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Abstract: Thermodynamics establishes a relation between the work that can be obtained in a
transformation of a physical system and its relative entropy with respect to the equilibrium state. It
also describes how the bits of an informational reservoir can be traded for work using Heat Engines.
Therefore, an indirect relation between the relative entropy and the informational bits is implied.
From a different perspective, we define procedures to store information about the state of a physical
system into a sequence of tagging qubits. Our labeling operations provide reversible ways of trading
the relative entropy gained from the observation of a physical system for adequately initialized
qubits, which are used to hold that information. After taking into account all the qubits involved,
we reproduce the relations mentioned above between relative entropies of physical systems and the
bits of information reservoirs. Some of them hold only under a restricted class of coding bases. The
reason for it is that quantum states do not necessarily commute. However, we prove that it is always
possible to find a basis (equivalent to the total angular momentum one) for which Thermodynamics
and our labeling system yield the same relation.

Keywords: information heat engines; quantum thermodynamics; quantum relative entropy

1. Introduction

The role of information in Thermodynamics [1,2] already has a long history. Arguably, it is best
exhibited in Information Heat Engines [3–22]. They are devices that cyclically extract energy from a
thermal reservoir and deliver it as mechanical work. They do so by increasing the entropy of a set of
bits from an information reservoir[1,23–30]. There are differences between classical bits and quantum
qubits [31–36], but they share the same maximum efficiency [37,38]. Appendix A describes a basic
model of an Information Heat Engine.

Physical systems in a state ρ out of thermal equilibrium also allow the production of work. It
turns out to be related to the relative entropy S(ρ||τ) := Tr {ρ log ρ− ρ log τ} with respect to the
equilibrium state τ, again an informational quantity (in this paper, log(x) always represents the binary
logarithm of x). Appendix B contains a short derivation of this result. Some recent reviews compile a
variety of properties and functional descriptions of relative entropy [39–42]. Probably, the most closely
connected to this paper is its interpretation as the average extra number of bits that are employed
when a code optimized for a given probabilistic distribution of words is used for some other. This
paper contributes a new procedure that also reveals a direct connection between the relative entropy
of physical systems and information reservoirs circumventing Thermodynamics. It focuses on the
quantum case, particularly when the relative entropy is defined for non-commuting density matrices.

The generation of work in Information Heat Engines always requires the transfer of thermal
energy from a heat reservoir and needs adequate steering of a Hamiltonian. In Szilard Engines
[14,43,44], they occur at the same time as the piston moves within the cylinder. In the one particle case,
every bit from an information reservoir enables the generation of kB(ln 2)T mechanical work. Other
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thermal machines, such as turbines, also imply tuning Hamiltonians and heat transfer. Combining
these devices, it is possible to produce work by increasing the entropy of informational qubits and
use it to build up the relative entropy of a physical system with respect to its thermal equilibrium
state. The net heat and work would vanish (see Figure 1). This consideration naturally motivates
the question of whether it would be possible to do the same transformation only with informational
manipulations, without any reference to Hamiltonians, temperatures or heat baths.

Out of Equillibrium

W = kBT (ln 2) BInformation Reservoirs

W = kBT (ln 2)S(ρ||τ)

IHE

Turbine

Heat Bath
T

Systems

Figure 1. According to Thermodynamics, work can be reversibly obtained from a heat bath by
consuming B bits of an information reservoir and also by decreasing its relative entropy S(ρ||τ) with
respect to the thermal state τ.

In order to simplify the quantification of the resources involved, we exclusively consider unitary
operations. In addition, we only allow observational interactions on the physical system. This restricts
the set of transformations to those defined by controlled unitary gates, in which the state of the
physical system remains in the controlling part. Basically, we compute the informational cost of labeling
a physical system by considering the number of pure |0〉 state tagging qubits at the input minus those
recovered at the output. In the following, we may use the terms “initialize” or “reset” to denote the
action of driving a tagging qubit to a |0〉 state.

The tagging operation implies using some coding procedure to correlate the quantum states of a
physical system and its label. Conversely, we also consider the process of deleting that correlation and
returning the tagging qubits to an information reservoir. We assume that the code has to be optimal
in the sense that it uses the least average amount of bits to identify the state of a physical system.
Averaging is defined with respect to an underlying probability distribution of states. For this reason,
we choose a Shannon coding technique; it is asymptotically optimal and provides a simple relation
between the lengths and the probabilities of the codewords. We consider two degrees of tagging. The
tight-labeling implies a reversible assignation of a label to every physical system. It is described in
Section 2. The loose-labeling implies tight-labeling a collection of physical systems followed by a random
shuffling. It is studied in Section 3. The discussion is presented in Section 4 and the conclusions in
Section 5. A simple example, using magnetic spins, is given in Appendix E, in order to illustrate some
of the ideas presented in the paper.

2. Tight Labeling

In this section, we present a method for writing a label, consisting of a set of qubits, with the
purpose of representing the quantum state of a physical system. We call it tight because each label is
assigned unambiguously to the state of the physical system that it is attached to.

We consider a sufficiently large set of identical physical systems that will be referred to as atoms.
For simplicity, a two-dimensional Hilbert space for them is assumed. The statistical distribution for
each atom is determined by its quantum state, which is known to be σ. The eigenstates of σ are denoted
by |↑〉 , |↓〉 and their eigenvalues are ordered as σ↓ ≤ σ↑. Atoms are grouped in clusters of a common
length N. Besides the atoms, we assume unlimited availability of tagging qubits in either a pure |0〉 or a
maximally mixed state (see Figure 2).
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Figure 2. Our labeling procedures assume the availability of tagging qubits in either a |0〉 or a maximally
mixed state, and physical systems, referred to as atoms. The labeling assigns a set of H tagging qubits
to a cluster of N atoms. The cost is defined as the number of tagging qubits in state |0〉 employed.

We consider a coding basis BC that diagonalizes σ⊗N . Its 2N vectors are denoted by |b1 . . . bN〉BC
,

where bi can be either 0 or 1.
The operations considered are:

1. Any unitary transformation on a system T of tagging qubits.
2. Unitary transformations on joint states of cluster C and a system T of K tagging qubits, U :

(C⊗ T)→ (C⊗ T) that are defined, using the BC basis for C and the computational basis BT for
T, by:

U f |b1 . . . bN〉BC
⊗ |t1 . . . tK〉 = |b1 . . . bN〉BC

⊗ |(t1 . . . tK)⊕ f (b1 . . . bN))〉BT
, (1)

where f (b1 . . . bN) is any function that transforms binary strings of N bits into strings of K bits.
They can be considered as just probing operations with respect to clusters. It is also easy to check
that U f = U†

f .

The cost of any operation will be tallied as the number of tagging qubits in a pure |0〉 state that are
input and not recovered at the output.

We further choose a binary Shannon lossless code for the b1 . . . bN sequences according to a
frequency given by the eigenvalue σb1 ...bN of σ⊗N that corresponds to |b1 . . . bN〉BC

. The procedure
defines a function c(b1 . . . bN) that assigns a binary codeword to every string b1 . . . bN . Let H be the
maximum length of all the codewords. We further define a label as an array of H tagging qubits. The
2H vectors of the label computational basis BL are denoted by |`1 . . . `H〉BL

, where `i can be either 0 or
1.

The coding procedure determines a unitary operator Uc that acts on every cluster–label pair (C, L).
It can be defined by specifying how the elements of the basis BC ⊗ BL transform; it is given by:

|b1 . . . bN〉Bc
⊗ |`1 . . . `H〉BL

→ |b1 . . . bN〉Bc
⊗ |c∗(b1 . . . bN)⊕ (`1 . . . `H)〉BL

, (2)

where c∗(b1, . . . , bN) represents the Shannon codeword c(b1, . . . , bN) supplemented with the necessary
trailing 0s to match a length H.

Labeling an N-atoms cluster C in state ρ means applying the unitary operator Uc to the cluster
and a label of H tagging qubits in a |0 . . . 0〉BL

state, as is depicted in Figure 3. When ρ is diagonal in
the BC basis, the operation is equivalent to the classical operation of coding according to the Shannon
method and storing the codeword in the label. The resulting state is a classical statistical mixture of
cluster–label pairs.
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Figure 3. (a) represents the coding procedure as a unitary operation Uc, controlled by the cluster C, on
the tagging qubits of the label L. If the tagging qubits are initially in a |0〉 state, they hold the coded
string for the cluster; (b) represents the inverse operation, which is equal to Uc, so that U2

c is the identity
transformation.

We define the width w(c(b1 . . . bN)) of the codeword c(b1 . . . bN) assigned to the ket |b1 . . . bN〉BC
as the number of bits in c(b1 . . . bN). Only the leading w(c(b1 . . . bN)) qubits of the label contain
information. The H − w(c(b1 . . . bN)) trailing qubits of L are superfluous and should be replaced by
others in a completely mixed state. For this purpose, we define a new unitary operation Utrimming by
which the trailing qubits are swapped with those of a new label D. In the labeling process, D contains
H maximally mixed qubits. The operation of Utrimming is depicted in Figure 4 and explained more
elaborately in Appendix C.
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Figure 4. Representation of the procedure employed for replacing the trailing qubits that need not be
used in the codeword by maximally mixed ones, as explained in Appendix C. It is split into two unitary
transformations. The first one, represented in (a), copies the first w(c(`)) qubits of L into L′ that enters
with all its tagging qubits in the |0〉 state. The remaining qubits are copied from the maximally mixed
qubits of D. The second transformation, represented in (b), resets the L label and the H − w(c(`′))
trailing qubits of D. The overall function is recovering H − w(c(`′)) qubits in state |0〉 and generate a
new label with maximally mixed trailing qubits.

In our setting, the width of the codeword is a quantum variable represented by the operator Ŵ,
which operates on the Hilbert space of the cluster. Its eigenvectors are those of the BC basis, and its
eigenvalues are the widths of their Shannon codewords. Its effect on the basis vectors is:
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|b1, . . . , bN〉Bc
→ w(c(b1, . . . , bN)) |b1, . . . , bN〉Bc

(3)

and also represents the cost of the labeling procedure. We further define the atomic width Ŵ1 as Ŵ/N.
For sufficiently large N, w(c(b1, . . . , bN))/N converges to − log σb1,...,bN /N. Accordingly,

Ŵ1 → −(log σ⊗N)/N. (4)

Thus, for sufficiently large N, the average atomic width W1(ρ) for a codeword in state ρ⊗N is given
by:

W1(ρ
⊗N) = − 1

N
Tr
{

ρ⊗N log σ⊗N
}
= − 1

N

(
S(ρ⊗N) + S(ρ⊗N ||σ⊗N)

)
, (5)

which, taking into account that S(ρ⊗N) = NS(ρ), S(ρ⊗N ||σ⊗N) = NS(ρ||σ), can be rewritten as

W1(ρ
⊗N) = S(ρ) + S(ρ||σ) (6)

and represents the atomic cost of labeling clusters in state ρ⊗N . It is straightforward to reverse the
process and check that an atomic yield of

Y1(ρ
⊗N) = S(ρ) + S(ρ||σ) (7)

is obtained.
A cluster in state ρ⊗N can be described as being in a probabilistic mixture of eigenstates of ρ⊗N .

Each of them defines a tight-label that allows for unambiguously identifying which eigenstate of ρ⊗N it
is attached to. The cost expressed by Equation (6) represents the average length of the codewords that
correspond to clusters drawn according to the distribution defined by ρ⊗N . The equivalent situation in
Thermodynamics corresponds to averaging the work that is necessary to produce pure state physical
systems (as spin systems in the example of Appendix E) out of equilibrium, following the distribution
given by ρ⊗N . However, there is a subtle difference from the case that we want to model in the next
section. In it, we still have clusters whose states are drawn from the distribution defined by ρ⊗N , but
we ignore the particular state of each cluster. To cope with this new situation, it would be sufficient to
overlook the precise label that is attached to each cluster, but keeping the distribution that corresponds
to ρ⊗N . This is implemented through a process of label shuffling for a collection of clusters in state
ρ⊗N . The procedure is described in Section 3.

3. Loose Labeling

The tagging procedure put forth in the previous section outputs maximally correlated cluster-label
pairs. In this section, we describe a procedure that reduces the correlation. To this end, the label
L assigned to cluster C will be the codeword of another cluster C′ that belongs to a collection F of
M clusters, all of them in state ρC = ρ⊗N . Therefore, the state of F is ρF = (ρ⊗N)⊗M = ρ⊗NM.
Figure 5 represents the process with unitary gates that acts on a collection of M labeled cluster pairs
w1 − c1, . . . , wM − cM, a random set of P tagging qubits p1, . . . , pP and an auxiliary label collection
v1, . . . , vM. The role played by p1, . . . , pP is to generate a random shuffling of the labels. The process is
analyzed in Appendix D, where it is shown that the average number R(F) of qubits in the p1, . . . , pP

array that exit in a |0〉 state verifies that, for large M, R(F)
M converges to SL, where SL is the entropy

associated with the probability distribution for the 2N possible labels of the 2N elements of the BC
basis.

Therefore, taking into account the cost of tight-labeling the F collection, given by Equation (5), the
one of loosely tagging the clusters of F is

W(L)(F) = M
(

S(ρ⊗N) + S(ρ⊗N ||σ⊗N)− SL

)
, (8)
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which leads to a value per atom:

W(L)
1 =

1
N

(
S(ρ⊗N)− SL + S(ρ⊗N ||σ⊗N)

)
. (9)

Next, we will find a suitable expression for SL. Each label c(b1 . . . bN) is assigned to a vector
|b1 . . . bN〉BC

of the BC basis. Its frequency is given by 〈b1 . . . bN | ρ⊗N |b1 . . . bN〉. The probabilities
for the set of codewords are the eigenvalues of the density matrix

E
(

ρ⊗N
)

BC
:= ∑

b1,...,bN

|b1 . . . bN〉 〈b1 . . . bN | ρ⊗N |b1 . . . bN〉 〈b1 . . . bN | . (10)

It is immediate to check that SL = S(E
(
ρ⊗N)

BC
). Thus, Equation (9) can be rewritten as

W(L)
1 =

1
N

(
S(ρ⊗N)− S(E

(
ρ⊗N

)
BC
) + S(ρ⊗N ||σ⊗N)

)
. (11)

Notice that E (·)BC
represents a CPTP (Completely Positive Trace Preserving) map, which is not a

unitary transformation. However, all the operations of our labeling system are unitary. The CPTP map
is used here just as a means to find a convenient expression for SL, not as a real operation on the state
of the clusters and labels.
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Figure 5. The figure describes the unitary process used to shuffle the labels w1, . . . , wM of a collection
F of M tight-labeled clusters, as is explained in Appendix D. Besides the labels, a set of P maximally
mixed qubits p1, . . . , pP and a set of M labels v1, . . . , vM, all in state |0 . . . 0〉BL

enter the first unitary
gate (a). It shuffles the labels w1, . . . , wM, according to the permutation indicated by the p1, . . . , pP

qubits and stores the result in the v1, . . . , vM labels. The second gate (b) resets the qubits that
signaled the permutation. The last gate resets the w1 . . . , wM labels by regenerating them from the
c1, . . . , cM clusters.

Next, we define a particular base BC for which Equation (11) will only retain the last term in the
N → ∞ limit.

Let X, Y, Z be the operators represented by the Pauli matrices in the |↑〉 , |↓〉 base, which
diagonalizes σ. In the Hilbert space of the i−th atom of a cluster, they are denoted by Xi, Yi, Zi.
For the whole cluster, we define:
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Sx :=
N

∑
i=1

Xi, Sy :=
N

∑
i=1

Yi, Sz :=
N

∑
i=1

Zi, S2 = S2
x + S2

y + S2
z . (12)

Let BM be the basis which diagonalizes Sz, S2 (the well-known momentum basis in Quantum Physics).
In the BM basis, any state ρ⊗N is a mixture of states ρ⊗N = ∑ riρi, where ρi is a state defined

within the i− th invariant subspace of S2. The entropy of this mixture is the sum of the entropy Sr

associated with the mixture and the weighted entropy of the different ρi:

S(ρ⊗N) = −∑
i

ri log ri + ∑
i

riS(ρi). (13)

The same decomposition can be applied to the E
(
ρ⊗N)

BM
state. Taking into account that ρ⊗N ,

S2 commute,

E
(

ρ⊗N
)

BM
= ∑

i
riE
(

ρ⊗N
i

)
BM

, (14)

so that using Equation (13) for S(E
(
ρ⊗N)

BM
), and substracting both entropies, we arrive at

S(ρ⊗N)− S(E
(

ρ⊗N
)

BM
) = ∑

i
ri

(
S(ρi)− S(E

(
ρ⊗N

i

)
BM

)
)

. (15)

The maximum entropy of a state ρi is log di, where di is the dimension of the i−th invariant subspace.
Its maximum value is N + 1. Therefore, the absolute value of the right half side of Equation (15) can
not be greater than log(N + 1). In the N → ∞ limit,

lim
N→∞

S(ρ⊗N)− S(E
(
ρ⊗N)

BM
)

N
= 0, (16)

so that, for sufficiently large N,

W(L)
1 = S(ρ||σ). (17)

4. Discussion

A well-known situation in Thermodynamics is the availability of a thermal reservoir of freely
available, non-interacting atoms in a Gibbs state, given by:

τ = Z−1(Ĥ, T) e
−

Ĥ
kB T , Z(Ĥ, T) = Tr

{
e
−

Ĥ
kB T

}
, (18)

where Ĥ is the Hamiltonian of each atom, T is the temperature and Z(Ĥ, T) represents the partition
function.

A cluster of atoms in another state ρ can be used to obtain work from the energy of the thermal
reservoir. The obtainable work per atom, as given in [41,45] and derived in Appendix B, is

Wρ→τ = kB(ln 2)T S(ρ||τ) (19)

and is usually collected by some physical means (mechanical, electromagnetic, etc.) which involves
coupling to thermal baths and mechanical or electromagnetic energy-storage systems. Remarkably, it
only depends on the relative entropy S(ρ||τ) that is connected to the physics through the dependence
of τ on the Hamiltonian Ĥ and the temperature T. The work obtained matches the heat transferred
from the thermal reservoir plus the decrease of the internal energy of the atom. After the process,
the state of the atom is τ. The reverse operation, driving a system initially in state τ to an out of
equilibrium state ρ demands the same amount of work to be supplied in the process.
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In this paper, we have come across the relative entropy from a very different approach. We have
chosen to employ a coding system that asymptotically minimizes the labeling cost for τ. Shannon
coding for state τ satisfies this requirement. In the process of labeling, we incur a cost that can be
evaluated after substitution of τ for σ in Equation (17), in the case of loose-labeling. It is equivalent
to the process of driving a system from state τ to state ρ, with the following observation: while in
the Thermodynamic operation the process of transforming requires work, in the labeling approach, it
needs qubits in the |0〉 state.

In a different Thermodynamic setting, we know that work can also be obtained from informational
qubits at Information Heat Engines in the presence of a heat bath. Typically, they enter in a known
pure state (say |0〉) and exit in a maximally mixed one. They need to be coupled to a physical system
that should be able to equilibrate with a thermal reservoir and couple to an external energy storage.
The work obtained per qubit is

WIHE = kB(ln 2)T. (20)

Accordingly, it is clear that the relative entropy of physical systems with respect to a thermal
state can be traded for bits of information reservoirs by means of engines and heat baths within a
Thermodynamic context.

We claim that, in this paper, we have described a way to do the same with purely informational
manipulations. Furthermore, the physical system is accessed for probing operations that reduce to
acting on the information qubits according to its state. Labeling is a particular kind of these processes.

However, the loose-labeling cost, given by Equation (11), depends on the labeling strategy through
the choice of the coding basis BC. The atomic cost does not converge to the relative entropy unless
S(ρ⊗N) converges to S(E

(
ρ⊗N)

BC
). This is trivial if ρ, σ commute, but, in a general quantum scenario,

it can not be assumed. Nonetheless, even in the non-commuting case, it is accomplished by using the
eigenbasis described in Section 3. For the general case, when another basis is chosen, S(ρ⊗N) does not
converge to S(E

(
ρ⊗N)

BC
) and the loose-labeling costs are lower than the quantum relative entropy.

This can be deduced by substracting both:

S(E
(

ρ⊗N
)

BC
)− S(ρ⊗N) = S(ρ⊗N ||σ⊗N)− S(E

(
ρ⊗N

)
BC
||σ⊗N), (21)

where we have taken into account that, because σ⊗N is diagonal in BC, then

Tr
{
E
(

ρ⊗N
)

BC
log σ⊗N

}
= Tr

{
ρ⊗N log σ⊗N

}
. (22)

Notice that σ⊗N = E
(
σ⊗N)

BC
, so that Equation (21) can be written as

S(E
(

ρ⊗N
)

BC
)− S(ρ⊗N) = S(ρ⊗N ||σ⊗N)− S(E

(
ρ⊗N

)
BC
||E
(

σ⊗N
)

BC
), (23)

which is always positive by the monotonicity of quantum relative entropy.
At any point, tracing out the label places the reduced state of the cluster back to σ. Therefore, we

interact with the cluster just to obtain or delete information about it. The parallel with the situation in
Thermodynamics is clear: bits from information reservoirs are traded for changing the relative entropy
of state ρ with respect to σ, τ. From this point of view, the most important aspect of a physical system
in a thermodynamical setting is knowing its state, so that it can be used to supply the corresponding
work. It is the state that fixes the process by which work is obtained.

The two types of labeling described exhibit different costs. It is quite obvious because the
loose-labeling implies shuffling. This leads to labels that are related not to a particular cluster, but to a
collection of them that share some particular state. It is natural that the work given by Equation (19) is
related to this cost because it assumes a process which is common to all of them. However, if we have
a tight-labeled collection of clusters, we can process each one in a different way, chosen according to
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its label. Then, each cluster would contribute a work given by the relative entropy of the pure state
|b1 . . . bN〉BC

identified according to the label. The average work value would be given by :

< W >= kB(ln 2)T
(

S(ρ) + S(ρ||τ)
)

, (24)

which corresponds to the cost of tight-labeling, given by Equation (6), irrespective of the particular
choice of the coding basis.

From another perspective, loose-labeling is essentially the process of disarranging the tight-labels
of a collection of M clusters. Let us first assume that σ, ρ commute. Asymptotically, as M → ∞,
the number of possible orders for the set of labels tends to M S(ρ), which is precisely the difference
between Equations (6) and (17). From a physical point of view, both expressions point to slightly
different situations. When a thermal engine is tuned to supply work from a physical system out of
equilibrium, its configuration depends on the state of the system. Each pure or mixed state requires
different settings. Let Wi be the work obtained from a system in a pure state |ri〉. Next, we consider
two cases:

(a) the pure state of each physical system is known, and the setting can be adjusted according to it.
Then, the average work obtained by processing a collection of physical systems is the weighted
average of all the Wi, each one contributing according to its corresponding eigenvalue ri in the
density matrix ρ⊗N = ∑ ri |ri〉 〈ri|. It is given by Equation (24).

(b) only the collective mixed state ρ⊗NM of the collection is known. Then, the engine is tuned with
a different set of parameters, and the average value of the extracted work is lower than in the
previous case. It is given in Equation (19).

Situations (a) and (b) correspond to the tight and loose-labeling techniques, respectively. Work is
immediately translated by information heat engines into reservoir bits. The conversion factor is given
in Equation (20). The difference in the average value of work in (a) and (b) translates exactly into
M S(ρ) bits. The same results can be extended to the case when σ, ρ do not commute, provided that
coding is defined in a suitable basis.

5. Conclusions

In this paper, we have described two ways to label physical systems grouped in clusters. In
both procedures, unitary transformations operate on a Hilbert space determined by the cluster and
additional informational qubits. In the tight-labeling method, the label identifies pure states of the
cluster, while, in the loose-labeling case, the label is chosen at random from a collection of clusters
that share the same mixed quantum state. The costs of both procedures have been deduced in the
asymptotic limit of infinite equal systems. The evaluation has been made counting the number of
informational qubits in the pure |0〉 state in the final and the initial situations. They are related to the
von Neumann and relative entropies S(ρ), S(ρ||σ), where ρ is the state of the physical systems and σ is
the state relative to which the labeling is optimized. In both processes, no manipulation of the physical
system is attempted. Its intervention only exhibits an observational character.

We have shown that the atomic cost of tight-labeling converges to the sum of the von Neumann
and relative entropies W1 = S(ρ) + S(ρ||σ). Remarkably, this result does not depend on the coding
basis. However, in the loose-labeling case, the atomic cost depends not only on ρ, σ, but also on the
coding basis. It is bounded by the relative entropy S(ρ||σ), to which it can converge when a right basis
is chosen, as explained in Section 3.

Assuming this choice of basis, we have shown that the costs of labeling, both in the tight and loose
versions, correspond to what thermodynamical processing predicts by combining the models of (a)
work extraction from physical systems out of equilibrium, and (b) information heat engines powered
by pure state qubits. Through writing and erasing labels, we have presented a procedure to trade
relative entropy for von Neumann entropy of the physical system just by informational manipulation.
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Appendix A Magnetic Spin Information Heat Engine

In order to illustrate the connection between information reservoirs and thermal machines that
is mentioned in the Introduction, this appendix describes a short version of a magnetic Quantum
Information Heat Engine [17]. Its input is a low entropy qubit Λ from an information reservoir, and
its output is twofold: the same qubit in a higher entropy state and electrical work is delivered to a
magnetic coil through an induced electromotive force. The energy stems from a thermal reservoir at
temperature T. The engine is reversible and can be employed to lower the entropy of qubits from an
information reservoir if some work is supplied.

Icoil

Γ

~B = kIcoilẑ~̂µ = µΓ ~̂σ

b

Λ

C
N
O
T

i) ii) iii)

Icoil
< µz >

C

λ = 0

λ = 1

Figure A1. On the left, the basics components of the magnetic quantum information engine. The
CNOT (Controlled NOT) gate is used to correlate the information Λ and the magnetic Γ qubits. The
evolution of the electric current Icoil is controlled by the state of Λ. The magnetic induction field ~B at Γ
that is generated by the coil is kIcoil ẑ. The right part of the figure contains a graph of the evolutions
od Icoil, 〈 µz 〉 (solid and dashed lines, respectively). The upper branches represent the case λ = 0,
whereas the lower branches take place when λ = 1, as described in Appendix A .

The physical system within the engine (see Figure A1) consists of an internal magnetic spin 1
2

particle Γ that sits in the magnetic field generated by a classical induction coil C. The z-component of
the magnetic moment of Γ is µΓσ̂z, where σz is the third Pauli matrix. The machine operates cyclically,
according to the following steps:

(i) The electric current in the coil Icoil is initially null. The qubit from the information reservoir
enters in a partially mixed state λ0 = q0 |0〉 〈0|+ (1− q0) |1〉 〈1|. The magnetic qubit is initially
in a maximally mixed state γ0 = 1

2
(
|↑〉 〈↑|+ |↓〉 〈↓|

)
. They undergo a CNOT (Controlled NOT)

operation, controlled by the magnetic qubit. The result is an entangled mixed state:

ργλ =
q0

2

(
|0 ↑〉 〈0 ↑|+ |1 ↓〉 〈1 ↓|

)
+

1− q0

2

(
|0 ↓〉 〈0 ↓|+ |1 ↑〉 〈1 ↑|

)
, (A1)

which defines two conditional states for the magnetic qubit Γ, each one corresponding to a state
of the informational qubit Λ.

{
λ = |0〉 〈0| − > γλ=0 = q0 |↑〉 〈↑|+ (1− q0) |↓〉 〈↓| ,
λ = |1〉 〈1| − > γλ=1 = q0 |↓〉 〈↓|+ (1− q0) |↑〉 〈↑| .

(A2)

(ii) In this stage, the magnetic qubit Γ is isolated from the thermal reservoir. The current in the
coil is raised to a value I(λ=0,1)

coil controlled by λ. It is determined by making γλ=0,1 equal to the
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Gibbs state for the corresponding value of the magnetic field ~BΓ = k Icoil ẑ, at Γ generated by the
current Icoil. The equation that fixes the two possible values of I(λ=0,1)

coil is

γλ=0,1 =
eµΓ k I(λ=0,1)

coil /kB T |↑〉 〈↑|+ e−µΓ k I(λ=0,1)
coil /kB T |↓〉 〈↓|

eµΓ k I(λ=0,1)
coil /kB T + e−µΓ k I(λ=0,1)

coil /kB T
, (A3)

which, together with Equation (A2), yields
I(λ=0)
coil = kB T

2µΓk ln q0
1−q0

,

I(λ=1)
coil = kB T

2µΓk ln 1−q0
q0

.

(A4)

(iii) The current is gradually turned down until it is completely switched off. The process occurs
slowly enough for assuming a thermal equilibrium state for Γ throughout this stage. Therefore,
the final states for Λ, Γ are maximally mixed. Only the Λ qubit exits in a different state than it
started in. The current and the Γ qubit are reset to their initial conditions.

Let ΦC−>C, ΦΓ−>C be the contributions to the magnetic flux through the coil from its own current
and the magnetic spin Γ, respectively. We further assume that the induction field ~BΓ generated by
the coil current Icoil at the position of Γ is kIcoil ẑ. By the reciprocity theorem [46], we can state that
ΦΓ−>C = k 〈 µz 〉 . The differential work on the coil can be evaluated by

dWcoil = −Icoild
(

ΦC−>C + ΦΓ−>C

)
= −IcoildΦC−>C − BΓ,zdµz, (A5)

which, in a cycle, integrates to

∮
dWcoil = −

=0︷ ︸︸ ︷∮
IcoildΦC−>C −

∮
BΓ,zd 〈 µz 〉 = k

∮
〈 µz 〉 dIcoil, (A6)

where

〈 µz 〉 = µΓTr {γσ̂z} = µΓ tanh
µΓkIcoil

kB T
. (A7)

The net energy supplied to the current source is

W(λ=0,1) = k
∮
〈 µz 〉 (λ=0,1)dIcoil = kI(γ=0,1)

coil 〈 µz 〉 ii) − kB T ln cosh
µΓkI(γ=0,1)

coil
kB T︸ ︷︷ ︸

− 1
2 ln(4q0(1−q0))

, (A8)

where 〈 µz 〉 (λ=0,1)
ii) is the value of 〈 µz 〉 (λ=0,1) throughout stage ii), which is easily evaluated to 〈 µz 〉 (λ=0)

ii) = µΓ(2q0 − 1),

〈 µz 〉 (λ=1)
ii) = µΓ(1− 2q0).

(A9)

Now, Equation (A8) can be rewritten as
W(λ=0) = kB T

2

(
(2q0 − 1) ln q0

1−q0
+ 2 ln 2 + ln q0 + ln(1− q0)

)
,

W(λ=1) = kB T
2

(
(1− 2q0) ln 1−q0

q0
+ 2 ln 2 + ln q0 + ln(1− q0)

)
,

(A10)

which, in both cases λ = 0, 1, yields the same result:
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W(λ=0,1) = kB(ln 2)T
(
1− S(λ0)

)
, (A11)

which represents the potential of the qubits in the information reservoir to produce work. If qubits in a
λ0 = |0〉 〈0| state are used, Equation (20) is obtained.

Appendix B Work Output from a System Out of Thermal Equilibrium

In this appendix, we derive the average work that can be obtained from a physical system in an
initial state ρi with Hamiltonian Ĥi when we reversibly drive the system to a thermal equilibrium
state ρf with Hamiltonian Ĥf, related through Equation (18). The conclusion has already been given
elsewhere [41], and we only present an alternative derivation that fits better with this paper. The
process is reversible so that the work obtained is the maximum that can be achieved. We split the
transformation into three steps (represented in Figure A2):

ρi, Ĥs

ρi, Ĥi ρr, Ĥi

ρf , Ĥf

W1
W2

W3

1.

2.

3.

Figure A2. Representation of the process described in Appendix B for the work extraction in a process
beginning with Hamiltonian Ĥi in state ρi and ending in Hamiltonian Ĥf and state ρf. Stages 2 and 3
are isothermal.

1. The Hamiltonian is changed from Ĥi to the operator Ĥs for which ρi is in thermal equilibrium at
temperature T. It is given by

Ĥs = −kB(ln 2)T (log ρi + log Zs) . (A12)

In this step, the Hamiltonian varies quickly, so that the state does not change. Considering that
there is no heat exchange in this step, the work obtained is

W1 = Tr
{

ρiĤi − ρiĤs
}

. (A13)

2. The Hamiltonian is slowly taken back to Ĥi, while thermal equilibrium is assured. Therefore, the
system is driven to the state ρr given by:

ρr = Z−1
i e

−
Ĥi

kB T . (A14)

The second principle of Thermodynamics implies that the work extracted is

W2 = kB(ln 2)T∆S− ∆U = kB(ln 2)T
(

S(ρr)− S(ρi)
)
−
(

U(ρr, Ĥi)−U(ρi, Ĥs)
)

, (A15)

where S(ρ) = −Tr {ρ log ρ} and U(ρ, Ĥ) = Tr
{

ρĤ
}

. Taking into account Equations (A12) and
(A14), W2 evaluates to
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W2 = kB(ln 2)T (log Zi − log Zs) , (A16)

which, together with W1, adds up to

W = W1 + W2 = kB(ln 2)T
(

Tr {ρi log ρi} − Tr {ρi log ρr}
)
= kB(ln 2)T S(ρi||ρr). (A17)

3. While keeping thermal equilibrium, the Hamiltonian is taken from Ĥi to Ĥf. The work is obtained
as in the previous step and yields:

W3 = kB(ln 2)T (log Zf − log Zi) . (A18)

The final count gives

W = W1 + W2 + W3 = kB(ln 2)T S(ρi||ρr) + kB(ln 2)T
(

log Z f − log Zi

)
. (A19)

The quantity F(Ĥ, T) := −kB(ln 2)T log Z(Ĥ, T) is known as the free energy for a physical system with
Hamiltonian Ĥ in equilibrium at temperature T. Equation (A19) can be rewritten as

W = kB(ln 2)T S(ρi||ρr) + F(Ĥi, T)− F(Ĥf, T). (A20)

In the context of this paper, we assume that Ĥi = Ĥf and the work that can be extracted from a system
out of equilibrium is directly related to the relative entropy

W = kB(ln 2)T S(ρi||ρ f ). (A21)

Appendix C Label Trimming

In this appendix, we describe the trimming operation depicted in Figure 4. The w(c(`)) leading
qubits of label L hold the codeword assigned to the cluster. The trailing qubits are in a |0〉 state. The
purpose of the operation is to replace them with worthless qubits in a maximally mixed state. It is split
into two unitary operations. The first one performs a transformation Utrimming,1 on three labels L, L′, D.
L′ enters the process with all its tagging qubits in a |0〉 state, while those of D are maximally mixed.
The operation is controlled by the qubits of L and copies its leading w(c(`)) qubits to L′. The remaining
H−w(c(`)) ones are copied from D. Now, L′ holds the desired label. The following operation, carried
out by the gate Utrimming,2, aims at resetting the L label and the trailing H − w(c(`)) qubits of D. It is
controlled by L′ where the codeword is now stored. Considering the whole operation, H − w(c(`))
valuable qubits are recovered in the process.

Appendix D Label Shuffling

In this appendix, we explain how the shuffling of labels depicted in Figure 5 can be implemented
by a unitary transformation. We have split the process into three operations, performed by the unitary
gates Ushuffling, Uwhich p and Udispose w. The first gate operates on three groups of tagging qubits: W, V
are collections of M labels and J is a collection of P qubits, where P is equal to M!. Initially, W contains
the labels generated for a group E of M clusters; all the tagging qubits in V are in a |0〉 state and all
the qubits in J are in a maximally mixed state. The gate writes in V the values in W according to
the p-th permutation of the labels w1, . . . , wM. The value of p is read from the random group J. The
unnecessary trailing qubits of each label are then trimmed according to the procedure described in
Appendix C.

The second gate, Uwhich p, identifies the p of the permutation from the values of W, V and resets
the qubits of J that host the value of p.
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The number of possible values for each label wi is 2N . Let Li be the i-th one and ni(F) the number
of labels in the collection F that are equal to Li. The number of permutations of the labels is

P(F) =
(

M
n1(F), . . . , n2N (F)

)
. (A22)

The leading R(F) := blog P(F)c qubits of p1, . . . , pP are reset to state |0〉 after the gate. For large M,
R(F)

M → SL, where SL is the entropy associated with the probability distribution for the 2N possible
labels of the 2N elements of the BC basis.

After the Uwhich p gate, W still holds the ordered collection of labels, while V holds a shuffled set.
The last operation performed by Udisposew, resets the ordered set by using the collection of clusters
c1, . . . , cM that generated them. The final state is a collection of reset labels at W, a shuffled set at V,
and a collection of |0〉 state qubits that correspond to the leading R(F) := blog P(F)cmembers of J.

Appendix E Example

In order to illustrate the contents of this paper, we next present a simple example. Let us assume
that the atoms are magnetic spin 1

2 systems in the presence of a Hamiltonian

Ĥ = −µB (|↑〉 〈↑| − |↓〉 〈↓|) , (A23)

which determines a Gibbs state

τ =
eµB/kB T |↑〉 〈↑|+ e−µB/kB T |↓〉 〈↓|

eµB/kB T + e−µB/kB T . (A24)

If we have a cluster of N spins in a pure state ρ↑ := |↑〉 〈↑|, we know, from Equation (A21), that we can
obtain an average work of

Wex = NkB(ln 2)TS(ρ↑ || τ) = NkB(ln 2)T log
(

1 + e−2µB/kB T
)

. (A25)

The same value is necessary for the reverse operation, whereby a system of N spins in state ρ↑ is
obtained from N systems in state τ, provided that work Wex is supplied.

The same work can be obtained at an Information Heat Engine if Wex/kB(ln 2)T bits from an
information reservoir are used. This consideration sets an exchange rate between spins and bits given
by S(ρ↑ || τ) bits per spin. We have described a particular model of Information Heat Engine that
employs magnetic spins in [47]. Work is extracted by exposing the spins to a sequence of interactions
with a suitable magnetic field in the presence of a heat bath at temperature T. The magnetic field is
chosen according to the state of the spin.

Tight-labeling a cluster C of N spins implies applying a Shannon coding procedure that assigns a
sequence L of tagging qubits to C. The coding procedure defined in Section 2 consists of two steps.
We have found that the best way to keep track of the costs is to employ unitary transformations.
They are defined by their action on the elements of a particular basis BC. We require τ to be diagonal
in BC. For N > 1, there are many possible choices of BC. Let p(b) be the eigenvalue of τ for the
element b of BC. Our coding procedure begins by assigning to b a sequence of tagging qubits. The
leading d− log p(b)e represents the Shannon code for b, while the trailing ones are |0〉 state qubits (see
Figure 3). The operation is defined in Equation (2). Then, the valuable trailing qubits are recovered by
the trimming procedure described in Appendix C and represented in Figure 4.

In Section 2, we prove that the tight-labeling of a cluster of N spins in state ρ↑, according to a
Shannon coding system optimized for a distribution of states given by τ, requires exactly S(ρ↑) +
S(ρ↑ || τ) = S(ρ↑ || τ) bits per spin in the N → ∞ limit. This is the same number of bits per spin
found for the Thermodynamic approach at the beginning of this section. However, we would like
to underline the different contexts in which they have been derived. They come as answers to the
following questions:
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1. How many bits from an information reservoir are needed to match the work that is required to
take a cluster of N spins out of thermal equilibrium?

2. How many bits are needed to label the state of a cluster of N spins using a coding system
optimized for a given distribution of states?

Note that, in the second context, there are no concepts like temperature, heat, work or Hamiltonian.
However, the coincidence of the answers to both questions could have been predicted after some
abstraction was made about the first situation. Considering the initial and final states of spins and
information reservoir bits, the net result is the obtention of some spins in a known state after employing
a number of bits from an information reservoir. In the labeling scenario, the same process has happened.
Before the operation, in both cases, picking a cluster at random implies a quantum state τ for it. At the
end, we can know that it is in state ρ↑.

For the reverse process, given the unitarity of the tight-labeling procedure, un-labeling a state
restores the |0〉 state of the label qubits. In the Thermodynamic scenario, processing a spin in state ρ↑,
produces an average amount of work that can be used to reset the given number of informational bits.
Again, in both contexts, we see the same initial and final situations.

Collections of spin clusters sampled from the same state can then undergo a loose-labeling
procedure by which their tight-labels are reassigned at random. In this particular example, defined by
a pure state ρ↑, all the labels are equal and no informational qubits are recovered. In fact, S(ρ↑) = 0,
so that the unitary costs of tight- and loose-labeling are the same and are given by the relative
entropy S(ρ↑||τ).

The most relevant result of the paper is that this situation holds even when the state to be labeled
does not commute with the state σ that describes the underlying distribution, provided that a particular
basis is chosen to define the coding procedure. In the example presented here, it is the basis BM that
diagonalizes the magnitude and the z component of the total spin of the cluster.

Let us consider a state |→〉 := 2−1/2(|↑〉+ |↓〉) and its density matrix ρ→ := |→〉 〈→|. Unlike ρ↑,
ρ→ does not commute with τ. It is impossible to find a basis that simultaneously diagonalizes ρ⊗N→ and
τ⊗N . Therefore, the tight-label assigned to |→〉⊗N must be a linear combination of the labels defined
for the elements of BC. In the B⊗M

C basis, the collection of M systems in the σ→ state is described by a
superposition of basis states. Some of them contain the same labels for the M clusters, but others do
not and thus may undergo a shuffling process that allows the recovery of some reset qubits. Its average
number per cluster is given by SL, as defined in Appendix D. However, if the BM basis is chosen, then
SL/N tends to 0 and the relative entropy is recovered as the unit cost, as explained in Section 3.

The same result extends to the case when the labels are shuffled in a collection of clusters at any
mixed state ρ, whether or not it commutes with σ, as described in Section 3.
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