, δ1)

Ω10
,

T3(δ3) =
Ω3(L, δ3)

Ω30
. (13)

The phase difference is equal to the difference of optical path lengths

φ1(ω) =
(ω1n1 −ω3n3)L

c
. (14)

3. Numerical Results

As an example of an excitonic system where XPM can be realized, we used Cu2O crystal of
thickness L = 200 µm. The probe field coupled the ground state b (Figure 1) and sublevels of n1 = 2,
obtained by Zeeman split of the excitonic state in magnetic field. As a result, we obtained two levels
shifted by δ1 = −δ3 = 10 GHz. The control field coupled the n1 state with the empty upper state
n2 = 10. The exciton density was N = 5.4 · 1015 cm−3, which was limited by the Rydberg blockade
effect caused by the populated lower state n1 [27]. In the case of n1 = 2, the upper density limit was
2.6 · 1016 cm−3[21]. The Rabi frequency of the control field was Ω2 = 600 GHz, which is comparable
to the dissipation rate of the lower state γab = 2140 GHz [38] for the temperature, T = 10 K. The
calculated susceptibility is shown in the Figure 2. One can see that the real parts of both susceptibilities
exhibited steep, normal dispersions, while the imaginary parts featured transparency windows in
the form of dips. The transparency windows of both probe and signal fields overlapped, providing a
common spectral region of small absorption, where the pulses can propagate. Due to the presence of
detunings δ1, δ2, there was a noticeable frequency shift between both windows and dispersions, which
resulted in a phase difference between propagating signals given by Equation (14). Figure 3 a) shows
the group velocity index ng of the signal field Ω1 inside the transparency window as a function of
control field Ω2. One can see that there is an optimum value Ω2/γab ≈ 0.15, for which the slowdown
was the strongest. For this strength of the control field, the transparency window was fully formed, but
still narrow enough to provide a steep normal dispersion. The obtained slowdown was on the order of
104, which means that for the given sample thickness L = 200 µm, the propagation time through the
crystal was τ ∼ 7 ns. This corresponds to the pulse spectral width ∆ω ∼ 15 MHz, which is well below
the width of the transparency window. Figure 3(b) shows the calculated cross-phase modulation. The
maximum value of ϕ1 ∼ 4.4 rad was obtained in a wide range of control field strengths, centered
around Ω2 ≈ 500 GHz. As pointed out by Feizpour [39], the phase modulation scales as 1/∆EIT ,
where ∆EIT is the spectral width of the window, provided that the window is wide enough and is
limited by the strength of the control field Ω2 and dissipation rate γab. In principle, one can use higher
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excitonic states with smaller γab to obtain a much narrower transparency window. However, in our
calculations this benefit was offset with significantly smaller exciton density. This in turn resulted in a
smaller value of susceptibility which produced a smaller phase shift. However, a large real part of
susceptibility is accompanied by a significant imaginary part which results in absorption. Due to the
particularly large dissipation constants as compared to atomic EIT system, one can observe in Figure 2
that even inside the transparency window Im χ ∼ 10−3, which resulted in absorption on the order
of α ∼ 20 cm−1. According to Equation (13), this corresponds to about 70% transmission through a
L = 200 µm sample. The absorption coefficient is consistent with experimental results by Malerba et
al. [40], where the measured values outside the resonance peaks were in the range of 101–102 cm−1,
depending on sample thickness. To sum up, the imaginary part of χ inside the transparency window
provided a contribution to absorption that was on the same order as the intrinsic, bulk absorption due
to the defects [40] and was sufficiently low to ensure considerable transmission. Since the phase shift
was directly proportional to L, there was an interplay between XPS and signal transmission.

Figure 2. Linear and nonlinear parts of signal field susceptibilities (real and imaginary part) χ
(1)
1 , χ

(1)
3 ,

χ
(3)
11 , χ

(3)
13 for both probe and signal fields. The Rabi frequencies are Ω2 = 600 GHz, Ω1 = Ω3 = 60

GHz, exciton density is N = 5.4 · 1015 cm−3.

a) b)

Figure 3. (a) Group velocity index and (b) cross-phase modulation as a function of detuning δ1 and
control field Rabi frequency Ω2, for the same parameters as in Figure 2.

Finally, we investigated how the XPS scaled with temperature by applying the excitonic
line-broadening model described in [27] to the system described above. Figure 4(a) depicts the
maximum slowdown as a function of temperature. For the chosen transparency window width, the
slowdown was largely unaffected by broadening up to T ∼ 40 K. Likewise, the cross-phase modulation
shown in Figure 4(b) exhibits identical behavior. This result is consistent with the findings presented in
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[39], where a similar dependence of XPS on the dephasing rate is shown. Notably, the slowdown and
XPS remained significant even at T = 100 K. This is possible mainly due to the choice of a low-lying
state n1 = 2. As mentioned before, for upper states, the optimal results are obtained with much
narrower transparency windows, which are more disturbed by line broadening, which is also much
greater for these higher Rydberg states.

We emphasize that all presented numerical results are based on a realistic and experimentally
verified parameters for RE in Cu2O. We used the usual theoretical approach to derive the formula
for the susceptibilities by solving the set of stationary Bloch equations in the low range of probe and
signal intensities [36]. The calculated values of cross-phase modulation represent a similar dependence
on the control field intensity as those measured recently by Sinclair et al. [41] in a cold Rubidium gas.

a) b)

Figure 4. (a) Group velocity index and (b) cross-phase modulation as a function of temperature.

4. Conclusions

In this paper, we studied the nonlinear response of Rydberg excitons in Cu2O sample in an
inverted Y configuration, where the incident probe and signal fields interact in EIT conditions. By
expanding the ladder system presented in [28] with additional signal field and adjusting the parameters
to enter the nonlinear regime, we derived expressions for the third-order susceptibility and suggested
the optimal set of parameters for which the remarkable nonlinearities in Cu2O with RE might be
experimentally realized. Rydberg excitons in Cu2O have now reached a stage at which the coherent
quantum effects and controlled quantum manipulations could be realized. With Rydberg atoms, it
has been possible to obtain a large optical nonlinearity at the single photon level and perform many
sophisticated quantum optics experiments such as optical Kerr effect or correlated states [11]. It is
expected that the medium of Rydberg excitons is also a fertile area [22,23,32,35,41].

We have demonstrated that it is possible in principle to achieve a phase difference of over π in a
200 µm sample, at temperatures approaching 100 K and exciton densities an order of magnitude below
the limit imposed by Rydberg blockade. Since their discovery in 2014, the Rydberg excitons in Cu2O
have been investigated mostly from the spectroscopic point of view while only a few experiments
have focused on their quantum optical applications [22,23], which have confirmed their usefulness
in quantum information processing. We hope that our investigations will help in the use of REs as
intermediaries in photon–matter coupling in the field of modern quantum processing in solids.
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