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Abstract: In this paper, quantum discords in a special kind of states, i.e., Werner states by local quantum
operations and classical communication (LQCC) protocols (WLQCC states), are studied. Nineteen
parameters to quantify the quantum discords are reduced to four parameters in terms of properties of
Werner states and quantum discord. In the case of orthogonal projective measures, analytic expression of
quantum discords in WLQCC states is analytically worked out. Some properties of the quantum discord
in the WLQCC states are obtained, especially the variation relations between the quantum discords
and the parameters characterizing the WLQCC states. By virtue of numerical computations, quantum
discords in a Werner state before and after LQCC protocols are compared. It is found that quantum
discord in any WLQCC state cannot exceed that in the original Werner state.

Keywords: local quantum operations and classical communication (LQCC); Werner state under LQCC;
quantum discord; analytical expression of quantum discord
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1. Introduction

In quantum information processing, particularly in the theoretical and experimental investigation of
quantum correlations, the local quantum operations, and classical communication (LQCC) protocols play
an essential role. The importance of LQCC in quantum information processing has long been recognized,
playing a key role in teleportation [1], entanglement distillation [2,3], one-way [4] and distributed [5]
quantum computing, local cloning [6], quantum secret sharing [7,8], and beyond. While many important
results have been obtained concerning LQCC [9–17], it has, nonetheless, proven difficult to characterize in
simple terms.

Up to now, the form of quantum correlation related to LQCC operations is focused on quantum
entanglement. A distinct feature has been found that quantum entanglement cannot be increased through
the LQCC channel. It is well known that quantum correlations can be classified into two forms. One form
is quantum entanglement, another is quantum correlation different from quantum entanglement (QCDE).
The first kind of QCDE, namely quantum discord (QD), was first revealed by Ollivier and Zurek [18] in 2001.
Distinctly, it exists even in some separable states, where quantum entanglement does not emerge obviously.
This distinct feature attracted many researchers further investigations. Later, other kinds of QCDEs were
proposed [19–31] and their role in quantum information theory is standing out gradually. Moreover,
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the potential applications of these discovered QCDEs in quantum information processing are gradually
exploited, such as quantum computation [32,33], state merging [34], remote state preparation [35], assisted
state discrimination [36], quantum correlation swapping [37–39], etc. By far, it has been well admitted
that QCDE is another form of important quantum resources. Hence, it is interesting to study the behavior
of QCDEs in quantum states through LQCC operations. Particularly, similar to the case of quantum
entanglement, we wonder whether LQCC can increase QCDEs in quantum states or not.

In this paper, we will study the influences of LQCC on QD in a given quantum state. Considering
the difficulties in characterizing the LQCC operation and quantifying QD in a quantum state, we will
originally study a comparatively simple case. To be concrete, we will study whether QDs involved in
two-qubit Werner states can be increased by the single-state LQCC protocol or not. As for this specific topic,
our main motivations are fourfold: (1) study the QD in the concerned states through LQCC operations
quantitatively; (2) discover whether LQCC can increase QD or not similar to the quantum entanglement
case; (3) if yes or no, seek out the similarities and differences among them qualitatively; (4) try to expose
the quantitative features of QDs in the LQCC process. It is worth stressing that so far quantum discord in a
generic state is extremely difficult to evaluate. Because of the definition of discord requires the optimization
to be executed over all measurements on one subsystem. Until now, the explicit analytical results on QD
are known only for a few classes of quantum states [40–44].

The rest of this paper is outlined as follows. In Section 2, WLQCC states are originally introduced
and pointedly simplified. In Section 3, the analytical expression of QD in the WLQCC states is derived.
In Section 4, some analyses and discussions about the QDs are made and some distinct features are
revealed. Finally, a concise summary is given in Section 5.

2. WLQCC State

Usually, a two-qubit Werner state is written as [45]

ρW
ab =

1− F
3

I+ 4F− 1
3
|Ψ−〉〈Ψ−|, (1)

where I denotes the 4× 4 identity matrix and |Ψ−〉 = (|01〉 − |10〉)/
√

2 is the singlet state. The Werner
state ρW

ab is characterized by a single real parameter F called fidelity with 1/4 ≤ F ≤. The single-state
LQCC protocol maps a Werner state ρW

ab to WLQCC state $ab in the form of [46]

$ab =
A⊗ BρW

ab A† ⊗ B†

Tr(A⊗ BρW
ab A† ⊗ B†)

, (2)

where A and B are operators act on subsystems a and b, respectively. The success probability of this
protocol is Tr(A⊗ BρW

ab A† ⊗ B†). The only restrictions for operators A and B are A† A ≤ I2 and B†B ≤ I2.
They can be written as A = Ua faU′a and B = Vb fbV′b , where Ua, U′a, Vb and V′b are arbitrary unitary

operators, fa and fb are filtering operators taking the forms of fa = ∑1
i=0 αi

a|i〉〈i| and fb = ∑1
j=0 α

j
b|j〉〈j|,

respectively. Considering physical realizations of filtering operators fa and fb, their eigenvalues must be
between zero and one, i.e., 0 ≤ αi

a, α
j
b ≤ 1. Thus any nontrivial LQCC (i.e., any LQCC which is not the zero

map) for two-qubit states can be written in the form of [46]

A⊗ B = γUa f ′aU′a ⊗Vb f ′bV′b , (3)
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where γ is a scale factor in the range 0 < γ ≤ 1, f ′a =
( 1 0

0 αa

)
and f ′b =

(
1 0
0 αb

)
with 0 ≤ αa, αb ≤ 1. Actually,

the scale factor γ can be ignored for that it will vanish in the normalizing process. In spite of the trivial
parameter γ, there are still nineteen parameters required to determine a WLQCC state.

According to [47], there exists an equivalence relation V′bρW
abV′†b = VT

a ρW
abV∗a by virtue of the inherent

permutation symmetry of two-qubit Werner states ρW
ab . Making use of this property, one can further

reexpress the state $ab as

$ab =
UaVbρk

abV†
b U†

a

Tr(UaVbρk
abV†

b U†
a )

= UaVb$k
abV†

b U†
a , (4)

where

$k
ab = f ′aWa ⊗ f ′bρW

abW†
a f ′a ⊗ f ′b (5)

with Wa = U′aV′Ta . Obviously, Wa can be seen as an arbitrary unitary operator on subsystem a in the

matrix form of
( √

ζei(θ+µ) √
1−ζeiν

−
√

1−ζei(θ−ν) √ζe−iµ

)
, here ζ is in the range 0 ≤ ζ ≤ 1 and 0 ≤ µ, ν, θ ≤ 2π. After

substituting the matrix forms of ρW
ab , Wa, and W†

a into Equation (5), one can achieve the matrix form of $k
ab

in computational bases:

$k
ab

=
(4F− 1)

6


(1−ζ)+ 2(1−F)

(4F−1) −αb
√

ζ(1−ζ)e−i(µ−ν+θ) αa
√

ζ(1−ζ)ei(µ+ν) αaαb(1−ζ)ei(2ν−θ)

−αb
√

ζ(1−ζ)ei(µ−ν+θ) α2
bζ+ 2(1−F)

(4F−1) α2
b −αaαbζei(2µ+θ) −αaα2

b

√
ζ(1−ζ)ei(µ+ν)

αa
√

ζ(1−ζ)e−i(µ+ν) −αaαbζe−i(2µ+θ) α2
aζ+ 2(1−F)

(4F−1) α2
a α2

aαb
√

ζ(1−ζ)e−i(µ−ν+θ)

αaαb(1−ζ)e−i(2ν−θ) −αaα2
b

√
ζ(1−ζ)e−i(µ+ν) α2

aαb
√

ζ(1−ζ)ei(µ−ν+θ) α2
aα2

b(1−ζ)+ 2(1−F)
(4F−1) α2

aα2
b

 .

(6)

Furthermore, after the normalizing process, one can get

$k
ab =

ξab
Ω

, (7)

where ξab = 6$k
ab and

Ω = Trξab = 3(α2
a + α2

b) + (1− α2
a)(1− α2

b)[2(1− F) + (4F− 1)(1− ζ)]. (8)

Obviously, one can find that the number of parameters required to determine the state $k
ab is seven,

i.e., F, αa, αb, ζ, µ, ν, and θ.

3. Quantum Discord in the WLQCC State

Quantum discord (QD) is a kind of quantum correlation quantifier proposed in 2001 [18]. In terms of
definition, it is easy to prove that QD is invariant under local unitary operations on host qubits. Using this
property, according to Equation (4), one can get

Q($ab) = Q($k
ab), (9)

Hence, to calculate QD one can directly consider the kernel state $k
ab instead of the state $ab.
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QD is defined as the discrepancy between two kinds of mutual information expressions which are
identical in classical information theory. One kind of mutual information is generalized directly from
classical mutual information. It is defined as I(ρab) = S(ρa) + S(ρb)− S(ρab), where S(·) denotes the von
Neumann entropy and ρa(b) is a marginal state of ρab. This kind of mutual information is called quantum
mutual information, which is utilized to characterize and quantify the total correlation in state ρab. For a
WLQCC state $ab in Equation (7), its total correlation can be obtained as

I($k
ab) = S($k

a) + S($k
b)− S($k

ab)

= 2−
[(

1−
√

la
)

log2
(
1−

√
la
)
+
(
1 +

√
la
)

log2
(
1 +

√
la
)

+
(
1−

√
lb
)

log2
(
1−

√
lb
)
+
(
1 +

√
lb
)

log2
(
1 +

√
lb
)]

/2

+ log2 Ω− 1
Ω

4

∑
n=1

rn log2 rn, (10)

where

la(b) = 1−
[
(4F− 1)2α2

a(b) + 2(1− F)(2F + 1)(1 + α2
a(b))

2]4α2
b(a)

Ω2 , (11)


r1 =

[
Ω− 2s1 −

√
4s2 − (Ω3 − 4c1Ω + 8c2)/s1

]
/4,

r2 =
[
Ω + 2s1 −

√
4s2 + (Ω3 − 4c1Ω + 8c2)/s1

]
/4,

r3 = Ω/2− s1 − r1,
r4 = Ω− r1 − r2 − r3,

(12)

and 

s1 =
√

Ω2
/

4 +
{

s4/s3 + s3 − 2c1
}/

3,

s2 = Ω2/2−
{

s4/s3 + s3 + 4c1
}/

3,

s3 =
[
(s5 +

√
s2

5 − 4s3
4)/2

] 1
3 ,

s4 = c2
1 + 12c3 − 3c2Ω,

s5 = 27(c2
2 + Ω2c3) + c1(2c2

1 − 72c3 − 9c2Ω),

(13)


c1 = 2(1− F)(2F + 1)[(α2

a + α2
b)(α

2
aα2

b + 1) + 2α2
aα2

b],
c2 = 4(1− F)2α2

aα2
b
{

6F(1 + α2
a)(1 + α2

b)

−(4F− 1)[(1 + α2
aα2

b)(1− ζ) + (α2
a + α2

b)ζ]
}

,
c3 = 48F(1− F)3α4

aα4
b.

(14)

Actually, rks are the solutions of the quartic equation r4 −Ωr3 + c1r2 − c2r + c3 = 0 with r unknown.
Three special cases should be clarified here: (1) when F = 1, r1 = Ω and r2 = r3 = r4 = 0; (2) when
αa = 0 and αb = 0,r1 = Ω and r2 = r3 = r4 = 0; (3) when αa = 1 and αb = 1, Equation (11) is not suitable
anymore, and this case will be discussed in the analyses part of this paper. Easily, one can see that I($ab)

is a function of four parameters F, αa, αb and ζ.
Another kind of the mutual information is generalized from the classical analogy which is related to

conditional entropy. It is defined as the maximal classical correlation Ca(ρab) = S(ρb)−min{Êi
a} ∑i pi

aS(ρb|i)

by optimizing over all possible measurements on part a (or b). Here ρb|i = Tra(Êi
a ⊗ Ibρab)/Trab(Êi

a ⊗
Ibρab) is the state of part b conditioned on outcome i in part a with probability pi

a = Trab(Êi
a ⊗ Ibρab),
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where {Êi} represents the set of positive-operator-valued measure (POVM) elements such that ∑i Êi = I.
To get access to the maximal classical correlation, one must consider all possible POVM for optimization.
As a matter of fact, the optimization is quite difficult for a generic state. In this study, von Neumann
measurements are employed as an approximation. The measure element performed on subsystem a
(or b) of the state ρab can be generally expressed as Êi = Γ̂P̂iΓ̂†, i = 0, 1, where P̂i = |i〉〈i| is the
projector for the subsystem a (or b) along the computational bases |i〉 and Γ̂ ∈ SU(2) is a unitary operator.
Γ̂ =

√
τeiα|0〉〈0| +

√
1− τeiβ|0〉〈1| −

√
1− τe−iβ|1〉〈0| +

√
τe−iα|1〉〈1| with parameters τ in the range

0 ≤ τ ≤ 1 and 0 ≤ α, β ≤ π. Note that classical correlation is generally not a symmetric quantity, i.e.,
Ca(ρab) 6= Cb(ρab). Ca(ρab) is usually referred to as the “left” classical correlation, while Cb(ρab) the ’right’
classical correlation.

For our concerned state $k
ab, it’s “left” classical correlation is a function of nine parameters

F, αa, αb, ζ, µ, ν, τ, α, and β before optimizing processes:

Ca($
k
ab) = S($k

b)−min
{Êi

a}

1

∑
i=0

pi
aS($k

b|i)

= 1− 1
2
(1−

√
la) log2(1−

√
la)−

1
2
(1 +

√
la) log2(1 +

√
la)

− min
{τ,α,β}

1

∑
i=0

pi
a
[
1− 1

2
(1−

√
1− κi

a) log2(1−
√

1− κi
a)

−1
2
(1 +

√
1− κi

a) log2(1 +
√

1− κi
a)
]
. (15)

where

p0
a =

{
3[α2

bτ + α2
a(1− τ)] + (1− α2

b)[τ(1 + α2
a)− α2

a][2(1− F) + (4F− 1)(1− ζ)]

−2αa(4F− 1)(1− α2
b) cos(µ + ν− α− β)

√
ζτ(1− ζ)(1− τ)

}/
Ω,

p1
a = 1− p0

a,
κ0

a = 8α2
b(1− F)(2F + 1)[α2

a + τ(1− α2
a)]

2/(p0
aΩ)2,

κ1
a = 8α2

b(1− F)(2F + 1)[1− τ(1− α2
a)]

2/(p1
aΩ)2.

(16)

To get the value of “left” classical correlation for a given Werner derivative (F, αa, αb, ζ, µ, ν, and θ

are given), one has to work out the extreme points of ∑1
i=0 pi

aS($b|i) at first by solving the following three
partial derivative equations:

∂ ∑1
i=0 pi

aS($b|i)

∂τ
= 0,

∂ ∑1
i=0 pi

aS($b|i)

∂α
= 0,

∂ ∑1
i=0 pi

aS($b|i)

∂β
= 0. (17)

After inspecting the form of ∑1
i=0 pi

aS($b|i), we find that parameters α and β induced by measurement are
only present in p0

a in the form of cos(µ + ν− α− β). To simplify partial derivative procedures, we regard
the function cos(µ + ν− α− β) as a new parameter X in the scope of [−1, 1]. Thus the latter two equations
in Equation (14) are transformed into the following two judgments:

∂ ∑1
i=0 pi

aS($b|i)

∂X
= 0 or

∂X
∂α

=
∂X
∂β

= sin(µ + ν− α− β) = 0. (18)

Actually, it is still quite difficult to directly solve them. Fortunately, we find that the partial derivative
equations hold if τ = 0.5 and X = 0. This implies that the point (τ, X) = (0.5, 0) is an extreme point.
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Compare values of this extreme point with other special points, one easily finds that the former value
is smaller than the latter ones. This means that this extreme point is at least a local minimal point. We
conjecture that it is actually the global minimal point. To verify this conjecture, we have further investigated
this feature via numerical calculations and conclusively confirmed that it is exactly the global minimal
point. This global minimal point means that to achieve the “left” classical correlation for each state $ab, the
optimal set of measurement {Êi

a} is determined by parameters τ = 0.5 and α, β, where α, β are related to
µ, ν by the equation cos(µ + ν− α− β) = 0.

After substituting τ = 0.5 and X = 0 into Equation (12), we achieve the analytic expression for “left"
classical correlation in state $ab:

Ca($
k
ab) = −1

2
(1−

√
la) log2(1−

√
la)−

1
2
(1 +

√
la) log2(1 +

√
la)

+
1
2
(1− ∆a) log2(1− ∆a) +

1
2
(1 + ∆a) log2(1 + ∆a), (19)

where ∆a =
√

la + 4α2
aα2

b(4F− 1)2/Ω2.
Now let us turn to the “right” classical correlation of $ab, it is a function of F, αa, αb, ζ, µ, ν, and θ after

optimized on parameters τ, α, and β which induced by the set of measurement elements {Êi
b}:

Cb($
k
ab) = S($k

a)−min
{Êi

b}

1

∑
i=0

pi
bS($k

a|i)

= 1− 1
2
(1−

√
lb) log2(1−

√
lb)−

1
2
(1 +

√
lb) log2(1 +

√
lb)

− min
{τ,α,β}

1

∑
i=0

pi
b
[
1− 1

2
(1−

√
1− κi

b) log2(1−
√

1− κi
b)

−1
2
(1 +

√
1− κi

b) log2(1 +
√

1− κi
b)
]
, (20)

where

p0
b =

{
3[α2

aτ + α2
b(1− τ)] + (1− α2

a)[τ(1 + α2
b)− α2

b][2(1− F) + (4F− 1)(1− ζ)]

+2αb(4F− 1)(1− α2
a) cos(µ− ν + α + β + θ)

√
ζτ(1− ζ)(1− τ)

}/
Ω,

p1
b = 1− p0

b,
κ0

b = 8α2
a(1− F)(2F + 1)[α2

b + τ(1− α2
b)]

2/(p0
bΩ)2,

κ1
b = 8α2

a(1− F)(2F + 1)[1− τ(1− α2
b)]

2/(p1
bΩ)2.

(21)

To get the value of “right” classical correlation for a given Werner derivative, one has to work out the
extreme points at first by solving the following three partial derivative equations:

∂ ∑1
i=0 pi

bS($k
a|i)

∂τ
= 0,

∂ ∑1
i=0 pi

bS($k
a|i)

∂α
= 0,

∂ ∑1
i=0 pi

bS($k
a|i)

∂β
= 0 (22)

Similarly to the solution employed for the optimal procedure in dealing with “left" classical correlation,
we regard the function cos(µ− ν + α + β + θ) as a new parameter Y in the scope of [−1, 1]. Thus the latter
two equations in Equation (19) are transformed into the following two judgments:

∂ ∑1
i=0 pi

bS($k
a|i)

∂Y
= 0 or

∂Y
∂α

=
∂Y
∂β

= − sin(µ− ν + α + β + θ) = 0. (23)
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With the assistance of numerical calculations, we confirm that the point (τ, Y) = (0.5, 0) is the optimal
point for function ∑1

i=0 pi
bS($k

a|i) for every state $k
ab. The optimal set of measurement elements {Êi

b} is
determined by τ, α, and β, where τ = 0.5 and α, β are determined by the values of µ, ν, and θ.

After substituting values of τ = 0.5 and Y = 0 into Equation (17), we achieve the analytic expression
for “right” classical correlation in state $k

ab:

Cb($
k
ab) = −1

2
(1−

√
lb) log2(1−

√
lb)−

1
2
(1 +

√
lb) log2(1 +

√
lb)

+
1
2
(1− ∆b) log2(1− ∆b) +

1
2
(1 + ∆b) log2(1 + ∆b), (24)

where ∆b =
√

lb + 4α2
aα2

b(4F− 1)2/Ω2.

The quantum discord of $k
ab is defined as the discrepancy between the total correlation I($k

ab) and the
classical correlation Ca(b)($

k
ab), i.e., Da(b)($

k
ab) = I($

k
ab)− Ca(b)($

k
ab). With the analytic expression of “left”

and “right” classical correlations, we can achieve the analytical expression for “left” and “right” QD in
state $ab:

Qa(b)($
k
ab) = −1

2
(1−

√
la(b)) log2(1−

√
la(b))−

1
2
(1 +

√
la(b)) log2(1 +

√
la(b))

−1
2
(1− ∆a(b)) log2(1− ∆a(b))−

1
2
(1 + ∆a(b)) log2(1 + ∆a(b))

+2− log2 Ω +
1
Ω

4

∑
k=1

rk log2 rk. (25)

4. Analyses and Discussions

In the previous section, we have obtained the analytic expressions of the “left” and “right” QDs in the
WLQCC states. According to the analytical expression in Equation (25), in this section, we will make some
analyses and discussions on these obtained QDs.

Firstly we want to emphasize that, we have developed and used some skills to obtain the analytic
expressions of the QD, as is a distinct feature of our present study. In this paper, the concerned state is the
WLQCC state $ab (see in Equation (2)). Due to the complicated form of LQCC protocol, the number of
parameters needed to define the state $ab is great. The corresponding number of independent parameters
is 19. Hence, it is very difficult to consider the state $ab directly. Fortunately, after some analyses, we find
one can use some skills to degrade this difficulty. To be concrete, noticing that our main purpose in this
paper is to calculate the QD in the WLQCC state $ab. Moreover, $ab is related to $k

ab (see in Equation (5))
with local unitary transformations and QD is invariant under the transformations. Hence, in calculating
QD in $ab one can consider the kernel state $k

ab instead. The parameters needed in $k
ab is 7. Hence, the

quantity and complexity in calculating QD are reduced to a great extent. See Table 1.

Table 1. The number of parameters of Werner states by local quantum operations and classical
communication protocol (WLQCC) states, kernel states, and their quantum discord. N denotes the number
of parameters.

$ab (Equation (2)) $k
ab (Equation (7)) Q($ab) = Q($k

ab)

N 19 7 8



Entropy 2020, 22, 147 8 of 12

Furthermore, through complicated calculation and derivation, one can find that the final number of
the independent parameters defining QD in the concerned state $k

ab is 4. That is to say, the final analytical
expression obtained from the QD of the WLQCC states is only a function of 4 independent parameters,
i.e., F, αa, αb, and ζ. Using the above skills and derivations, the difficulty is evidently degraded and the
analytic expression is obtained.

The second, let us move to investigate the features in the obtained QD. According to the symmetry
of the ’left’ quantum discord and the “right” one, in the following, we will make some analyses about
the variation of the “left” quantum discord Da with F, αa, αb, and ζ. Through analyses, one can get the
following distinct features.

(i) Da is an increasing function of F for any given set of (αa, αb, ζ) and reaches its maxima at F = 1
(See Figure 1). This phenomenon can be understood as follows. Inspect the original Werner state in
Equation (1) and the WLQCC state in Equation (2). Originally, state ρW

ab consists of two terms, which are
mixed with the weights characterized by F. The former represented by I is the maximally mixed state with
no quantum correlation. The latter is the maximally entangled state. In this case, a bigger F corresponds to
a larger weight of the latter term and accordingly a larger quantum correlation is induced by the mixture
of the two terms. As for the WLQCC state $ab which are mapped from the original state ρW

ab , quantum
correlation in it still increases with the parameter F. This means that the WLQCC operation do not change
the dependency relation about QC with F. However, according to [40], one can find that for a given F the
quantity of QC in $ab is less than that in ρW

ab . This means that the nonzero set of (αa, αb, ζ) can decrease the
quantum discord for a given F. That is to say, the LQCC protocol cannot increase the quantum discord in
the Werner state ρW

ab .
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Figure 1. The variation of quantum discord Qa with F for αa = 0.3, αb = 0.6, and ζ = 0.8.

(ii) For given ζ ∈ [0, 0.5], F, and αb, Da monotonically increases with αa and reaches its maxima at
αa = 1 (See Figure 2). However, for given ζ ∈ [0.5, 1.0] , F, and αb, Da first increases then decreases with
αa, and the transition point is determined by the exact value of ζ. As for the case of αb, one can find that
the dependent relation of Da on αb for given ζ, F and αa is similar to that on αa. This feature is related
to the LQCC operation and its underlying physics can be explained as follows. The LQCC operation is
concerned with two parties, Alice and Bob, who each control one subsystem, and who are restricted to
carrying out local quantum operations and classical communication (i.e., LQCC). Specifically, the quantum
operations Alice and Bob are allowed to perform are local unitary transformations and local filtrations.
As analyzed in the second section in this paper, to calculate the quantum discord in the WLQCC state $ab
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in Equation (2), we have considered the kernel state $k
ab in Equation (5) instead. From Equation (5), one

can see that αa is the parameter characterizing the filtration operator f ′a, αb is the one for f ′b, and ζ is the
one for the unitary operator Wa.
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Figure 2. The variation of quantum discord Qa with αa or αb.

(iii) Through analysis, one can find that quantum discord Da is a monotonically increasing function
of ζ for given αa, αb, and F. See Figure 3 for example. ζ is the parameter used to characterize the
unitary operation Wa. In addition, according to the expression of quantum discords in WLQCC states, the
parameter ζ vanishes when αa = 1 or αb = 1. Especially, in the situation of αa = αb = 1, LQCC is turned
into local unitary operation, which does not change the quantum discords in Werner states. When αa = 0
or αb = 0, the total correlations of WLQCC states are zero. The special case αa = αb = 0 is meaningless for
the matrix form of WLQCC states is zero.

Finally, we want to stress that, although the result, i.e., LQCC cannot increase the QD (similar to
the behavior of quantum entanglement), has been obtained, it is still an open question whether this
conclusion is applicable for other states or in the framework of other QCDEs. In fact, it is easy to verify
that this conclusion is not general. In other words, for other general states and for other quantum
correlation measures, the property of LQCC cannot increase and the quantum correlation may not exist at
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all. Nonetheless, for other states with high inherent property of symmetry, such as the higher-dimensional
(qutrit) Werner states, we conjecture that the coincidence may remain. We will pay attention to it in the
near future.
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Figure 3. The variation of quantum discord Da with ζ for given F = 0.8, αa = 0.2, αb = 0.3.

5. Summary

To summarize, in this paper, we have derived the analytical expression of QDs in WLOCC states. With
the assistance of numerical computations, we find that the QD in a WLQCC state cannot exceed that of the
original Werner state. The research in [PRL 81, 3279] exhibits a similar result in the scenario of quantum
entanglement: QDs in two-qubit Werner states cannot be increased by single-state LQCC protocols.
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