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Abstract: We investigate chaoticity and complexity of a binary general network automata of finite size
with external input which we call a computron. As a generalization of cellular automata, computrons
can have non-uniform cell rules, non-regular cell connectivity and an external input. We show that
any finite-state machine can be represented as a computron and develop two novel set-theoretic
concepts: (i) diversity space as a metric space that captures similarity of configurations on a given
graph and (ii) basin complexity as a measure of complexity of partitions of the diversity space. We use
these concepts to quantify chaoticity of computrons” dynamics and the complexity of their basins
of attraction. The theory is then extended into probabilistic machines where we define fuzzy basin
partitioning of recurrent classes and introduce the concept of ergodic decomposition. A case study
on 1D cyclic computron is provided with both deterministic and probabilistic versions.

Keywords: complexity; computron; cellular automata; general network automata; diversity measure;
entanglement

1. Introduction

Complexity of dynamical systems and that of computational machines are mostly disconnected
areas of research. The dynamical systems typically live in metric state spaces and evolve in time by
iterating the rules of dynamics. The system is said to be complex if the information required to describe
the evolving paths is high, a notion formally defined as Kolmogorov—-Sinai entropy. On the other side
of the world where computational machines live, the aim is to map a set of inputs to a set of outputs.
We define computron as a computational machine that is composed of a finite number of cells placed
on vertices of a directional graph. The cells have binary states which are updated according to local
transition rules as a function of connected cells’ states. Computron is the generalization of a cellular
automata where local rules are not necessarily uniform, and graph not required to be a regular grid.
Furthermore, a computron can have an external input, in which case it is called driven, otherwise
autonomous. The computron’s global state is the configuration of its cells’ local states on its graph. It
performs computation by mapping an initial configuration to an attractor, be it fixed or periodic by
iterative dynamics. Such mapping partitions its configuration space.

We attempt to bridge disparate worlds of dynamical systems and computation by embedding
computrons in a suitably defined metric space that captures similarity of its configurations. We
develop notions of dynamical chaoticity using Lyapunov characterization of the machine’s evolution
and computational complexity by analyzing the basin partitioning of this proposed metric space. Our
work contributes to literature in multiple ways:

1. Computron is introduced as a computational machine which is equivalent to a finite-state machine,
but has the novelty that flow of information and processing of information is separated.

2. Anew distance measure is introduced for configuration space on automata graphs. It is different
than Hamming distance used in the literature since it captures pattern similarity of configurations
on the underlying graph as opposed to solely counting mismatch between them.
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3. A new complexity measure is proposed which captures the intrinsic structural complexity of a
partitioning of the configuration space, not its randomness.

4. The above concepts are applied to quantify dynamics of generalized graph automata whereas
literature is mainly focused on dynamics of cellular automata.

5. The framework is expanded to probabilistic automata using fuzzy basins and recurrent classes
which enables us to quantify chaoticity and complexity of probabilistic machines, as well as their
susceptibility to noise.

Section 2 provides background and literature review of Lyapunov characterization and entropy
of dynamical systems including cellular automata. Section 3 defines the computron model. Section 4
introduces new set-theoretic concepts such as diversity measure and entanglement. Section 5
characterizes the dynamics of computron by embedding the machine into a metric space that captures
similarity of configurations. Section 6 expands into probabilistic computation where each cell performs
one of many rules probabilistically, driven by a random external input. This is a major step which pulls
the formal domain into Markov chains and recurrent classes. Probabilistic computation lends itself to
analysis of susceptibility of computrons, including effects of noise. Proofs of Lemmas introduced in
various sections are provided in the Appendix A.

2. Background

In his “A Philosophical Essay on Probabilities’ (1814), Laplace states that knowing the present and
evolution laws gives full knowledge of the future. Yet, even if laws are truly known and are truly
deterministic, the chaos could prevail, as described by Lorenz (1972): ‘Chaos is when the present
determines the future, but the approximate present does not approximately determine the future’.
The sensitivity of future to present is formalized by Lyapunov characterization. The richness of what
future may bring is quantified by Kolmogorov-Sinai entropy:

2.1. Lyapunov Characterization
Lyapunov exponents measure the typical rate of exponential divergence of nearby trajectories in
a dynamical system. Consider the following continuous-time system:

drx = F(x) 1)

where x € R4 specifies the system state, and F, a differentiable function, defines the evolution law.
Let x(t) and x/(t) be two trajectories that start from close-by initial states x'(0) = x(0) + 5x(0).
The evolution of difference in trajectories, z(t) = x/(t) — x(t), can be approximated as a vector in
tangent space:

d
dzi = ) 0y Filxzj(t) )
=

and there exists an orthonormal basis {e;} such that for large t, the difference in trajectories can be
represented as exponential growth or decay:

d
z(t) = ZcieieAft 3)
i=1

The Lyapunov exponents {A; } are independent of the initial state x(0) if the system is ergodic. Systems
with a positive Lyapunov exponent are typically chaotic and error of prediction grows exponentially if
the initial state is slightly off.
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2.2. Kolmogorov—Sinai Entropy

If we were to discretize time and coarsen the state space into d-dimensional cubes of each side
€ (indexing each cube with a symbol), then a trajectory of evolution could be approximated with a
string of symbols based on the index of each cube visited at each time step. For a simple system with
predictable trajectories, the information needed to represent the ensemble of such strings is less than
that of a system where trajectories disperse rapidly. Let K(¢, t) be the total number of different strings
generated by the system in ¢ steps in a coarse-grained state space. The topological entropy of the system
is defined as:
h = lim lim 1K(e,f) 4)

e—0t—o0 t

Please note that in this definition, each different string generated by the system is counted as one. If we
take into account the frequency of observing a given finite string of length T (a word w’), and apply
the Shannon entropy formulation to this stream of words, we get the information content of T-symbol
paths generated by the system as:

HT = - Y P(wT)log P(wT) (5)
{wT}

Kolmogorov-Sinai entropy is then defined as the average information content per time step of the
path, chosen as the highest one over all possible coarse graining partitions of state space {G}:

1
W = sup lim ZH! ©

2.3. Basin Entropy

Dynamical systems theory has traditionally been path-centric. Chaoticity is described as divergence
of close-by paths, and entropy is conceptualized as richness of paths emanating from a given present.
Where paths end up in the long-term is called the attractor of a dynamical system. In systems with
fixed-point or periodic attractors, future is rather dull. In chaotic systems however paths are entangled
in such a way that bundles which are close-by soon end up far separated and the attractor is called
strange. Some dynamical systems, and most computational automata, have multiple simple attractors.
In these systems while the future is dull, present can be exciting if knowing the now gives little
indication on which final simple destiny one ends up in. This is the basin-centric way of looking at the
dynamics.

Consider a discrete-time dynamics x — x? —y? +aand y — 2xy + b with (a, b) system parameters.
If one marks all possible initial states x(0), y(0) according to two ultimate destiny scenarios (escape to
infinity or not), we get the fractal Julia sets as given in Figure 1, and quite interesting ones for different
system parameters (a,b). A basin of attraction is the set of initial states that end up in a given attractor.
The basin entropy measures the entanglement of these basins.

Figure 1. Basin partitioning in (quadratic Julia sets) with increasing basin entropy. System parameters
(a,b) from left to right: (0,0), (—0.75,0), (—0.35, —0.55), (—0.40, —0.60). The last one tends to a
disconnected Cantor set as time goes to infinity.
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2.4. Entropy in Discrete State Space

A cellular automata ('CA’) is a dynamical system that consists of a grid network of cells where
each cell run the same look-up table-based evolution rule that tells it how to change its current state
(which is drawn from a finite number of elements) into the next, given the neighbors” and its current
state. The global state of CA is the configuration of local states of each cell on the grid. The local
evolution rule and state information exchange between neighbors synchronously update all local
states in each time step, changing the configuration of CA to its next, hence generating the dynamics
on discrete configuration state space. A CA is called elementary if the grid is 1D, each cell takes binary
state values and the neighborhood is just the left-right nearest cells.

Entropy for CA can be defined with the same spirit as Kolmogorov-Sinai entropy given above.
Assuming a 1D grid, consider a window of L cells and ignore the rest. This is effectively a coarse
graining of the configuration space since all configurations that have the same pattern within the
window are grouped together. Now, let us look into strings of window patterns generated by the
system in T time steps w! with observation frequency P(w?). The entropy of this block (i.e., entropy
of the system at this coarse graining) is:

Hf = — Y P(w])logP(wf) @)
{w{}

The equivalent Kolmogorov-Sinai entropy of CA is then given as the average information content per
time step of the evolution path with no coarse graining, i.e., when the cell-space window is extended

to full grid size:

HES — lim + lim %HLT 8)

L—oo L T—oo

2.5. Dynamics of Cellular Automata

As per Equation (2), Lyapunov exponents rely on differentiability in state space. Since it is a
Cantor set, the configuration space of CA does not lend itself to differentiability. Shereshevsky [1]
in 1992, proposed the average propagation speed along the CA grid of a single cell disturbance as
a proxy of CA’s Lyapunov characterization. Shereshevsky showed that for ergodic 1D CA almost
all configurations have unique left and right propagation velocities, A~, A*, and further established
the inequality linking entropy of the CA to entropy of the shift operator ¢ and the propagation
speeds as: h(F) < h(c) (A~ + A™). Later in 2000, Tisseur [2] expanded the Sheresevsky’s Lyapunov
characterization by introducing average propagation velocities.

Entropy given in Equation (8) is finite and calculable for trivial CAs such as left-shifting CA.
However, Hurd, Kari and Culik [3] (1992) proved that it is uncomputable for an arbitrary CA. The
undecidability result does not preclude the existence of large classes of examples, such as linear CA, for
which explicit calculations are possible. A CA is called linear if the local state set S is endowed with the
sum and product operations that make it a commutative ring, and the local evolution function f is given
as the linear combination of the neighboring cell’s local states, f(x—_;,...,x4,) = Y_; a;x; with {a;} € S.
With sum and product operations defined on S, it is possible to describe a given configuration ¢ with
characteristic power series P.(z) = Y% ¢;z' and the local function as a kernel A flz) =X, a;z'.
For linear CA dynamics reduces to Pr()(z) = Pc(z) Af(z). Manzini et al. published a series of articles
[4-7] on topological dynamics of linear 1D CA and explicitly calculated the entropy.

Topological entropy is a characterization of the richness of time streams of configuration patterns
generated by the CA. This richness is closely linked to compressibility of these pattern streams.
Excellent progress has been made on practical implementation of compression algorithms for patterns.
Lempel-Ziv coding [8] introduced in 1976 is a universal lossless data compression algorithm which is
at the core of GIF image format used today. Zenil (2010) [9] proposed to calculate entropy of CA based
on compressed length of output patterns with Lempel-Ziv-like compression.
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2.6. Complexity Classification of Cellular Automata

In the early 1980s, Wolfram ignited research interest in CA with a series of articles [10-12]
where he classified the apparent spatio-temporal configuration complexity as: (1) tends to a spatially
homogeneous state; (2) yields a sequence of simple stable or periodic structures; (3) exhibits chaotic
aperiodic behavior; and (4) yields complicated localized structures, some propagating, i.e., complex
patterns. Wolfram's classification made a distinction of chaotic vs. complex configuration evolution.
This was important because entropy-based definition used in dynamical systems theory did not
differentiate chaotic behavior from complex. He conjectured that complex CA performed universal
computation. Culik and Yu (1988) [13] proposed a formal framework for Wolfram’s complexity classes.
Key demarcation was whether an algorithm existed to decide for any two finite configurations whether
one ever evolves to the other. Since then there has been a wide range of classifications on elementary
CA to capture the intuition that complex was something different than chaotic.

Li and Packard (1990) [14] looked into the structure of ‘rule space” and investigated bifurcations in
the behavior of 1D CA by varying a classifier parameter A defined as the ratio of non-zero entries in
local rule table of CA. The rule space seemed to be split into ordered (fixed or periodic patterns) and
chaotic regions with a sharp phase boundary. However, in certain parts of the rule space, between the
ordered and chaotic domains, the phase boundary was a thick wall that housed critical rules which
showed complex patterns. Kurka (1997) [15] provided three formal ways of classification for 1D CA: (i)
based on the complexity of languages generated by partitions of the state space; (ii) based on Lyapunov
stability; and (iii) based on attractors of the configuration space. Kurka demonstrated correspondence
between the classes of these three schemes and Wolfram’s heuristic classification.

Chua et al. (2002) [16] proposed a complexity index to categorize the rules of elementary CA:
Consider a cube graph where each vertex corresponds to one of 2 x 2 x 2 = 8 states of the input
triplet of a cell. Let us color each such vertex with Red or Blue depending on what the output state
ought to be based on the local rule table. Now, imagine partitioning the cube by planes such that
same colored vertices remain in the same partition. Chua’s complexity index is the number of planes
required to make such partition. He showed that Class IV elementary CA of Wolfram had index 2
or 3. To overcome certain mis-categorizations of Chua index, Ewert recently (2019) [17] proposed
a novel method based on residual circuit complexity. It takes into account not only minimal form
representation of the rule table, but also the reduction of input entropy as the system evolves which
further reduces the needed minimal form. Applied to elementary CA, Ewert showed that the proposed
method matched well to Wolfram’s heuristic classification.

2.7. Venturing into General Network Automata

Very few attempted to go beyond classical cellular automata which has two built-in regularities:
(i) cells are arranged on a regular grid-like cell space, and (ii) each cell executes the same local rule,
i.e,, homogeneous. These properties arguably give the classical CA a physical-like feel with uniform
laws and regular space, and make dynamical analysis tractable. It is, however, tempting to go beyond
classical set up and consider generalized graph automata where cells are placed at vertices of a general
directional graph, and each executes a different local rule. Many real-life systems with interacting
agents are typically organized into networks such as Watts-Strogatz type small-world graphs, or
Barabasi—Albert type scale-free graphs with non-uniform local rules.

Marr and Hutt (2005) [18] investigated the pattern formation capacity of binary graph automata
where each cell was executing a local law based on the average state value of the neighbors passed
through a threshold function parametrized by value x. They investigated both small-world and
scale-free type graphs, varying the graph incrementally to see impact on pattern formation. They
measured Shannon entropy of time strings of a single cell averaged over all cells. Since graphs were
not regular grids, the authors did not define any spatial pattern concept, and investigated time patterns
of single cells only.
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Tomassini (2006) [19] analyzed the performance of binary graph automata with homogeneous
cell rules over small-world and scale-free graphs over two tasks. In density classification task, the
cells, starting from random configurations are expected to converge to all 1 if their initial 1 density
were greater than 0.5 and vice-versa. In synchronization task, the cells starting from random initial
configurations are expected to synchronize into a global flip-flop cycle. Cattaneo et al. (2009) [20]
introduced two types of non-homogeneous 1D CA: (i) local rules are variable only in a region outside
which the rule is uniform, and (ii) the rule is non-uniform everywhere but the neighborhood has
always same radius. The authors showed that most topological properties get demolished when CA
becomes non-homogeneous.

2.8. Back to Basins

Basin entropy defined in Section 2.3 is a relatively new concept and plays a central role in this
paper. Daza et al. (2016) [21] calculated basin entropy of two well-known physical dynamical systems
with path chaoticity: (i) Duffing oscillator which is a periodically driven rod with a nonlinear elasticity,
and (ii) Hénon-Heiles system which describes motion of a star around a galactic center. They defined
basin entropy by coarse graining the basin into boxes and marking distribution of ultimate destinies’
probability in each box, to which they applied an entropy measure.

Finite-size discrete systems have been mostly dismissed in the entropy world since paths are
of finite size and ultimately fixed or periodic. However, these systems as computational machines
are very rich in the structure of their basins of attraction. In fact, mapping initial states to ultimate
destinies is what computation means for these machines. As we shall now formally see, our definition
of chaoticity and more importantly complexity of such finite-state machines is all about quantifying the
structure of basin partitioning, and as such fundamentally differs from previous work on complexity
and entropy for automata.

3. Computron

“Things do not exist other than in arrangements”. Tractatus—Ludwig Wittgenstein

3.1. Construction

A computron M = [G, C, vN, vour] is an arrangement of N cells with binary states w; which is
formally constructed with:

1. A generating graph G(V, E) where each cell is assigned to a vertex v; € V. A cell v; is said to be a
neighbor of cell v; if there exists the directional edge ¢j; € E. The ordered set of neighbor cells of
v; is called its neighborhood denoted as 6; = [v4, vy, . .. ]. Each cell is assumed to be also its own
neighbor, i.e, ¢;; € E, Vi.

2. A set of connectors C = {c;}, each assigned to a vertex. A connector c;(();) is a binary valued

look-up table based on the state configuration of neighbors, Q); = [w;|v; € J;].
3. Aninput cell at vertex vpy which acts as interface for the external binary input o, if the computron

is driven with an external signal, win = o.
4. A nominated output cell at vertex voyt which provides a binary output v if required, v = wour-.

Figure 2 depicts the construction of a computron. The local states are updated synchronously. The
global state of computron s = [wy, w1, . .., wnN—1] is the configuration of local states on the generating
graph. Local dynamics induce the global dynamics of the computron as follows:

n n+l _ . (O
wi = Wit = ci(Qf) ©)
1 1 1 17 .
s" = " = [wop L ot L Wl ) = T(sM)
An autonomous computron performs computation by mapping an initial configuration to an

attractor (fixed or periodic). Such mapping partitions the configuration space. A driven computron
generates an output string for a given input string based on an initial starting configuration.
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Figure 2. Computron is constructed on a generating graph. Cells are placed at vertices of the graph.
Each cell has a binary state w; and is endowed with a local look-up table rule, called a connector. Global
state of the computron is the configuration of local states on the generating graph. vy is the special
cell that interfaces the external input and voyr is the nominated cell for reading the output.

3.2. Computron vs. CA and FSA

By construction, any finite-size cellular automata is a computron where generating graph is a
regular grid, connectors are homogeneous, and there is no external input. Finite-state automata (‘FSA”)
is a computational machine that maps an input string to an output one with no memory. Formally,
the machine M = [S, so, %, I, T, U] is specified by a set of states S, an initial state sy, an input alphabet
%, an output alphabet I', the Transition Map T : S x ¥ — S, and the Output Map U : S x £ — I'. FSA
generates an output string y = Yoy172... € I'* driven by the input string x = 0p0103... € £*. Without
loss of generality we assume that input and output alphabets are binary.

Lemma 1. For any FSA with 2N states there is an equivalent computron of N cells plus the input cell.

Figure 3 shows the state transition diagram of 32-state machine and its equivalent computron
representation with 5 cells. We note that state transition diagram of finite-state automata lacks intuitive
description of the inherent structure provided by the equivalent computron. The generating graph
of the computron defines ‘local flow of information” whereas connectors of each unit describe ‘local
processing of information’.

FSA Representation Computron Representation

0 Generating Graph

Not all =0 transition lines are shown

Figure 3. 32-state machine: Wolfram cellular automata Rule 110 on 5-circle and its equivalent
computron with external input used as Reset (0) or Step (1)
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4. Diversity Space

4.1. Purpose

Dynamical systems live on metric spaces whereas computation does not. Computron as a
model of computation is constructed with global states defined as configurations of local states on
its generating graph. In this section, we formally define a set measure called diversity measure which
gives the cardinality of a set adjusted for similarity of its elements. Diversity measure induces a
similarity distance between two sets as the measure of their symmetric difference. This similarity
metric generates a metric space for the states of the computron called diversity space. We later perform
all our dynamics investigations for the computron on this diversity space.

Various distance functions between sets with elements embedded in a metric space have been
proposed in the literature. Hamming distance is arguably the simplest one which counts the number of
different elements in two sets; it lacks the concept of similarity among the elements. Hausdorff distance
between two sets is calculated as the furthest separation of one set’s elements from closest of the other;
final result reduces to distance between two most significant elements disregarding the rest.

dn(S1,52) = max{lgég? J{ggr;A(e, f )";2%2‘ jr,réisrllA(e,f )} (10)
The sum-of-min-distances incorporates all elements, but it is an aggregation of closest peers, hence
presence of non-closest peers are shadowed, thus fails to capture an ensemble closeness.
dn(51,52) = 2(Y An(e,5) + Y~ Anle,51)) (1)
2 €Sy e€Sy

Other distance measure between sets have been proposed to capture the overall similarity of
the elements of two sets given the underlying metric space such as Surjection distance and Link
distance [22]. Bennett, Vitanyi and Zurek et al. [23] introduced absolute information distance metric
between two objects. Consistent with definition of absolute information content of an object as length
of the shortest binary program K(x) running on a universal machine, generating the given object x,
they described the distance metric between two given objects x and y as length of the shortest binary
program that generates one given the other: d*(x,y) = max K(x|y) + max K(y|x). They proved that
absolute information distance is a universal pattern similarity metric. This theoretical metric is similar

to that of algorithmic complexity in that while universal, it is not computable in its pure form.

4.2. Diversity Measure

We introduce diversity measure as the size of a set adjusted for the similarity of its elements.
The intuition behind set-theoretic formulation below is as follows: Assume we are asked to form a
diverse team from a pool of students. Each student has a profile which allows us to define how similar
two students are. We build the team by adding one student at a time. First member contributes an
individuality of 1. Second member’s individuality is reduced by her similarity to the first member. Third
member’s is reduced by his similarity to the first two. Diversity of the team is sum of individualities.

Let (Q, f) be a metric space where Q is a finite set and f is a metric of Q, i.e., a function f :
Q x Q — R such that for any x,y,z € Q, (i) f(x,y) = 0 & x =y, (i) f(x,y) = f(y,x), and (iii)
f(x,z) < f(x,y) + f(y,z). Letp : R% — [0,1] be a concave monotonic function with p(0) = 0
(similarity kernel) and define p(x,y) = p(f(x,y)), then (Q, p) is also a metric space.

Individuality of an element x given a set of constraining elements A is defined as:

d(x[A) = [Te(xy) (12)

yeEA
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if p(x,y) = 0, i.e., there exists an element y € A that is exactly the same as x, then d(x|A) = 0, meaning
x has no individuality given the constraining set A.
Diversity of an ordered set A= [x0, X1, X2 ...] given a set of constraining elements, B is defined as:

d(A|B) = d(xo|B)
+—d(x1|{x0} LJB) (13)
+d(x2| {x0,x1} UB) ...

Clearly, the ordering of the tuple A matters for the calculation of diversity, therefore we define the
diversity measure of a set A constrained by set B as the supremum over all possible orderings of the tuple
A. For numerical experiments, we devised a routine whose computation load grows quadratically
rather than combinatorially which made calculation of diversity measure feasible.

IA|B|| = supd(A|B) (14)
A

d(A) = d(A|D)

(15)
1Al = [lAl2]]

Section 6 of this paper introduces probabilistic computron which generates probability
distributions on states. Therefore, we extended diversity measure to handle weighted sets. Let
w: S — R be a weight function. Individuality of a weighted element x given a set of constraining
weighted elements A is given as:

dy(x|A) =w(x) [T p(xy) (16)

yeA\x

Diversity and diversity measure for weighted sets follow the same definitions as in Equations (13)
and (14) using individuality for weighted sets. We use the following extension for union U, symmetric
difference A\, and subset C:

AUB = {x:x€ AUB,wc(x) = (wa(x) +wg(x))}
AAB = {x:x € AUB,wc(x) = |wa(x) —wp(x)|} (17)
ACB& (x € A= x € Bwa(x) < wp(x))

Lemma 2 (Diversity measure). Diversity is a sub-additive measure on Q.

ACB — || Allw < |Blw (18)

[A00A [l < [|Aollw + [ A1l (19)

Diversity-induced distance (DiD) is an induced metric on Q* that captures dissimilarity between
two sets, A, B € Q*:
AAB
where ¢ : Q* x Q* — [0,1], A is the symmetric difference operator as defined in Equation (17) and
|Q| = X g w(x) is size of weighted space.

Lemma 3 (DiD metric). (Q*, @) is a metric space.
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4.3. Entanglement

We introduce the entanglement concept which will later be used in defining partitioning
complexity of a computron. Entanglement of a set of sets A = {Ag, A1, Ay...} is defined as:

|A]l = sup D(A) (21)
A

where
D(A) = || Aoll + [[A1] Aol + [|A2| A1, Aol| - . (22)

Entanglement captures the total diversity of a collection of sets where each set’s diversity is
constrained by the presence of the other sets. The more the sets are within each other’s proximity
entanglement increases. On the other hand, as one given set’s elements get separated from each other,
that set’s diversity decreases. Entanglement captures the balancing of these two factors in calculating
the total diversity of the set of sets. This is illustrated in Figure 4.

Il A lI=4.40 Il Al=4.77 Il All=5.82

Figure 4. Illustration of entanglement: Each element is assumed to be a pixel with Manhattan distance
metric. Space is partitioned into two sets, A = {Ao, A1 }. Three different partitions with increasing
entanglement measure is provided.

Lemma 4 (Maximal entanglement). Let P = {By, By...} be a partitioning of Q (i.e., U;B; = Q, and
BiNB; = @,i # j) with P* = {Q} (nil partition) and P* = {{xo},{x1},...},Vx; € Q (full partition),
then:

IP°l| = [P[| > || P] (23)

5. Dynamics of Autonomous Computrons

5.1. Embedding in Metric Space

Given a computron M = [G, C| with a generating graph G and connectors set C, we embed it in a
metric space that captures similarity of its configuration states as follows: The distance between two
cells is set as the shortest-path-length on generating graph between the two vertices occupied by these
cells mapped to a unit interval. The intuition of this distance definition between two cells is that a state
change in one of the cells can possibly impact the state of other one in compute steps that are no less
than the shortest-path-length.

d(vir U]) = p(SPL(Ul/ 'U]>) (24)

p : R — [0,1] concave, monotonic with p(0) = 0. We then define the configuration state of the
computron as set of cells that have local state of 1.

seS:= {vi|w1~ = 1} (25)

This leads to diversity-induced distance as a metric for dissimilarity of the states for computron:
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SoAAs
q)(50151) = || O‘S’ 1” (26)

By Lemma 3, (S, ¢) is a metric space with each configuration of the computron an element of
the space. This is the diversity space that we embed the computron where distance between two
global states of the machine is based on the similarity of the corresponding configurations. Figure
5 illustrates the concept on a computron where generating graph is assumed to be regular 2D grid.
Each configuration is a set of pixels that are have state 1 (a binary image). Diversity-induced distance
between configuration sy and s; is less than that of sy and sy, capturing their similarity, although
Hamming distances are the same.

S1 H

EH @ (s0,51) < @(So,52)

Sp is more similar
to s; thanto s,

=T

Figure 5. sg,51,5, are configurations of a computron with 2D generating graph (binary images).

Diversity-induced distance uses diversity measure to define similarity between configurations.

5.2. Computron as a Dynamical System

An autonomous computron has no external input. Starting from an initial configuration, it moves
to next based on the transition map given in Equation (9). The dynamics is governed by discrete-time
iteration on configuration metric space (S, ¢):

Sn+1 _ T(Sn)

27
Tl =ToT", T'=I,neN @7)

An attractor of the computron is a tuple of configurations A= [s0,51, ..sp,l] where ;1 = T(s;),
so = T(sp-1) and sy, # sm < n # m. For p = 1, it is called a fixed-point attractor with the
corresponding state a ‘fixed-state’, else a periodic attractor. States that are elements of a periodic
attractor are called periodic states. States that are not element of an attractor are called transient states.
The basin of an attractor are those states that iterate into, or a part of, that attractor B(A) ={seS:
3k > T(s) € A}.

Lemma 5 (Basin partition). The set of all basins of an autonomous computron M is a partition of its
configuration space S, denoted as P p; = {Bo, By, . .. }, with the corresponding attractors Ay = {Ag, Ay, ...}
where B; C S, U;B; = Sand B;NB; = ©,i # j.

Figure 6 gives a recap: A computron consists of a set of cells placed at vertices of a graph G with
binary local states {w; }. The configuration of the machine is specified as set of cells that are have local
state 1. A basin is a set of configurations. As per Lemma A5, the configuration space is partitioned into
basins by the computation performed by the computron.
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Computron Configuration Basin Partition
with cells at vertices of G s={set of cells} B={set of configurations} P={set of basins}

Figure 6. Dynamics of a computron is characterized by the structure of its basins of attraction. A
partition is a set of basins; a basin is a set of configurations; a configuration is a set of cells that have
local state 1.

5.3. Chaotic Computation

As defined in Equation (2) Lyapunov exponents characterize the rate of separation (or
convergence) of infinitesimally close trajectories in a dynamical system. In discrete-time systems
(maps), x,41 = f(x4),n € N, for an orbit starting with initial point x(, Lyapunov exponent becomes:

n

-1
Axp) = lim ~ ¥ In[f'(x)| (28)
=0

n—eo 1 =

For a discrete-time discrete state-space dynamical system (i.e., dynamics of autonomous computron)
on a metric space (S, ¢), we define Lyapunov number for an initial configuration sy € S as follows:
Let Be(s) = {g € S: ¢(s,q) < €} denote the epsilon-ball around state s, where € is set as the lowest
value where epsilon-ball is non-empty. Let Ay = {Ag, Ay, ... } be the attractors of computron, and
Pum = {By, By, ...} the corresponding basins of attraction. We calculate Lyapunov number of a state
as the average separation of its neighboring states as iteration time goes to infinity. Since, each state
converges to its attractor, we measure the dissimilarity of attractors using an induced DiD metric.

N DAy, A
M= B, 2 B0 ) )

s € B(Ak),q S B(Al)

Lyapunov number for the computron is the average over the configuration space A1 := (A(s))s.

5.4. Complex Computation

While chaos is a well-defined concept in dynamical systems theory, complexity has been more
elusive with wide range of definitions as reviewed by Grassberger [24]. Observer’s reference base
using existing information is relevant for defining complexity, yet it leads to observer subjectivity. This
can be avoided by either dealing with an equivalence class of the object as the reference base, or by
treating the object on a self-referential basis using a generative description. In the former case, we are
in the domain of information theoretical definition of complexity, whereas the latter is in the domain
of algorithmic complexity. Either way, the complexity becomes a measure of difficulty in describing
the object in question with regards to a reference base.

We introduce diversity-based complexity of a computron as the disentanglement of its basin partition.
This is a basin-centric approach, not a path-centric one. Computron performs its computation by act
of mapping the input configurations to attractors, generating a partitioning of configurations space
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into basins of attraction. We consider the complexity of this partitioning as the defining characteristic
of computron as the computational machine. This is different than Wolfram’s complexity definition
which is path-centric.

[P umll
1P mll

with ¥y € [0,1] since || Pl < [|P°nm| by Lemma 4. This definition means that a complex computron
has a basin partition where each basin consists of maximally diverse set of configurations with respect

Yyy=1— (30)

to other configurations in that basin, and furthermore basins themselves are maximally diverse
with respect to each other. Therefore, a high complexity partitioning of the configuration space
requires maximum information to describe such partitioning. As depicted in Figure 7 complexity of
a partitioning increases initially with the number of partitions, then it starts decrease such that no
partitioning and full partitioning have zero complexity.

7
N S
s B
.--l..

Figure 7. Illustration of diversity-based complexity measure for various partitionings. Nil partitioning

'l

0

and infinite partitioning has zero complexity. Complexity first increases with increasing number of
partitions then starts to decrease. For a given number of partitions increasing entanglement reduces
complexity. Complexity is maximized somewhere between order and chaos.

Lemma 6 (Minimal complexity). Absorbing and idle computrons have the least complexity (nil) compared to
any other computron.
Yyo =¥me =0< ¥y (31)

An absorbing computron has a single fixed-point attractor which all configurations iterate into
denotedas M®: Vs € S,k € N Tk(s) = 5%, where T is the transfer map of computron and s* is the
absorbing state. An idle computron does nothing, i.e., each state is mapped to itself; and is denoted as

®:VseS,T(s) =
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5.5. Case Study—1D Cellular Automata

We analyzed complexity and chaoticity of autonomous computrons with linear cyclic generating
graph and homogeneous connectors, i.e., elementary cellular automata. As expected, absorbing and
idle computrons have minimal complexity and chaoticity. With same generating graph (linear cyclic
of 5 cells), we analyzed different connector types. Chaoticity and complexity of each computron is
plotted in Figure 8. There are several elementary CA that have very low complexity and not chaotic
(less than 1 chaoticity). However, there is a group of machines that demonstrate high complexity while
not chaotic.

0.5
0.4
[ 4
> (J
% L.\ ° °
s 0.3 ° P
: - .
o () ... .0
0.1
[ ]
o O
[ J
0.0 oﬂ—%'e
0 0.5 1 1.5 2
Chaoticity

Figure 8. Chaoticity A vs complexity ¥ of the universe of 32 state computrons with linear cyclic
generating graph and homogeneous connectors

6. Dynamics of Driven Computrons

6.1. Computron as a Markov Chain

A driven computron, unlike an autonomous one, has a transition map that is a function of its
current configuration and the external input drawn from binary alphabet. Dynamics is governed by
discrete-time iteration:

TA(g" n 0
ST = T(s", o) = {TB((:")) Zn 1 (32)

where 0" is the external input at time 1. We assume no a priori information about the input string other
than observed frequency of alphabet letters, resulting in representing the input string as a sequence of
independent identically distributed random variables on binary alphabet X with p = Pr{c = 0}.

A noisy computron is a computron exposed to thermal fluctuations in the binary states of its cells.
The dynamics is governed by probabilistic discrete-time iteration:

Sn+1 —_ Te(snlgn)
TA(s") with prob. p(1 —¢)

TB(s") with prob. (1 —p)(1 —¢)
sy € Be(s™) with prob. e

(33)
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where Bc(s") is epsilon-ball neighborhood of configuration s” and e is the probability of malfunction
due to thermal noise.

We now enter the domain of Markov chains to describe the probabilistic dynamics of the driven
and noisy computrons. A discrete Markov chain is a sequence of random variables with domain S,
{Xn, n € N}, where each random variable X}, is independent of prior random variables in the sequence
given its previous one.

PT{Xn :j | anl = i, Xn,Q = k,. . } = Pij (34)

Probabilistic computrons are equivalent to a discrete Markov chain. They can be represented
with directed labeled graphs where each vertex is assigned a configuration s; € S, and an edge from
configuration s; to s; with transition probability P;; # 0. It can also be represented by a M x M
transition probability matrix P where M = |S| is the number of all configurations and P;; = P;;. From
matrix representation, it follows that probability of reaching k from i in exactly n steps is PJ;..

Terminology

e n-step walk is an ordered set of states (i, i, . .., i) in which there is a directed edge from i,, 1 to iy,
and no states are repeated

e State j is accessible from state i if there exists a walk from i to j, shownasi — j

e Two states communicateif i — jand j — i

* (lass is a set of states where each pair of states in the set communicate, and none communicate with
a state outside the class

® State i is called recurrentifi — j=j—i

* Transient state is a state that is not recurrent

* Period of a state i is the greatest-common-divisor of those values of n for which P} > 0. If the period
is 1, the state is called aperiodic.

e [t follows from definitions that for a given class, either all states are recurrent, or they are all
transient. It can also be shown that all states in the same class have the same period.

* A class is called ergodic if it is recurrent and aperiodic.

¢ A Markov chain consisting entirely of single ergodic class is called and ergodic chain.

* A unichain contains a single recurrent class plus, possibly, some transient states. An ergodic unichain
is a unichain for which the recurrent class is ergodic.

* A steady-state distribution for an M state Markov chain with transition matrix P is a row vector 7
that satisfies:

7w = P, where 7; > 0,Z;71; = 1 (35)

For a given Markov chain, Equation (35) always has a solution, and the solution is unique if
and only if the Markov chain is a unichain. If there are c recurrent classes, then there are c linearly
independent solutions each with non-zero entries only for the states of corresponding recurrent class.
P" converges if and only if recurrent classes are aperiodic with each row of P" converging to 7t of one
class.

We compare dynamical systems concepts for autonomous computron to that of Markov chain.
An attractor is analogous to a recurrent class. An ergodic dynamical system has a single attractor, and
similarly an ergodic chain has a single recurrent aperiodic class. In autonomous computron a transient
state feeds into a single attractor, therefore the concept of basin of attraction is well-defined. However,
in driven automaton, a transient state can feed into multiple recurrent classes with overlapping basins.

Let P;; be the probability of transition from state s; to s; as described in Equation (33), and
P the corresponding transition probability matrix. Let p;,(s;) be the probability of computron
being in configuration s; at time n, and p;, be the corresponding probability distribution vector
over configuration space S. Its evolution starting from an initial distribution pg is governed by the
master equation:

Pui1 = pnP (36)



Entropy 2020, 22, 150 16 of 26

Impact set R of a given configuration of computron is a set weighted by the impulse response
distribution 7ty defined as follows:
T = lim ng”

5 B 1 ifx=s (37)
Ps(x) = {0 else
Ry ={x€S:m(x) >0} (38)

Since Equation (36) is linear, steady-state distribution of a driven computron can be written as
linear combination of the impulse responses of all states weighted by the initial probability distribution.
Let pg be an arbitrary initial distribution stated as linear combination of delta—dirac distributions over
all configurations:

po =Y pol(s)p! (39)

seS

Then, steady-state distribution 7r becomes:

T = Z po(s)7s (40)

seS

6.2. Ergodic Decomposition

A computron is said to be ergodic if its Markov chain representation is ergodic (i.e., single
recurrent aperiodic class). Typically, computrons are non-ergodic, i.e., they have more than one
recurrent class, and can be periodic. A periodic computron would not have a stationary steady-state
distribution as P” would not converge. Stationarity can be introduced by imposing ‘asynchronicity’
where we modify each state’s transition map with non-zero probability A to stay idle.

P=(1-ANP+AI (41)

As per the definition of periodicity (see Terminology), the greatest-common-divisor of # for which
151-’1? becomes 1 for all states (since they all have a transition to self with A probability), and therefore the
machine would become aperiodic. An aperiodic computron would have P" converge with each row
becoming 7t of one recurrent class.

The Coloring Lemma provides a technique for identifying the recurrent classes Cp; =
{C1,Cy,...,Ck} of a computron. Let p,, pp two random initial distributions with non-zero entries
for each state, and let 7t;, and 7}, be the corresponding steady-state distributions in an asynchronous
computron. Define, the ‘gray color” of a state c(s) as:

(42)
0 else

os) = {nb(s)/ng(s) if 71,(s) >0
Lemma 7 (Coloring). Two states will, almost always, have the same shade of gray if and only if they are
elements of same recurrent class, provided all classes of the computron are ‘distinguishable’ (as defined in the
proof); i.e., for two random non-zero initial distributions, c(s) = c(q) > 0 < s,q € C;, almost always.

Having identified the recurrent classes of a computron using the Coloring Lemma, we now use
them as basis for ergodic decomposition:
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Lemma 8 (Ergodic bases). Recurrent classes form a non-overlapping spanning set (basis) for the impact
sets of all states. Let Cpy = {Cy,Cy,...,Ck} be the set of recurrent classes of a computron and x, =
{x1(5), x2(s), - .. xx(s) } the ergodic decomposition of impulse response 7ts:

xk(s) = ) ms(q) (43)
7€Ck
then:
Y xk(s) =1, with x;(s) > 0,Vs € S (44)

k

We can now formally define basin of attraction for a recurrent class as a weighted-set B(Cy):
B(Ci) = {s : xx(s) > 0,wp(s) = xx(s)} (45)

Lemma 9 (Fuzzy partition). The set of basins of attraction of a probabilistic computron is a fuzzy partition
of its configuration space, denoted as Pp; = {B(C1), B(Ca), ..., B(Ck)}. A fuzzy partition of S is the set of
weighted sets P = {By, Ba, ..Bx}, where U;B; = S, and Y wp, (s) = 1,¥s € S.

6.3. Chaoticity—Complexity of Probabilistic Automata

A computron acting on a configuration space transforms each configuration into its impact set.
Configurations that are similar to each other (based on diversity-induced distance) can be transformed
to similar or different impact sets. We define the ratio of DiD distance among the impact sets of two
configuration to distance between them as the ‘bending ratio’. Computron’s action on the configuration
space can be conceptualized as transforming the distance between each pairs of configurations with
the bending ratio.

L BRRy)
&9 = ), ) 4o

Lyapunov number for a state is the average bending of the e-ball around such state:

Als) =

1
, 47
B, 2, 7 “)

Chaoticity of the machine is measured by the average Lyapunov number over configuration space.
AM = <)\(S)>5

As an extension of the complexity definition we used for autonomous computrons, Equation (30),
complexity of a probabilistic computron is the disentanglement of its fuzzy basin partition.

Fy=1— 1M co,1] (48)

As a case study we analyzed the complexity of hybrid elementary CA that execute two alternative
rules based on the input signal. Figure 9 shows the variation in complexity of hybrid CAs with the
driver mix p(c = 1) changing in [0, 1]. For p = 0 and p = 1 the machine is regular elementary CA.
We plotted the deviation of complexity from a linear mix, so-called synergy, as p is varied. Creating
hybrid CAs using high and low complexity constituents results in drop in overall complexity (i.e.,
non-synergistic mix). The drop happens at even small mixing around the higher complexity CA. This
compares to synergistic case when both constituents are of high complexity.
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Mix

Figure 9. Increase (decrease) in complexity of driven cellular automata compared to linear combination
of autonomous CA, with changing intensity of driving signal p(c = 1) € [0,1].

6.4. Susceptibility

Let M4, M® be two computrons operating on the same state space. We provide a measure of
topological similarity between them by comparing their bendings of the configuration space. The
bending ratio 7(s, ) was defined in Equation (46). The similarity of two computrons is given as:

O(MAMP) = T [ta(sq) - (s, q)] (49)
5,J€ESXS
Equipped with a measure for similarity of two computrons, we can now analyze distortions in a
machine upon small structural changes. As an application, we investigate distortion of a computron
due to noise which is given as:

E(1) = @(My, i, My, —0) (50)

Figure 10 shows noise distortion curves on log-log scale for a computron executing Rule 29.175
with varying levels of driver intensity. The machine exhibits linear noise distortion curves with
saturation at high noise levels when it is driven in region Rule 29 towards Rule 175. However, as it gets
closer to Rule 175, noise distortion become exponential with power 7y ~ 1.45. This characterization is
consistent with the sudden change in complexity around Rule 175 as was provided in Figure 9.
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Figure 10. Topological distortion to driven computron due to noise. Distortion vs noise levels are
plotted in log-log scale. Curves correspond to different levels of driver intensity which results in
varying the machine’s behavior from Rule 29 to Rule 175 gradually.

7. Discussion

This paper is an investigation into dynamics and complexity of a computation machine,
computron, which is equivalent to a finite-state machine and generalization of a cellular automata. We
embedded the computron into a metric space that captures similarity of configurations as patterns
on the generating graph of computron. We analyzed the chaoticity and complexity of computron in
this metric space. Our approach to complexity was basin-centric rather than path-centric. We also
expanded the framework into non-autonomous machines with external drivers which led to Markov
chain formalism. We applied our theory to hybrid elementary cellular automata with noise. Case
studies showed that machines with high complexity are more susceptible to externalities, such as
mixing and noise.

Our framework of conceptualizing automata as computrons in diversity space opens up a series
of avenues for future research, including the study of robustness and complexity of various generating
graphs (e.g., hierarchical) or connector families (e.g., reversible, linear). We can also investigate
evolutionary dynamics of a computational machine by ‘growing” (attaching cells to an existing machine)
and ‘mutating’ (altering generating graph or the connectors) computrons.
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Abbreviations

The following abbreviations are used in this manuscript:

FSA finite-state automata
CA  cellular automata
DiD  diversity-induced distance

Appendix A. Proof of Lemmas

Lemma A1. For any finite-state automaton with 2N states there is an equivalent computron of N cells plus the
input cell.

Two machines M = [SM, 59, 2, T, TM, UM] and O = [S®, 50, X, T, T, U] are said to be equivalent
if there exists a one-to-one mapping between the states y : SM <+ S, and foralls € SM and o € %:

w(T(s,0)) = T(p(s), 0)

UM(s,0) = U2 (u(s), o) (AD

A generating graph G(V, E) is said to be fully connected if Vv;,v; € V,3e;; € E. A state of a
computron is the configuration of its cell states s© = [wow;..wn_1],w; € {0,1} with base indexing
defined as k(s?) = ©V° 61 2%, where N = |V;| is the number of vertices of the graph. following 3
propositions construct the proof for the Lemma.

Proposition Al. For any computron Q) with an arbitrary generating graph G there exists an equivalent
computron QY with a fully connected generating graph G* with same number of vertices.

We pair up cells of ) and Q* as v; <+ v} and we use base indexing to enumerate configurations s

and s©". This establishes the one-to-one mapping between the two configuration spaces p : S@ «+ S,
Then we construct the connectors [C*] of O* as follows: Let d; = [vj...0; (i)] be the neighbors of cell v;,
and let (51,- be the rest of the cells (i.e., not-connected to v;.), then we set the loop-up tables of connectors
C; for each cell as follows:

Cr ([0, 8], ) = Ci([6), ) (A2)

With output maps also set identical, U* (s, ) = U(s, ), then the implied Transition Maps T(s)
and T (s) satisfy Equation (A1). Therefore, Q = Q*.

Proposition A2. There is one-to-one correspondence between finite-state automata M of 2N states with binary
input and fully connected computrons 3" with N + 1 cells, including the input cell.

Let Un+ denote set of all fully connected computrons with N + 1 cells (including the input cell).
Uq:| = (2N)@ x (2M)@Y) (A3)

Each cell of (Y* (other than the special input cell) has N + 1 inputs from other cells and itself (fully
connected) with 2N*1 input configurations. With each input configuration having a binary output set
by the connector, the number of different connector types are 22" Each cell, other than the input
cell, can have any of the connector types (input cell has a unique connector that solely acts as interface
to external input). Therefore, total number of different computrons with fully connected generating
graphis (22" )N = (2N) (%) x (2N)(@"),

Let M be a finite-state automaton with 2N states, and let Uy, denote set of all such machines. Since
each state can go to any state based on the binary external input, we have:
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[Upm| = (2N)@) x (2M) @)

(Ad)
= |Uq|

Base indexing provides the one-to-one map between the configurations of ()* and (excluding
the input cell) and the states of M. From Proposition A1, for each computron there is an equivalent
fully connected computron. From A2, there is a one-to-one mapping between finite-state automata of
2N states with binary input and a fully connected computron of N + 1 cells, including the input cell.
Therefore, for any finite-state automata there exists an equivalent computron.

Lemma A2 (Diversity measure). Diversity is a sub-additive measure on Q.

Monotonicity:
ACB = [|Allw < ||Bllw (A5)

Let A = {a,b,c}, B = {a,b,c,x} with corresponding weights {wZ}, w{!, wl} and {w?, wf, w8, wk},
respectively, satisfying subset definition given in Equation (17). Let A* = [bac] be the optimal ordering
of A-tuple that maximizes sup ; | A||w, and construct B* = [bacx].

||ff*|| = w;‘l+ wfpab-Fwéchcha

. (A6)
| B*|| = w§+ w;lfpab-waPchca-F wgpxbpxapxc
Therefore, [| Al = || A*[|lw < [|B*||w < supj | Bllw = |Bl|0
Sub-additivity:
”AOOAle < ||A0||w + ||A1Hw (A7)

Let A = {a,x}, B = {b,x} and C = AUB = {a,b,x} with corresponding weights {wZ, wf},
{wf, wP}, and {wf, wf, wf + wh}, respectively. Let C* = [bxa] be the optimal ordering of C-tuple
that maximizes supz ||C|lw. Construct A* = [xa] and B* = [bx] as lifting from C* with same ordering
within. Then:

1€l = (wg) + (wf +wf)pxp + (wW])PavPax

1A | = +(wy) + (W7 pax
1B* [l = (w0}) + ()P

Since p € 0,1, [|Cllw = IC* |l < [|A* [l + | B*[|w < | Allw + | Bllo-

Lemma A3 (Diversity-Induced Distance). ‘DiD’ defined as ¢(A, B) = HA‘%TH“’ is a metric of Q*

Let A,B,C € Q* and diversity-induced distance ¢(A, B) = HA@I‘S”w, then from definitions

¢(A,A) =0,and ¢(A,B) = ¢(B, A) > 0. We need to show the triangle-inequality property to establish
DiD as a metric: ¢(A, B) < ¢(A, C) + ¢(C, B). First, we will show that AAB C (AAC)U(CAB). Let
A={a,xy,p}, B={bxxp} and C = {c,y,z p} with corresponding weights:
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AAC CAB AAB (AAC)U(CAB)
oF oF Wy
Wp Wp Wp
wWe (OF We
wg! wy wi —w? (wf +wf)
wf —wg\ w}(/: wg\ |w§4 —w}(/:\ —|—wyC
wg wS — w?| w? wg + [wf — wf|
|w§—wl§ |w%—w§ \w;;‘ —w§| |w;‘—w%
g b

For each row, weight for AAB is less than or equal to the weight for (AAC)J(CAB). Therefore,
AAB C (AAC)U(CAB). Then the rest follows from Lemma A2:

AAB C (AAC)U(CAB)
|AAB|w < [(AAC)O(CAB) || (A8)

< JAAC|w + |ICAB|lw

Lemma A4 (Maximal entanglement). Let P = {By, By ... } be a partitioning of Q (i.e., U;B; = Q,and
B; N B; = @,i # j) with P = {Q}and P = {{xo},{x1},...},Vx; € Q, then:

1P| = ||| > ||P] (A9)

The proof is based on a combinatorics argument. Entanglement of P is calculated by shuffling all
the elements of universe Q within a single set, whereas entanglement of P is calculated by shuffling
sets of all single elements, to find the supremum.

|P]| = sup D(P) = | Q| = supd(G)
B o

1P| = sup D(P) = [[{x;}| + [l {oj}{xi} ]| + -
P

(A10)
=d(x;) +d(xj|x;) + ...
=supd(Q)
Q
Therefore, |[P°|| = ||P*®||. For any other partition P, entanglement is calculated by shuffling

the set blocks of the partition together with shuffling the elements within each set block. Therefore,
its supremum is less than or equal to that of P® which seeks the supremum through all possible
orderings. As a simple case consider Q = {a,b,c}. Let P* = {{a,b,c}},P® = {{a},{b},{c}}, and
P! = {{a,b},{c}}
IP°] 1Pl 1P
sup,d(.) supgd(.) supcd(.)

A B C
abc abc abc
acb acb
bac bac bac
bca bca
cab cab cab

cba cba cba
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Therefore, | P°|| = ||P®|| > ||P||.

Lemma A5 (Basin partition). The set of all basins of an autonomous computron is a partition of its
configuration space, denoted as Py = {By, By, . .. }, with the corresponding attractors Ay = {/TO, A'l, b

A partition of Sis P = {By, By, ... }, where B; C S, U;B; = Sand B; N B; = @,i # j. So, we need
to show that each state belongs to some basin and no state belongs to more than one basin. Due to
finite-state nature of the computron this is trivial. Let P,(sg) = {so,s1,..5n} be the n-step forward
path of state sy. Since |S| < co,3k < |S| such that sp 1 € P(sp) and s;1q1 & P;(so), Vi < k. Denote
Skt1 = 54(q < k). Then, A= [Sq,S4+1---5¢] is an attractor of the computron, as per definition, and
so € B(A). Therefore, each state is an element of some basin.

Now we show that no state belongs to more than one basin. Assume s € B(A,) and s € B(A})
with A, = [Sq, - - - Sk,) and Ap = [Sqy - -8k, )- I kp < kg then Ji =k 3511 € P,'(SZ which means A, is
not an attractor as it violates attractor definition, and similarly if k, < k; then B; is not an attractor.
Therefore k, = k, and A, = A,.

Lemma A6 (Minimal complexity). Absorbing and idle computrons have the least complexity (nil) compared
to any other computron.
Yo =FYue=0<¥pm (A11)

Absorbing computron M? has a single fixed-point attractor which all states iterate into therefore
its basin partitioning is P 0 = {S} = P, and idle computron M® each state is mapped to itself,
therefore its basin partitioning is Py~ = {{so}, {s1} ...} = P*. Hence from definition of complexity,
W0 =Py =0< Py

Lemma A7 (Coloring). Let p,, pp two random initial distributions with non-zero entries for each state, and
let 7t, and 7y, be the corresponding steady-state distributions in an asynchronous computron. Define, the ‘gray
color’ of a state c(s) as:

Al2
0 else ( )

4@_{%@Vmw>vmm>>o

Two states will, almost always, have the same shade of gray if and only if they are elements of
same recurrent class, provided all classes of the computron are ‘distinguishable’; i.e., for two random
non-zero initial distributions, ¢(s) = c(q) > 0 <= s,q € C;, almost always.

Let Cyy = {C1,Cy, ..., Ck} be the recurrent classes of a computron, and 7ty = {7y, 772, ... 7k, }
the corresponding steady-state distributions of the class. Then:

K

K
o =Y xk(Pa) 7T 7o = Y Xk(Py) 7Tk (A13)
k=1 k=1

First we show, s, € C, = ¢(s) = ¢(g). By definition recurrent (see Terminology) classes are
non-overlapping. If s, g € Cy,, then:

(A14)

Therefore,

(5) = ma(s)/ my(s) = m = 7a(g)/ () = c(g) (Al5)

We define ‘distinguishable” as follows: Let I7Vx_>y = XoX1...X; be a walk state sy to state s,,. We define
the walk probability as p(W,Hy) = I—[if;g Py, - Let Wx%y denote set of all different walks from state
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sx to state s,. We define reach probability from sy to sy as py—y = Liew p(V_\'/xﬁy). We define reach
probability from a state s, to an attractor A as py_,4 = Zsye A Px—y, where the walk from s, € A there
does not have any other element of A. Two recurrent classes A and B are said to be ‘equidistant” with
respect to state sy, if py_,4 = px—p. Two recurrent classes A and B are said to be not ‘distinguishable” if
they are equidistant with respect to all states in S. Define the |S| x |C| matrix P as follows:

pO*)C] pO*}CZ e pO%CK
PC = |P1mc, P1sg --- Plock (A16)

If any two columns of P€ are equal then the corresponding recurrent classes are indistinguishable.
Let x(pa) = [x1(Pa) - - - Xk (Pa)], then:
x(pa) = paP© (A17)

Now, we show that almost always, for any two recurrent classes C;;, C;, that are ‘distinguishable’,
s € Cp,q € Cy => c(s) # c(q). Assume the contrary:

. Xm(Pa) _ Xn(Pa)
() =cld) = 5 on) ~ xnlps)
pa-PC[m] _ py, P[]
pa.PC[n]  py.PC[n]

(A18)

The set of distinct initial distributions pairs pg, p that are solution to Equation (A18) represent a
plane in /S| which may or may not be a probability distribution. The ratio of size of this set to size of
o(s|-1)

o(s))

all possible initial distribution pairs is
almost always.

~ 0, hence contrary assumption leads to contradiction

Lemma A8 (Ergodic bases). Recurrent classes form a non-overlapping spanning set (basis) for the impact
sets of all states. Let Cpy = {Cq,Ca,...,Cx} be the set of recurrent classes of a computron and x, =
{x1(s), x2(5), ... xx(s)} the ergodic decomposition of impulse response 7s:

xk(s) =) 7s(q) (A19)
7€Ck
then:
Zxk(s) =1, with x;(s) > 0,Vs € S (A20)
k
x(pa) = paP€

(A21)

xk(s) = pSPEIk] = PC[s][K] = pssc,
Y xk(s) =) pssc, =1 (A22)

k k

Lemma A9 (Fuzzy Partition). The set of all basins of attraction of a driven computron is a fuzzy partition of
its configuration space, denoted as Py = {B(C1), B(Cy), ..., B(Ck)}.

Basins of attraction for an asynchronous computron is a weighted-set B(Cy):

B(Cx) = {s : xk(s) > 0,wp(s) = xk(s)} (A23)
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A fuzzy partition of S is the set of weighted sets P = {Bj, B, ..Bx}, where U;B; = S, and

Y wgk(s) = 1,Vs € S. The proof follows directly from definition of basin, Equation (A23) and

Lemma (AS8).
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