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Abstract: Specialized Gaussian process regression is presented for data that are known to fulfill a
given linear differential equation with vanishing or localized sources. The method allows estimation
of system parameters as well as strength and location of point sources. It is applicable to a wide
range of data from measurement and simulation. The underlying principle is the well-known
invariance of the Gaussian probability distribution under linear operators, in particular differentiation.
In contrast to approaches with a generic covariance function/kernel, we restrict the Gaussian process
to generate only solutions of the homogeneous part of the differential equation. This requires
specialized kernels with a direct correspondence of certain kernel hyperparameters to parameters
in the underlying equation and leads to more reliable regression results with less training data.
Inhomogeneous contributions from linear superposition of point sources are treated via a linear model
over fundamental solutions. Maximum likelihood estimates for hyperparameters and source positions
are obtained by nonlinear optimization. For differential equations representing laws of physics the
present approach generates only physically possible solutions, and estimated hyperparameters
represent physical properties. After a general derivation, modeling of source-free data and parameter
estimation is demonstrated for Laplace’s equation and the heat/diffusion equation. Finally, the
Helmholtz equation with point sources is treated, representing scalar wave data such as acoustic
pressure in the frequency domain.

Keywords: Gaussian process regression; physics-informed methods; kernel methods; field
reconstruction; source localization; partial differential equations; meshless methods

1. Introduction

The larger context of the present work is the goal to construct reduced complexity models as
emulators or surrogates that retain mathematical and physical properties of the underlying system. In
recent terminology, such approaches are examples of “physics informed machine learning”. Similar to
usual numerical models, the aim here is to represent infinite systems by exploiting finite information
in some optimal sense. In the spirit of structure preserving numerics, one tries to move errors to the
“right place” to retain laws such as conservation of mass, energy, or momentum. Here, we treat data
known to fulfill a given linear differential equation. This article is an extended version of a conference
paper [1] presented at the MaxEnt workshop 2019. The revised text adds hyperparameter optimization,
results for the heat equation and detailed comparisons to existing methods.

This article deals with Gaussian process (GP) regression on data with additional information
known in the form of linear, generally partial differential equations (PDEs). An illustrative example is
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the reconstruction of an acoustic sound pressure field and source parameters from discrete microphone
measurements. GPs, a special class of random fields, are used in a probabilistic rather than a stochastic
sense: estimate a fixed but unknown field from possibly noisy local measurements. Uncertainties in
this reconstruction are modeled by a normal distribution.

Using GPs to fit data from PDEs has been a topic of research for some time, especially in the
field of geostatistics [2]. A general analysis for deterministic source densities including a number of
important properties is given by [3]. In these earlier works GPs are usually referred to as “Kriging”
and covariance functions/kernels as “covariograms”. A number of more recent works from various
fields [4–8] use the linear operator of a PDE to relate the kernels of source and response field. One of
the two is usually modeled by a generic squared exponential kernel. Although the authors of [4,6,7]
use such a kernel for the response field and a kernel modified by a differential operator for the source
field, [5] models the source field by a generic kernel and applies the inverse (integral) operator to
obtain a kernel for the measured response. In contrast to the present approach such methods are
suited best for source fields that are non-vanishing across the whole domain. In terms of deterministic
numerical methods, one could say that these approaches with volumetric charge densities correspond
to meshless variants of the finite element method (FEM).

The approach in the present work instead relies on Gaussian processes that generate exact solutions
of the homogeneous part of the differential equation [9–11]. This is efficient for problems with mostly
source-free domains and requires specialized kernels where possible singularities (virtual sources) are
moved outside the domain of interest. In particular, boundary conditions on a finite domain can be
either supplied or reconstructed in this fashion. Localized internal point sources are then superimposed
as a linear model, using again fundamental solutions in the free field. One can thus interpret this
approach as a probabilistic variant of a procedure related to the boundary element method (BEM),
known as the method of fundamental solutions (MFS) or regularized BEM [12–14]. As in the BEM, the
MFS also builds on fundamental solutions, but allows to place sources outside the boundary rather
than localizing them on a layer. Thus, the MFS avoids singularities in boundary integrals of the BEM,
while retaining a similar ratio of numerical effort and accuracy for smooth solutions. To the best of
the author’s knowledge, the probabilistic variant of the MFS via GPs has first been introduced by [9]
to solve the boundary value problem of the Laplace equation and dubbed Bayesian boundary elements
estimation method ((BE)2M). This work also provides a detailed treatment of kernels for the 2D Laplace
equation. A more extensive and general treatment of the Bayesian context as well as kernels and their
connection to fundamental solutions is available in [10] under the term probabilistic meshless methods
(PMM).

Although the authors of [9] treat boundary data of a the homogeneous Laplace equation and the
authors of [10] provides a detailed mathematical foundation, the present work aims to extend
the recent work on added point sources in [11], unify the derivation of specialized kernels, and
demonstrate usefulness in applications. First, a general derivation is given on how to model PDE data
by superposing a GP and a linear model for localized sources. Then, the construction of kernels for the
homogeneous part of partial differential equations via according fundamental solutions is described
in general. Finally, concrete application examples are given for Laplace/Poisson, heat/diffusion and
Helmholtz equation for which the derivation of several kernels is presented. Performance is compared
to regression with a generic squared exponential kernel, including hyperparameter optimization in
all cases. For the Helmholtz equation we estimate strength and positions of sources by nonlinear
optimization.

2. GP Regression for Data from Linear PDEs

Gaussian process (GP) regression [15] is a tool to represent and update incomplete information
on scalar fields u(x), i.e., a real number u depending on a (multidimensional) independent variable x
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(the more general case of complex valued fields and vector fields is left open for future investigations
in this context). A GP with mean m(x) and covariance function or kernel k(x, x′) is denoted as

u(x) ∼ G(m(x), k(x, x′)). (1)

The choice of an appropriate kernel k(x, x′) restricts realizations of (1) to respect regularity properties
of u(x) such as continuity or characteristic length scales. Often regularity of u does not appear by
chance, but rather reflects an underlying law. We will exploit such laws in the construction and
application of GPs describing u for the case described by linear (partial) differential equations:

L̂u(x) = q(x). (2)

where L̂ is a linear differential operator and q(x) is a source term. In the laws of physics, dimensions
of x usually consist of space and/or time. Physical scalar fields u include, e.g., electrostatic potential
Φ, temperature T, or pressure p. Corresponding laws include Gauss’ law of electrostatics for Φ with
weighted Laplacian L̂ = ε∆, thermodynamics for T with heat/diffusion operator L̂ = ∂

∂t − D∆ and
frequency-domain acoustics for p with Helmholtz operator L̂ = ∆ + k 2

0 . These operators contain free
parameters, namely, permeability ε, wavenumber k0, and diffusivity D, respectively. While ε may be
absorbed inside q in a uniform material model of electrostatics, estimation of parameters such as D or
k0 is useful for material characterization.

Consider first the source-free (homogeneous) case

L̂uh(x) = 0. (3)

An unknown field uh(x) that fulfills (3) shall be modeled by the Gaussian process

uh(x) ∼ G(0, k(x, x′)). (4)

Application of a linear operator L̂ yields a modified Gaussian process

L̂uh(x) ∼ G(0, L̂k(x, x′)L̂′), (5)

where L̂′ acts from the right side with respect to x′. In order to fulfill (3) we require (5) to vanish
identically, i.e., yield a deterministic zero. Consequently, the kernel k(x, x′) needs to satisfy

L̂k(x, x′)L̂′ = 0. (6)

A discussion on derivation of such kernels is found in Section 2.
For the general case (2), with unknown source density q(x), we introduce a linear model

q(x) = ∑
i

ϕi(x)qi = ϕT(x)q, (7)

with basis functions ϕi(x) and a normally distributed prior

q ∼ N (q0, Σq), (8)

with mean q0 and prior covariance Σq for coefficients qi representing source strengths.
For a particulary solution up(x) fulfilling the inhomogeneous Equation (2) with source model (8),

a linear model induced by the operator L̂ follows as

up(x) = h(x)Tq, with L̂hi(x) = ϕi(x). (9)
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Here, coefficients qi remain the same as in (8) and new basis functions hi(x) fulfil the differential
equation with source density ϕi(x). In case of point monopole sources ϕi(x) = δ(x− xq

i) placed at
positions xq

i , each hi(x) represents a fundamental solution evaluated for the respective source, so

hi(x) = G(x, xq
i), (10)

where G(x, xq
i) is a Green’s function for operator L̂. In the remaining work with localized sources

we take this approach. As G(x, xq
i) is usually only available for simple geometries and boundary

conditions the discussed linear model alone is limited in its application. We can however represent
much more general fields by a superposition of a locally source-free background uh(x) and point
source contributions up(x). Boundary conditions induced by external sources are then covered by
uh(x), and internal sources entering up(x) are treated via simple free-field Green’s functions. Following
the technique of [16] discussed in [15] (Chapter 2.7), the superposition u(x) = uh(x) + up(x) of the GP
uh(x) and the linear model up(x) is distributed according to the Gaussian process

u(x) ∼ G(h(x)Tq0, k(x, x′) + h(x)TΣqh(x′)). (11)

We will now verify that (11) indeed models the original differential Equation (2) correctly, thereby
generalizing the analysis for a deterministic source density in [3]. With L̂k(x, x′)L̂′ = 0, we obtain

L̂u(x) ∼ G(L̂h(x)Tq0, L̂h(x)TΣqh(x′)L̂′) = G(ϕ(x)Tq0,ϕ(x)TΣqϕ(x)). (12)

This is indeed the GP representing the linear source model (8) that we assumed and yields a consistent
representation of u(x) and q(x) inside (2).

Using the limit of a vague prior with q0 = 0 and |Σ−1
q | → 0, i.e., minimum information / infinite

prior covariance [15,16], posteriors for mean ū and covariance matrix cov(u, u) based on given training
data y = u(X) + σn with measurement noise variance σ2

n are

ū(X?) = KT
? K−1

y (y− HTq̄) + HT
? q̄ = KT

? K−1
y y + RTq̄, (13)

cov(u(X?), u(X?)) = K?? − KT
? K−1

y K? + RT(HK−1
y HT)−1R. (14)

where X = (x1, x2, . . . xN) contains the training points and X? = (x?1, x?2, . . . , x?N?) the evaluation or
test points. Functions of X and X? are to be understood as vectors or matrices resulting from evaluation
at different positions, i.e., ū(X?) ≡ (ū(x?1), ū(x?2), . . . , ū(x?N?)) is a tuple of predicted expectation
values. The matrix K ≡ k(X, X) is the covariance of the training data with entries Kij ≡ k(xi, xj). Entries
of the predicted covariance matrix for u evaluated at the test points x?i are cov(u(X?), u(X?))ij ≡
cov(u(x?i), u(x?j)). Furthermore, Ky ≡ K + σ2

n I, K? ≡ k(X, X?), K?? ≡ k(X?, X?), R ≡ H? − HK−1
y K?,

and entries of H are Hij ≡ hi(xj), H?ij ≡ hi(x?j). Posterior mean and covariance of source strengths
are given from the linear model [16] in the limit of a vague prior,

q̄ = (HK−1
y HT)−1HK−1

y y, (15)

cov(q, q) = (HK−1
y HT)−1. (16)

In the absence of sources, the matrix R vanishes, and (13) and (14) reduce to posteriors of a GP with
zero prior mean and are directly used to model homogeneous solutions uh(x) of (3).

Construction of Kernels for Homogeneous PDEs

For the representation of solutions uh(x) of homogeneous differential Equations (3), the
weight-space view ([15] Chapter 2.1) of Gaussian process regression is useful. There the kernel k
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is represented via a tuple φ(x) = (φ1(x), φ2(x), . . . ) of basis functions φi(x) that underlie a linear
regression model

u(x) = φ(x)Tw = ∑
i

φi(x)wi. (17)

Bayesian inference starting from a Gaussian prior with covariance matrix Σp for weights w yields a
Mercer kernel

k(x, x′) ≡ φT(x)Σpφ(x′) = ∑
i,j

φi(x)Σ
ij
pφj(x′). (18)

The existence of such a representation is guaranteed by Mercer’s theorem in the context of reproducing
kernel Hilbert spaces (RKHS) [14]. More generally one can also define kernels on an uncountably
infinite number of basis functions in analogy to (17) via

f (x) = (φ̂w)(x) = 〈φ(x, ζ), w(ζ)〉 =
∫

φ(x, ζ)w(ζ)dζ, (19)

where φ̂ is a linear operator acting on elements w(ζ) of an infinite-dimensional weight space
parametrized by an auxiliary index variable ζ, that may be multidimensional. We represent φ̂ via
an inner product 〈φ(x, ζ), w(ζ)〉 in the respective function space given by an integral over ζ. The
infinite-dimensional analog to the prior covariance matrix is a prior covariance operator Σ̂p that
defines the kernel as a bilinear form

k(x, x′) ≡
〈
φ(x, ζ), Σ̂pφ(x′, ζ′)

〉
≡
∫

φ(x, ζ)Σp(ζ, ζ′)φ(x′, ζ′)dζ dζ′. (20)

Kernels of the form (20) are known as convolution kernels. Such a kernel is at least positive semidefinite,
and positive definiteness follows in the case of linearly independent basis functions φ(x, ζ) [14].

For treatment of PDEs, the possible choices of index variables in Equation (18) or Equation
(20) include separation constants of analytical solutions, or the frequency variable of an integral
transform. In accordance with [10], using basis functions that satisfy the underlying PDE, a probabilistic
meshless method (PMM) is constructed. In particular, if ζ parameterizes positions of sources, and
φ(x, ζ) = G(x, ζ) in (20) is chosen to be a fundamental solution/Green’s function G(x, ζ) of the PDE,
one may call the resulting scheme a probabilistic method of fundamental solutions (pMFS). In [10], sources
are placed across the whole computational domain, and the resulting kernel is called natural. Here,
we will instead place sources in the exterior to fulfill the homogeneous interior problem, as in the
classical MFS [12–14]. Technically, this is also achieved by setting Σp(ζ, ζ′) = 0 for either ζ or ζ′ lies
in the interior. For discrete sources localized at ζ = ζ i one obtains again discrete basis functions
φi(x) = G(x, ζ i) for (18).

3. Application Cases

Here, the general results described in the previous sections are applied to specific equations. First,
a specialized kernel fulfilling the given linear differential equation is constructed according to (18),
and second, numerical experiments on physical examples are performed comparing the specialized
kernel to a squared exponential kernel. Regression is performed based on values measured at a set of
sampling points xi and may also include optimization of hyperparameters θ appearing as auxiliary
variables inside the kernel k(x, x′; θ). The optimization step is, as usually, performed such that the
marginal likelihood of the GP is maximized (maximum likelihood or ML values). In the Bayesian
sense, this corresponds to a maximum a-posteriori (MAP) estimate for a flat prior. Accordingly, θML is
fixed rather than providing a joint probability distribution function including θ as random variables.
We note that depending on the setting this choice may lead to underestimation of uncertainties in the
reconstruction of u(x), in particular for sparse, low-quality measurements.
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3.1. Laplace’s Equation in Two Dimensions

First, we explore construction of kernels fulfilling (5) for a homogeneous problem in a finite and
infinite dimensional index space, depending on the mode of separation. Consider Laplace’s equation:

∆u(x) = 0. (21)

In contrast to the Helmholtz equation, Laplace’s equation has no scale, i.e., permits all length scales in
the solution. In the 2D case using polar coordinates the Laplacian becomes

1
r

∂

∂r

(
r

∂u(r, θ)

∂r

)
+

1
r2

∂2u(r, θ)

∂θ2 = 0. (22)

A well-known family of solutions for this problem based on the separation of variables is

u(r, θ) = r±me±imθ , (23)

with separation constant m, leading to real-valued combinations

rm cos(mθ), rm sin(mθ), r−m cos(mθ), r−m sin(mθ). (24)

As our aim is to work in bounded regions, we discard the solutions with negative exponent that
diverge at r = 0. Choosing a diagonal prior that weights sine and cosine terms equivalently [9] and
introducing a length scale ` as a free parameter we obtain a kernel according to (18) with

k(x, x′; `, σm) =
∞

∑
m=0

(
rr′

`2

)m

σ 2
m (cos(mθ) cos(mθ′) + sin(mθ) sin(mθ′))

=
∞

∑
m=0

(
rr′

`2

)m

σ 2
m cos

(
m(θ − θ′)

)
. (25)

A flat prior σ 2
m = σ 2

u for all polar harmonics and a characteristic length scale ` as another
hyperparameter yields

k(x, x′; `, σu) = σ 2
u

1− rr′
`2 cos(θ − θ′)

1− 2 rr′
`2 cos(θ − θ′) + (rr′)2

`4

= σ 2
u

1− x·x′
`2

1− 2 x·x′
`2 + |x|2|x′ |2

`4

. (26)

This kernel is not stationary, but isotropic around a fixed coordinate origin. Introducing a mirror point
x̄′ with polar angle θ̄′ = θ′ and radius r̄′ = `2/r′ we notice that (26) can be written as

k(x, x′; `, σu) = σ 2
u
|x̄′|2 − x · x̄′
(x− x̄′)2 , (27)

making a dipole singularity apparent at x = x̄′. In addition, k is normalized to 1 at x = 0. Choosing
` > R0 larger than the radius R0 of a circle centered in the origin and enclosing the computational
domain, we have r̄′ > `2/` = ` > R0. Thus, all mirror points and the according singularities are
moved outside the domain. This behavior is illustrated in Figure 1 where computing the covariance
kernel with respect to point x′ = (0.8, 0) leads to distances > 1 everywhere inside the unit circle.
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Choosing a slowly decaying σ 2
m = σ 2

u /m, excluding m = 1 and adding a constant term yields a
logarithmic kernel instead [9] with

k(x, x′; `, σu) = σ 2
u

(
1− 1

2
ln
(

1− 2
x · x′
`2 +

|x|2|x′|2
`4

))
= σ 2

u

(
1− ln

( |x− x̄′|
|x̄′|

))
. (28)

Instead of a dipole singularity that expression features a monopole singularity at x− x̄′ that is again
avoided by placing it outside the domain for any pair of x and x′ (Figure 1).

Figure 1. Kernels k(x, x′) evaluated at x = (x, y) and x′ = (0.8, 0). Left: dipole response of (27), right:
monopole response of (28). Singularities are moved outside the domain of interest.

Using instead Cartesian coordinates x, y to separate the Laplacian provides harmonic
functions like

u(x, y) = e±κxe±iκy. (29)

Here, all solutions yield finite values at x = 0, so we do not have to exclude any of them a priori.
Introducing, again, a diagonal covariance operator in (20) and taking the real part yields

k(x, x′; σ2(κ)) =
∫

ϕ(x, κ)σ 2(κ)ϕ(x′, κ)dκ = Re
∫ ∞

−∞
σ 2(κ)eκ(x±x′)eiκ(y±y′) dκ. (30)

Setting σ 2(κ) ≡ e−2κ2
and choosing a characteristic length scale ` together with a possible rotation

angle θ0 of the coordinate frame yields the kernel

k(x, x′; `, θ0, σu) =
σ 2

u
2

Re exp
(
((x + x′)± i(y− y′)) 2ei2θ0)

`2

)
. (31)

Other sign combinations do not yield a positive definite kernel – similar to the polar kernel (27) before
we couldn’t obtain an fully stationary expression that depends only on differences between coordinates
of x and x′.

For demonstration purposes we consider an analytical solution to a boundary value problem of
Laplace’s equation on a square domain Ω with corners at (x, y) = (±1,±1). The reference solution is

uref(x, y) =
1
2

(
ey cos(x) + e2x cos(2y)

)
(32)

and depicted in the upper left of Figure 2 together with the extension outside the boundaries. This
figure also shows results from a GP fitted based on data with artificial noise of σn = 0.1 measured
at 8 points using kernel (27) with optimized maximum-likelihood (ML) values for hyperparameters
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` and σu but fixed σn. Inside Ω the solution is represented with errors below 5%. This is also
reflected in the error predicted by the posterior variance of the GP that remains small in the region
enclosed by measurement points. The analogy in classical analysis is the theorem that the solution of a
homogeneous elliptic equation is fully determined by boundary values.

In comparison, a reconstruction using a generic squared exponential kernel

k(x, x′; `, σu) = σ2
u exp

(−(x− x′)2

2`2

)
(33)

yields a much worse approximation quality in Figures 2 and 3. This is in contrast to earlier
investigations [1] where a fixed length scale hyperparamter ` = 2 was used. Although the specialized
GP with kernel (27) could identify this length scale during hyperparameter optimization, using a
generic kernel (33) leads to an underestimation of ` and requires twice the number of training points
to achieve a similar fit quality and profits from scattered training points, as it has no information about
the nature of the boundary value problem (Figures 4 and 5).

In addition, the posterior covariance of that reconstruction is not able to capture the vanishing
error inside the enclosed domain due to given boundary data. More severely, in contrast to the
specialized GP, the posterior mean ū does not satisfy Laplace’s equation ∆ū = 0 exactly. This leads
to a violation of the classical result that (differences of) solutions of Laplace’s equation may not have
extrema inside Ω, showing up in the difference to the reconstruction in Figures 3 and 4. This kind of
error is quantified by computation of the reconstructed charge density q̄ = ∆ū. This is fine if data from
Poisson’s equation ∆u = q with distributed charges should be fitted instead. However, to keep ∆u = 0
exact in Ω, one requires more specialized kernels such as (27).

Figure 2. GP reconstruction of Laplace’s equation with specialized locally source-free Mercer kernel (27)
(top left) and generic squared exponential kernel (top right). Sources lie outside the black square
region and 8 measurement positions are marked by black dots. Reference analytical solution (bottom
left). Source density q̄ = ∆ū of prediction via a generic squared exponential kernel (bottom right).
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Figure 3. Absolute error (top left) and predicted 95% confidence interval (bottom left) with specialized
locally source-free Mercer kernel (27) in comparison to absolute error (top right) and predicted 95%
confidence interval (bottom right) with generic squared exponential kernel for 8 training points.

−2 −1 0 1 2
x

−1

0

1

y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

−2 −1 0 1 2
x

−1

0

1

y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

−2 −1 0 1 2
x

−1

0

1

y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

−2 −1 0 1 2
x

−1

0

1

y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Figure 4. Absolute error as in Figure 3 for 15 training points on a circle (top) and for quasi-random
points (bottom). As the generic squared exponential kernel does not fulfill the given differential
equation, even for a larger number of training points, the source density doesn’t vanish in the domain.
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Figure 5. (Left) Comparison of relative L2 error in u for specialized kernel (solid line) and squared
exponential kernel (dashed line) for Laplace’s equation for N quasi-random training points. (Right)
Negative log likelihood from 8 training data of Figure 2 with optimum at ` = 1.52 for specialized
kernel (solid line) and at ` = 0.78 for the squared exponential kernel (dashed line).

3.2. Heat Equation: Physical Parameter Estimation

Let us now consider the 1D homogeneous heat/diffusion equation over position x and time t,

∂u(x, t)
∂t

− D∆u(x, t) = 0 (34)

for (x, t) ∈ R×R+. Here, the diffusivity D is a physical parameter determining how fast solutions
spread in space. Integrating the fundamental solution

G(x, t, ξ, τ) =
1√

4πD(t− τ)
exp

(
− (x− ξ)2

4D(t− τ)

)
(35)

from ξ = −∞ to ∞ at τ = 0, i.e., placing sources everywhere in space at a single initial time, and
adding a scale hyperparameter σu leads to the convolution kernel

kn(x, t, x′, t′; D, σu) =
σ 2

u√
4πD(t + t′)

exp
(
− (x− x′)2

4D(t + t′)

)
. (36)

In terms of x, this is a stationary squared exponential kernel and the natural kernel over the domain
x ∈ R. The kernel broadens with increasing t and t′. Nonstationarity in time can also be considered
natural to the heat equation, as its solutions show a preferred time direction on each side of the
singularity t = 0. The only difference of (36) to the fundamental solution (35) is the positive sign
between t and t′. As both t and t′ are positive, k is guaranteed to take finite values and, in contrast
to (35), does not become singular at (x, t) = (x′, t′).

As for the Laplace equation it is also convenient to define a non-stationary kernel by cutting out
a domain that is known to be free of sources. In case heat sources are known to exist only left of the
origin we evaluate the integral over the fundamental solution over (−∞, 0) to

k(x, t, x′, t′; D, σu) = kn(x, t, x′, t′; D, σu)

[
1 +

g(x, t, x′, t′; D)

2

]
, (37)

where

g(x, t, x′, t′; D) ≡ erf
(
− x/t + x′/t′

2
√

D
√

1/t + 1/t′

)
(38)
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is defined via the error function erf. Choosing instead a source-free region domain interval (a, b) we
integrate over R\(a, b) and obtain

k(x, t, x′, t′; D, σu) = kn(x, t, x′, t′; D, σu)

[
1− g(x− b, t, x′ − b, t′; D)− g(x− a, t, x′ − a, t′; D)

2

]
. (39)

Incorporating the prior knowledge that there are no domain sources is expected to improve the
reconstruction.

As a physical example, we consider a rod with temperatures held fixed at two ends and a given
initial temperature distribution. We model this as an initial-boundary value problem for (34) on the
interval x ∈ (0, 1) with Dirichlet boundary data u(0) = 1 and u(1) = 0. As initial conditions, we set
u(x, 0) = 0 everywhere except at the left end where u(0, 0) = 1. The actual diffusivity is chosen as
D = 0.1, and we let u(x, t) evolve from t0 = 0 until t1 = 1. With increasing t the initial conditions
are smoothed out as u approaches the stationary solution u(x, t → ∞) = 1− x. Measurements of u
are performed at three positions x = 0, 0.1, 1 at four times t = 10−5, 0.25, 0.5, 0.75, yielding 12 training
points in total. In Figure 6 the resulting reconstruction of u(x, t = 0.125) is plotted for each of the three
kernels defined above. Kernel (39) allowing initial sources on both sides of the interval yields the best
reconstruction. Furthermore, it is the only one that reproduces meaningful uncertainty bands based on
the 95% confidence interval ū± 1.96σ, whereas the ones for (36) and (36) span the whole plot domain.
Estimation of diffusivity D is also most reliable with kernel (39). The according negative log likelihood
can be seen on the right plot in Figure 6. Although all three kernels produce well posed optimization
problems, only (39) has the minimum at the correct position D = 0.1.

The reason for the requirement of kernel (39) is clear from the statement of the problem: keeping
u fixed on both sides of the interval can only be achieved by restricting the heat flux in a predefined
way that requires sources on both sides at t = 0. However, the domain itself should not contain any
heat sources at any time. If we had placed an open boundary condition on the right side, kernel (37)
would have been the more natural choice instead.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.5

0.0

0.5

1.0

u(
x,

t 0
)

0.0 0.1 0.2 0.3 0.4
D

−5

0

5

10

15

20

25

30

−
lo

g(
p(

y|X
,D

))
+

C

Figure 6. (Left) GP reconstruction of u(x, t = 0.125) for 1D heat equation Dirichlet problem based
on measurement points (�) at x = 0, 0.1, 1, reference in red. Kernels (36), (37) and (39) marked by
dashed, dash-dotted and solid lines, respectively. 95% confidence interval bands shown only for (39),
producing the best fit. (Right) negative log likelihood over diffusivity D.



Entropy 2020, 22, 152 12 of 16

3.3. Helmholtz Equation: Source and Wavenumber Reconstruction

Finally, to demonstrate the full method, we consider the Helmholtz equation with sources:

∆u(x) + k 2
0 u(x) = q(x). (40)

In 1D, solutions for the homogeneous equation with x = x are given by linear combinations of
cos(k0x), sin(k0x). Choosing a diagonal prior in (18) leads to a stationary kernel

k(x, x′; k0, σu) = cos(k0x)σu cos(k0x′) + sin(k0x)σu sin(k0x′) = σu cos(k0(x− x′)), (41)

as presented in [11]. For the two-dimensional case in polar coordinates, a family of solutions based on
the separation of variables is

cos(mθ), sin(mθ), Jm(k0r), Ym(k0r), (42)

where Jm and Ym are Bessel functions of first and second kind, respectively. Similar to the simpler 1D
case, by applying Neumann’s addition theorem, we obtain a specialized kernel

k(x, x′; k0, σu) = σ2
u J0(k0|x− x′|). (43)

In the 3D case, one would proceed in a similar fashion with spherical Bessel functions, which yields the
kernel that was already postulated in [11]. In contrast to the case of Laplace’s equation in the previous
section, these source-free Helmholtz kernels do not possess singularities at any finite distance from
the origin, i.e., no virtual exterior sources in the Mercer kernel (20). As a consequence they provide
smoothing regularization on the order of the wavelength λ0 = 2π/k0 to reconstructed fields and
boundary conditions that may or may not be desired. Internal sources at positions xq

k are linearly
modeled according to (10) with basis

hi(x) = G(x, xq
i ) = H(2)

0 (k0|x− xq
i |), (44)

where H(2)
0 is the Hankel function of the second kind. The method of source strength reconstruction is

improved compared to [11], as it constitutes a linear problem according to (15). Nonlinear optimization
is instead applied to σu and wavenumber k0 as free hyperparameters to be estimated during the GP
regression. The set-up is the same as in [11]: a 2D cavity with various boundary conditions and two
sound sources of strengths 0.5 and 1.0, respectively. Results for sound pressure fulfilling (40) are
normalized to have a maximum p/p0 = 1. We compare three variants of GP regression for these data:

(1) Superposition of specialized kernel GP for homogeneous part uh and linear source model for up.
(2) Superposition of generic squared-exponential kernel GP for uh and linear source model for up.
(3) Generic squared-exponential kernel GP model for the full field u.

Naturally, after the presented analysis, only (1) can be the “correct” way of regression for this
kind of data from a PDE with point sources. Variant (2) is a “hybrid” that should be able to identify
point sources, while polluting the source-free part with volumetric contributions. Considering that (2)
helps to separate the effect from this pollution from the effect of adding a linear source model. Variant
(3) is expected to show worse performance compared to (1) and (2), as neither source-free part nor
singularities of u at point source positions can be modeled correctly.

Figure 7 shows the local absolute field reconstruction error based on 12 training data points with
artificial noise of σn = 0.01. Hyperparameters k0 and σu are set to optimized ML values, and σn is
fixed to its actual value. The upper left plot shows results for variant (1) with the specialized kernel
(43). Variant (3) with a generic squared exponential kernel (33) of length scale ` = π/(

√
2k0) to model

u yields a much higher field reconstruction error as depicted in the lower left of Figure 7. The field
reconstruction using the generic kernel is improved when a linear model for the inhomogeneous term
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is included (variant (2)), as shown in the upper right of Figure 7. However, the original differential
Equation (40) is only fulfilled exactly when using a specialized kernel with L̂k(x, x′)L̂′ = 0. As expected,
variant (1) produces the best reconstruction at a given number of training points (Figure 8). There the
first 12 points are chosen as marked in Figure 7, and more points are generated from a quasi-random
Halton sequence. The obtained negative log-likelihood (Figure 7, lower right) depending on k0 and
σu at its ML value demonstrates the well-posedness of estimating k0 having the physical meaning of
a wavenumber. Variants (2) and (3) lead to a slightly less peaked estimate for a spatial length scale
hyperparameter without a direct physical interpretation.
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Figure 7. Reconstruction error for the Helmholtz equation from 12 training points for specialized kernel
(top left), squared exponential kernel with linear source model (top right) and squared exponential
kernel (bottom right); reconstructed source strengths q with 95% confidence interval via posterior (15)
and (16). Negative log likelihood (bottom right) with optimum kML

0 = 9.19 for specialized kernel (solid
line), sq.exp. kernel with linear source model (dashed), and sq.exp. kernel alone (dash-dotted).

For estimation of source positions, nonlinear optimization is applied to source positions as free
hyperparameters within the given boundaries, employing an evolutionary algorithm CMA-ES [17].
The results of source strength and position estimation using (15) and (16) in the configuration with
12 training points is given in Table 1. Both estimates match the exact values reasonably well. At an
increasing number of training data the reconstruction becomes more accurate, stagnating at an error
between 0.1% and 1% and showing the advantage of the specialized kernel more clearly (Figures 8
and 9). The relative L2 error in source positions for specialized and generic squared exponential kernel
with linear source model is depicted in the left plot of Figure 9. Again, results from the specialized
kernel are usually more accurate and stable compared to using a squared-exponential kernel for the
source-free part of the field at a given number of training points.
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Table 1. Comparison and results for estimation of source strength q and source position xq
i for 12

training data points for specialized and squared exponential kernel with linear source model.

Exact Values Specialized Kernel sq. exp. Kernel

q = (1.0, 0.5) q = (0.97, 0.52) q = (1.03, 0.53)
xq

1 = (4.3, 0.85) xq
1 = (4.31, 0.85) xq

1 = (4.30, 0.82)
xq

2 = (4.5, 0.85) xq
2 = (4.65, 0.90) xq

2 = (4.61, 0.84)
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Figure 8. Comparison of relative L2 error in u (left) and q (right) for specialized kernel (solid line),
squared exponential kernel (dash-dotted) and squared exponential kernel with linear source model
(dashed) for Helmholtz equation with N quasi-random training points. As the squared exponential
kernel alone (without linear source model) cannot reproduce point sources, no result is shown for the
point source strength estimation in the right plot for this case.
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Figure 9. (Left) Comparison of relative L2 error in source position for specialized kernel (solid line)
and squared exponential kernel with linear source model (dashed) for Helmholtz equation with N
quasi-random training points. (Right) reconstructed field using specialized kernel (43) and showing
convergence of estimated source location for N = (12, 15, 20, 30) quasi-random training points.

4. Summary and Outlook

A framework for application of Gaussian process regression to data from underlying linear
partial differential equations with localized sources has been presented. The method is based on
superposition of a Gaussian process that generates exact solutions of the homogeneous equation,
complemented by a linear model for sources. For the homogeneous part, specialized kernels are
constructed from fundamental solutions via Mercer’s theorem. For source contributions, fundamental
solutions are used as basis functions in the linear model. Examples for suitable kernels have been
given for Laplace’s equation, heat equation and Helmholtz equation. Regression has been shown to
yield better results compared to using a squared exponential kernel at the same number of training
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points in the considered application cases. Advantages of the specialized kernel approach are the
possibility to represent exact absence of sources as well as physical interpretability of hyperparameters.
This comes at the cost of requiring non-standard, possibly nonstationary kernels. The presented
method has been demonstrated to be able to accurately estimate system parameters such as diffusivity
and wavenumber, as well as position and strength of point sources using only around 10 training data
points in two-dimensional domains.

In a next step, reconstruction of vector fields via GPs could be formulated, taking laws such
as Maxwell’s equations or Hamilton’s equations of motion into account. A starting point could be
squared exponential kernels for divergence- and curl-free vector fields [18]. Such kernels have been
used in [19] to perform statistical reconstruction, and [20] apply them to GPs for source identification
in the Laplace/Poisson equation. To model Hamiltonian dynamics in phase-space, vector-valued GPs
could possibly be extended to represent not only volume-preserving (divergence-free) maps but retain
full symplectic properties, conserving all integrals of motion such as energy or momentum.
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