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Abstract: In this paper, we study the collective effects which appear as a pair of quantum emitters is
positioned in close vicinity to a plasmonic nanoparticle. These effects include multipole–multipole
interaction and collective decay, the strengths and rates of which are modified by the presence of the
nanoparticle. As a result, entanglement is generated between the quantum emitters, which survives in
the stationary state. To evaluate these effects, we exploit the Green’s tensor-based quantization scheme
in the Markovian limit, taking into account the corrections from light–matter coupling channels
higher than the electric dipole. We find these higher-order channels to significantly influence the
collective rates and degree of entanglement, and in particular, to qualitatively influence their spatial
profiles. Our findings indicate that, apart from quantitatively modifying the results, the higher-order
interaction channels may introduce asymmetry into the spatial distribution of the collective response.

Keywords: quantum plasmonics; beyond dipole; entanglement

1. Introduction

When subject to resonant illumination, plasmonic nanoparticles are able to focus electromagnetic
fields to subwavelength volumes of space [1–3]. Such a tight field confinement is accompanied by a
corresponding local field intensity enhancement of up to three orders of magnitude [2]. In quantum
plasmonics [4], this effect is usually exploited to boost the interaction strengths between the locally
enhanced light and quantum emitters positioned in the hotspots near the nanoparticles. Typically,
these quantum emitters are molecules, quantum dots, or crystalline defects. The achieved interaction
strengths typically reach the THz regime [5,6], but can be of the order of electron volt [7], outperforming
even photonic crystal cavities [8].

These remarkable interaction strengths enable the fast addressing of quantum emitters with light:
even in the weak-coupling regime, a quantum transition can occur at timescales of picoseconds, while
stationary states are reached within nanoseconds [5,9]. This effect is typically studied in terms of
Purcell factors [10], which quantifies the enhancement of the spontaneous emission rate of quantum
emitters due to neighboring nanoparticles [11,12].

In this work, we adopt the quantum-optical perspective, according to which a spontaneous
emission is a result of a purely quantum origin, arising from a coupling of a quantum emitter to
a surrounding electromagnetic field in its vacuum state [13]. The enhancement of a spontaneous
emission, however, can be calculated through classical means, as the power enhancement of a source
represented by a classical electric dipole, magnetic dipole, or another type of source. The enhancement
is conveniently expressed in terms of electromagnetic Green’s tensor [14,15]. If multiple quantum
emitters are present in the close vicinity of a nanoparticle, they may all couple to the surrounding
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quantum vacuum. As a result, additional interesting phenomena arise. In particular, the quantum
vacuum surrounding the nanoparticle can serve as a carrier for interactions between the emitters [16];
plasmon-enhanced dipole–dipole coupling was studied in [17–19]. This result is derived from the
field elimination from the description either in a formalism based on adiabatic elimination of leaky
electromagnetic modes [20], or more rigorously, using the electromagnetic Green’s tensor-based field
quantization in dispersive media and the Markovian approximation [14,19,21–23].

The confinement to subwavelength spatial domains implies that the assumptions of the
paradigmatic electric-dipole approximation may break, and higher-order multipolar channels of
interaction between matter and light should be taken into account. This is because the electric-dipole
approximation is valid if the size-scale of the field modulations is significantly larger than the extent
of the quantum emitter, which may not be the case near plasmonic nanoparticles. The significance
of higher-order multipolar terms has been suggested [24–29] and verified experimentally [30–34].
Their impact is not only quantitative: the presence of several parallel interaction channels, for example
electric and magnetic dipolar or electric quadrupolar, unlocks the possibility of interference [35].
The appealing consequence of destructive interference is that it might lead to spontaneous emission
lifetimes enhanced with respect to the free-space values, corresponding to a perspective of linewidths
reduced below the “natural level”. In the context of realization of quantum information protocols, the
increased lifetime might enable quantum information storage in the quantum emitter’s excited state
for longer times, which might be realized in nanoscale platforms. These effects can be evaluated based
on the theory developed in [36].

Naturally, multiple emitters near a nanoparticle could be used to store not only a single excitation
per emitter encoding a single quantum bit, but also correlations in the form of quantum entanglement.
This effect has been studied before in the plasmonic context [18,20] within the electric-dipole
approximation, and has been suggested for the generation of squeezed light [37].

Here, we study how higher-order interaction terms might influence the collective properties
of a pair of emitters positioned near a spherical nanoparticle, which belongs to the most typical of
geometries investigated in theory and experiments. The studied scenario involves external illumination
with a plane wave drive, and the collective properties include the effective inter-emitter coupling,
decay rate, and degree of entanglement. We confirm the important impact of higher-order light–matter
interaction channels of both a quantitative and a qualitative character.

2. Results

In this section, we introduce the investigated system (Section 2.1) and briefly recapitulate on the
theory developed to a large extent in our previous work [36], though extended by the inclusion of
classical illumination and studies of entanglement of quantum emitters (Section 2.2). We perform a
study of the collective phenomena beyond the electric-dipole channel with an example in the third
part of Section 2.3.

2.1. System

The investigated system consists of a pair of two-level quantum emitters, with excited states |e〉j
and ground states |g〉j, where j ∈ {1, 2} gives the numbers of the emitter. The eigenstates are separated
by energy differences h̄ωj, where h̄ stands for the reduced Planck constant. Each quantum emitter is
described by the set of Pauli operators {σj = |g〉j〈e|j, σ†

j }. We introduce their extensions to the Hilbert
space of the pair of emitters Σ1 = σ1 ⊗ 11, Σ2 = 11⊗ σ2, where 11 is an identity operator in the Hilbert
space of a given quantum emitter. Our goal is to investigate the stationary entanglement of such a
pair of emitters located near a plasmonic nanoparticle whose exemplary geometry is described below.
In such a nanoscale setup, a realistic scenario to generate entanglement involves the illumination of the
system with an external laser beam. Then, the quantum emitters are coupled to the electromagnetic
field of the following electric Fourier components:
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E (r, ω) = ∑
X=C,V

Einc,X (r, ω) + Escat,X (r, ω) . (1)

The subscript “inc” stands for the incoming field, which is the illumination which combines a
weak laser beam approximated as a classical plane wave (subscript “C” for classical), Einc,C(r, ω) =

Edrive(r, ωdrive)δ(ω − ωdrive) + E?
drive(r, ωdrive)δ(ω + ωdrive), and the background of quantum

vacuum fluctuations
Einc,V (r, ω) = iµ0ω

∫
d3r′G0

(
r, r′, ω

)
jV
(
r′, ω

)
, (2)

where µ0 is the vacuum magnetic permeability and G0 (r, r′, ω) is the electromagnetic Green’s tensor
of a homogeneous medium connecting the source at a position r′ to the field at a position r.

The subscript “scat” in Equation (1) represents the field scattered at the nanoparticle given by

Escat,X (r, ω) = iµ0ω
∫

d3r′Gscat
(
r, r′, ω

)
jX
(
r′, ω

)
, (3)

where Gscat (r, r′, ω) is the electromagnetic Green’s tensor representing the scattered part of the
electromagnetic field. The source is a current density induced in the nanoparticle either by the
classical plane wave (jC (r′, ω)) or by the vacuum noise (jV (r′, ω)). Naturally, the electric part of the
field is accompanied by the magnetic one B (r, ω) = − i

ω∇× E (r, ω) , where i is the imaginary unit.
The magnetic field can be decomposed into the incoming and scattered, classical and vacuum-induced
components, accordingly.

In general, both the electric and the magnetic components of the field can be coupled to the
quantum emitters, i.e., to the electric dipole dj, magnetic dipole mj, electric quadrupole Qj, and
higher-order multipolar moments characterizing the quantum transition between the eigenstates.
These transition moments are expressed through the matrix elements of the corresponding operators
dj = 〈e|d̂j|g〉, and similarly for the other multipoles. In this work, we assume the emitters do not
support permanent multipolar moments. For more details on multipolar coupling, please see [33,36,38].
Since we work far from the ultrastrong coupling regime, we assume the rotating wave approximation
to hold, and apply it in the following interaction Hamiltonian taking into account the electric dipole,
magnetic dipole, and electric-quadrupole terms [38]:

Hint = −∑
j

{[
E−(rj) · dj + B−(rj) ·mj +∇E−(rj) : Qj

]
Σj + Σ†

j

[
d†

j · E+(rj) + m†
j · B+(rj) + Q†

j : ∇E+(rj)
]}

, (4)

where in the Schrödinger picture E−(r) =
∫ ∞

0 dωE(r, ω), E+(r) = [E−(r)]†, and E(r) = E−(r)+E+(r).
The fields are evaluated at the quantum emitters’ positions rj. In the expression above, the dot · denotes
a scalar product, ∇E is a dyadic product, and C : D = ∑ij CijDji is a double-dot product of tensors C
and D.

We would like to now discuss the roles played by different field components in the scenario
proposed in this work. Both components, the quantum vacuum and the classical drive, enter the
Hamiltonian above.

• The quantum vacuum is a background, playing the role of a carrier of the interactions of the
quantum emitters. In open systems like the one considered in this work, this part of the field
is tricky to keep track of, since it involves a continuum of optical modes. However, in this case,
the quantum vacuum surrounding the emitters can be treated as a reservoir shared between the
quantum emitters [16]. Then, it can be eliminated from the evolution equations of the system,
leading to an effective picture as given below. The effective picture is obtained in the Markovian
approximation, based on the assumption (which is well met in most practical cases) that at
considered timescales, the light–matter coupling introduces only a small perturbation to the free
dynamics of the field and of the emitter (for rigorous derivations and detailed discussions please
see [23,36]). Under the Markovian approximation, one arrives at an effective form of equations
describing the evolution of the emitters alone, in which contributions from Lamb shifts δj and
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spontaneous emission rates can be distinguished for individual emitters, and additionally, direct
multipole–multipole interactions and collective decay effects arise between multiple emitters.
These effects already arise in free space, but can be significantly enhanced and modified in the
presence of plasmonic nanoparticles tailoring the properties of the quantum vacuum, quantified
with the Green’s tensor. Please note that the coupling effect holds even if the frequencies of the
emitters are not identical, as long as their difference |ω1 −ω2| is much smaller than the width of
the plasmonic resonance;

• The classical drive is the source of energy in the setup and therefore is necessary to enable
stationary entanglement generation. The energy it provides trades off various decay channels
described below. Without the drive, the stationary state of the system would be the ground state,
which is separable.

2.2. Hamiltonian and Liouvillan

As described in detail in [36], under the Markovian approximation, Equation (4) reduces to the
following form of the full Hamiltonian, given here in a frame rotating with the frequency of the driving
field ωdrive:

H/h̄ = ∑
j=1,2

(
δωjΣ†

j Σj + ΩjΣ†
j + Ω?

j Σj

)
+ ξΣ†

2Σ1 + ξ?Σ1Σ†
2. (5)

Here, δωj = ωj + δj −ωdrive is the detuning of the drive from the transition frequency of the jth
system corrected by the effective Lamb shift. It corresponds to an effective energy shift of the jth
emitter. The effective coupling strengths with the classical field are

h̄Ωj = −EC(rj, ωdrive) · dj − BC(rj, ωdrive) ·mj −
[
∇EC(rj, ωdrive)

]
: Qj. (6)

They describe interactions with the classical part of the field consisting of the illuminating
plane wave and the part scattered at the nanoparticle EC(r) =

∫ ∞
0 dω [Einc,C(r, ω) + Escat,C(r, ω)] and

similarly for the magnetic field.
The final contribution to the Hamiltonian describes the first among the collective effects, i.e., the

multipole–multipole interaction of strength ξ. This quantity arises from the presence of the quantum
vacuum and is essential for the purpose of entanglement generation since it is the very source of
nonclassical correlations of the two emitters. We consider the coupling strength in the form extended
with respect to the well-known one corresponding to the electric-dipole approximation (see [17,19] for
a result in the electric-dipole approximation and [36] for extensions).

ξ = πω̄2 ∑
mn

[
Rmn (ω̄)Re Gmn

(
r′, r, ω̄

)
|r=r1 ,
r′=r2

+ Imn (ω̄) Im Gmn
(
r′, r, ω̄

)
|r=r1 ,
r′=r2

]
, (7)

where ω̄ = 1
2 (ω1 + ω2) and Rmn, Imn correspond to the real and imaginary parts of a differential

operator acting on the elements of the full Green’s tensor Gmn = (G0 + Gscat)mn,

Rmn(ω) =
µ0

πh̄
Re
[

Dr′
j,m

†
(ω) Dr

j,n (ω)

]
, Imn(ω) =

µ0

πh̄
Im
[

Dr′
j,m

†
(ω) Dr

j,n (ω)

]
, (8)

with components of the differential operator

Dr
j,n (ω) = dj,n + ∑

k

(
Qj,nk +

i
ω ∑

p
εpknmj,p

)
∂

∂rk
, (9)

and with n, k, p ∈ {x, y, z}. Here, dj,n stands for the nth spatial component of the transition dipole
moment element of the jth quantum emitter, and similarly for the other multipoles. From the structure
of Equations (7) and (9), it is clear that the interaction will contain two sorts of terms, i.e., of “pure”
and “mixed” origin. To explain their meaning, we consider each quantum emitter as a complicated
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source combining the electric-dipole, magnetic-dipole, and electric-quadrupole components. Each of
these multipolar components is a source of electric and magnetic fields, which are scattered at the
nanoparticle. As the other emitter interacts with these scattered fields, we can distinguish

• “Pure” coupling channels, in which the electric-dipole moment of the emitter j interacts with the
electric field originating from the electric-dipole moment of the emitter j′, the magnetic-dipole
moment of the emitter j is coupled to the magnetic field generated by the magnetic-dipole moment
of the emitter j′, and the electric-quadrupole moment of the emitter j- to the modulations of the
electric field originating from the electric-quadrupole source corresponding to the emitter j′;

• “Mixed” coupling channels related to interference, for example, an electric-dipole moment of the
jth emitter coupled to the electric field generated by the magnetic dipole or electric-quadrupole
sources related to the emitter j′, etc.

The same sorts of channels will be distinguished in collective decay and will influence the degree
of entanglement.

Please note that in the electric-dipole approximation, the operator in Equation (9) reduces to an
element of the electric-dipole moment, and in free space, the expression for ξ reduces to the familiar

form h̄ξ = 1
4πε0

dj·dj′−3dj·r̂jj′ r̂jj′ ·dj′

r3
jj′

, where rjj′ is the distance between the emitters j and j′, while r̂jj′

indicates the direction of a vector connecting them. This form of dipole–dipole coupling has been
derived and applied in previous works focusing on electric dipole–dipole interactions in free-space [16]
and their modifications near plasmonic nanostructures [17,19]. The same expression corresponds to
the Förster resonance energy transfer (FRET) potential [39,40] where a pair of emitters is considered,
one of them playing a role of a donor, the other, of an acceptor of a quantum of energy. This simple
form is obtained by inserting the free-space Green’s function in Equation (7). It may be modified
near plasmonic nanostructures influencing the form of the Green’s tensor, and as a result, modifying
the range of dipole–dipole interactions/FRET [41,42], or due to the broad character of plasmonic
resonances, its spectral characteristics. A particular example is related to plasmon—induced resonance
energy transfer, in which energy transfer is enabled to acceptors whose transition line is centered at a
frequency blue-shifted with respect to the donors [43].

Having mentioned the FRET, we need to explain how it could be possible to achieve a regime of
irreversible energy transfer if the Hamiltonian in Equation (7) is Hermitian and describes reversible
dynamics. Irreversibility arises naturally from introducing decoherence in the system. In FRET,
the decoherence rate dominates over the multipole–multipole coupling ξ by 6 orders of magnitude,
and is mostly related to nonradiative processes, e.g., collisions with molecules of a host medium [40].
In general, the shared photonic environment impacts the individual decay rates of the emitters through
the famous Purcell effect [10,12], and may induce the corresponding collective rates which describe the
sub- and superradiance phenomena in analogy to the Dicke model [16,19,44]. In most cases, decay and
decoherence suppress the degree of stationary entanglement unless the subradiant channel is active
through which highly entangled but weakly radiating states can be populated.

The individual rates are given by [36]

γjj =
2µ0

h̄
ω2

j ∑
mn

Dr′
m

† (
ωj
)

Dr
n
(
ωj
)

ImGmn
(
r′, r, ωj

)
|r=rj,
r′=rj

, (10)

and we account for the collective ones through the expression [36]

γjj′ = 2πω̄2 ∑
mn

Rmn (ω̄) Im Gmn
(
r′, r, ω̄

)
| r=rj,
r′=rj′

− Imn (ω̄)Re Gmn
(
r′, r, ω̄

)
| r=rj,
r′=rj′

 , (11)

with j′ 6= j. These rates enter the Liouville term that accounts for the non-Hamiltonian part of the
dynamics of the density matrix ρ of the pair of quantum emitters
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L(ρ) = ∑
j,j′=1,2

Dγjj′ (ρ, Σj, Σ†
j′), (12)

where

Dγ(ρ, A, B) = γ(AρB− 1
2

BAρ− 1
2

ρBA). (13)

With these tools at hand, one can evaluate the dynamics of the system through the
Gorini–Kossakowski–Sudarshan–Lindblad equation [45,46]. However, we are interested to find its
stationary solutions ρ which we deem more feasible for experimental investigations. For this purpose,
we solve the stationary form of the equation

− i [H, ρ] + L (ρ) = 0. (14)

Once the stationary density matrix is known, the degree of entanglement between the emitters
can be evaluated e.g., in terms of concurrence [47]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (15)

where λi stands for square roots of eigenvalues, in a descending order, of the matrix ρρ̃, and where
ρ̃ = (σy,1 ⊗ σy,2)ρ

?(σy,1 ⊗ σy,2). Here, σy,j = i(σj − σ†
j ).

2.3. Application

The following steps allow one to apply the theory introduced above to an arbitrary
reasonable geometry.

• The Green’s tensor G(r, r′, ω) corresponding to the particular geometry under study should be
found. Here, r = r′ = rj and ω = ωj for single-emitter effects, while r = rj, r′ = rj′ and ω = ω̄ for
collective effects, are respectively positions of the probe and the source as well as their frequencies.
For this purpose, we have used a freely-available MATLAB solver MNPBEM, as described in the
Materials and Methods section;

• Relevant derivatives of the Green’s tensor should be evaluated according to the orientations of
the multipolar moments (Equation (9)). The first derivatives correspond to the interference terms
involving the electric-dipole component, while the second derivatives are related to the magnetic
dipole and electric-quadrupole components. Description of higher-order components would
require a generalization of the method;

• To evaluate the degree of stationary entanglement in terms of concurrence, one needs to insert
the effective-Hamiltonian/Liouvillian parameters, calculated above, to Equation (14) for the
stationary density matrix. The concurrence can be found directly according to the recipe in
Equation (15). These derivatives scaled by the multipolar moments determine the emitter–emitter
interaction strengths and decay rates, according to Formulas (7), (10) and (11).

We now apply this procedure to an example system. To acquire a fair estimation of different
multipolar contributions to the degree of entanglement, we assume the dipole moments of each of the
emitters to have lengths of 1 atomic unit and the following orientations: dx = 1 a.u. ≈ 8.5× 10−30 Cm,
mz = 1 a.u ≈ 1.9× 10−23 JT−1, and similarly for the electric-quadrupole moment of the transition
Qxy = Qyx = 1 a.u ≈ 4.5× 10−40 Cm2.

The nanoparticle is a silver nanosphere of 10 nm radius supporting a broad plasmonic resonance
centered at a free-space wavelength of 360 nm, whose full-width at half maximum is of the order of
100 nm (not shown). The relative permittivity for silver at 360 nm is ε = −2.3020 + 0.26535 i [48],
the magnetic permeability is assumed to be equal to 1. As we show below, even for such a small
nanoparticle, whose optical response is dominated by the electric-dipolar term, the contributions
from higher multipoles to the interaction ξ, the decay rates γjj′ , and to the stationary concurrence
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C are considerable. The system is illuminated with a x-polarized plane wave of frequency ωdrive =

5.2× 1015 Hz resonant with the nanosphere optical response. This drive is assumed resonant with the
Lamb-shift-corrected transition frequency of Emitter 1 δω1 = 0 and slightly detuned from the other
emitter δω2 = 2 GHz. Please note that this offset corresponds well to possible implementations, in
which the Lamb shift correction depends on the emitter’s position with respect to the nanoparticle [23].
We fix the position of Emitter 1 at r1 = (−13, 0, 0) nm with respect to the coordinate frame’s origin at
the center of the sphere. We evaluate the resulting model parameters based on the electromagnetic
Green’s tensor as described in detail in the subsections above. The parameters are calculated in
dependence of position r2 of the other emitter that is swept across the xy plane. The value of the
coupling strength with the classical field for Emitter 1 is Ω1 = 1 GHz, while the couplings Ω2, ξ and
decay rates γjj′ are position dependent. Please note that the values of the coupling to the classical field
Ωj only influence our final result: the concurrence, but not the vacuum-induced collective parameters
ξ and γjj′ .

Before we continue to discuss the results, it is important to comment on the case of free space,
that is in the absence of the nanoparticle. In free space, the electric-dipole approximation works very
well and the light–matter interaction is dominated by the electric-dipole channel. In consequence,
the effective parameters, such as the spontaneous emission rate γjj due to the electric-dipole
channel, overcome their analogons due the magnetic dipole and electric-quadrupole channels,
respectively, by 5 and 6 orders of magnitude in the studied frequency range [36]. Similar scaling
applies to γjj′ and ξ. As we show below, this situation may be greatly modified near nanoparticles.

In Figure 1, we compare the resulting coupling strengths |ξ| achieved due to the electric-dipole
interaction channel (a), the magnetic-dipole channel (b), and the electric-quadrupole channel (c).
The maps show |ξ| as functions of the position r2. The navy-colored regions around the nanoparticle
correspond to the positions less than 2 nm apart from the sphere, at which distance our results may
not be reliable due to limitations of the software that was used to calculate the Green’s tensor [49] and
therefore are not shown. We find that all the interaction channels are enhanced, but most importantly,
their ratio with respect to the dominant channel is enhanced dramatically. The electric-dipole channel
dominates by up to 2 (4) orders of magnitude near the nanoparticle over the magnetic-dipole (electric
quadrupole) terms, as is evident from comparisons with Figure 1a–c. This means the relative strength of
the higher-order multipoles (i.e., beyond the electric dipole) is enhanced with respect to the free-space
case. Even more importantly, the impact of these channels is most visible through the interference
terms (Figure 1d–f): The electric–magnetic dipole interference in Figure 1d is the main term responsible
not only for the significant modulation of magnitude of the total coupling strength ξ with respect to
the value obtained from the isolated electric-dipole channel, but also for the asymmetry with respect to
the y = 0 plane. We demonstrate this in Figure 2a. There, we find domains where the total interaction
strength is robust with respect to positioning of Emitter 2 and modified by interference with the
magnetic dipole by ±8% for r2 below and above the nanosphere, as it is shown in Figure 2e, up to even
±20% for the two emitters located on the same side with respect to the nanoparticle (Figure 2c). If the
emitters are positioned on opposite sides, we find the influence of higher-order interaction channels to
be limited to a few percent. Please note, however, that even in the latter case, the increase is substantial
with respect to the free-space case. One can notice narrow spatial regions where the modulation may
exceed 50% (Figure 2c for y = −14.0 nm and y = 12.5 nm), but these extreme values are achieved
in strongly limited volumes and the required experimental accuracy to exploit them would be very
challenging to achieve.
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Figure 1. Coupling strengths |ξ| due to various light–matter interaction channels for Emitter 1 fixed at
position r1 = (−13, 0, 0) nm as a function of position r2 of Emitter 2. Orientation of emitters’ multipolar
moments described in the main text. (a). electric dipole–electric dipole coupling, (b). magnetic
dipole–magnetic dipole coupling, (c). electric quadrupole–electric quadrupole coupling, (d). electric
dipole–magnetic dipole coupling, (e). electric dipole–electric quadrupole coupling, (f). magnetic
dipole–electric quadrupole coupling.

We would like to elaborate on the antisymmetry of the result with respect to the y = 0 plane.
The physical origin of this effect lies in the interplay of electric- and magnetic-dipole moments of
the emitters. The interference term arises as a result of the coupling of the magnetic field induced
by the electric dipole corresponding to Emitter 1 and coupled to the magnetic dipole of Emitter 2,
as well as the electric field induced by the magnetic dipole of Emitter 1 and coupled to the electric
dipole of Emitter 2. The magnetic field induced by the electric dipole of Emitter 1 is dominated by
the part scattered at the nanoparticle, which one can imagine as coming from a dipole induced at
the nanoparticle. Naturally, the orientation of the magnetic field from such a dipole depends on the
position of Emitter 2 which probes it, and in particular has opposite signs in the lower and upper
halves of the xy plane.
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Figure 2. (a). Total coupling strength ξ compared to coupling strength ξED−ED from the electric-dipole
channel only. (b). Total emission rate γ12 compared to the emission rate γ12,ED−ED from the
electric-dipole channel only. (c,d). Cross-sections of a,b for a fixed x = −15 nm. (e,f). Cross-sections of
a,b for a fixed y = −15 nm.

Similar effects can be identified on maps of the collective decay rates γ12, whose absolute values
are shown in Figure 3. These rates are rather robust with respect to respective positioning of the
emitters: the rates due to the electric-dipole channel reach THz values in almost the entire simulation
domain, while those originating from the magnetic-dipole and electric-quadrupole channel are of the
order of tens of GHz and hundreds of MHz, respectively. All channels are enhanced for the emitters
located very close to each other, i.e., less than a few nanometers apart. Again, the interference between
the electric and the magnetic dipoles leads to a substantial modulation of the result (Figure 2d,f) by up
to relatively stable values of ±8% in the lower and the upper halves of the xy plane, respectively, and
even up to ±100% at specific spots (e.g., at x = −15 nm, y = 6.5 nm).

Both the multipole–multipole interaction carried by the photonic environment surrounding
the nanostructure, and the collective decay rates induced by its presence, give rise to entanglement
between the emitters, considerable even in the steady state. The degree of stationary entanglement
of the emitters is shown in Figure 4 in terms of stationary concurrence C again in the function of
the position of Emitter 2. Once more, the achieved values are robust against shifts in the emitter



Entropy 2020, 22, 135 10 of 15

positioning: for almost all positions around the nanoparticle, C is close to its average value Cav = 0.095
(the averaging was performed over the investigated and reliable positions only and provides the
order of magnitude for the effect). The spatial profile of the concurrence arising as a result of the
interplay between all the investigated channels (Figure 4a) inherits the asymmetry that has been found
in the coupling strengths and decay rates. As clearly visible from Figure 4b, the origin lies in the
inclusion of higher-order interaction channels, in particular the interference between the electric- and
magnetic-dipole channels, which influence the spatial profile of the result and modify it quantitatively
by inducing the antisymmetry against the y = 0 plane.

Figure 3. As in Figure 1, but for collective emission rates |γ12|.

Figure 4. Concurrence due to all possible interaction channels (a) and the ratio of concurrence due to
all possible channels compared with the concurrence due to electric-dipole channel only (b).

To confirm the importance of the plasmonic resonance for the investigated effects, we repeat the
calculations of the interaction strengths ξ and collective decay rates γjj′ for a drive at free-space
wavelength of 350 nm, i.e., blue-shifted to a wing of the plasmonic resonance. The resulting
emitter–emitter interactions are not transferred by the nanoparticle to its opposite side as efficiently as
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in the resonant case (compare Figures 1 and 5). The weaker performance in the off-resonant case can
be explained by less efficient field confinement and enhancement, affecting both values of fields and
the derivatives, i.e., all considered interaction channels.

Figure 5. Coupling strengths |ξ| due to various light–matter interaction channels for an illumination
wavelength of 350 nm, i.e., detuned from the plasmonic resonance. Emitter 1 is fixed at position
r1 = (−13, 0, 0) nm, coupling strengths are plotted as a function of position r2 of Emitter 2.
(a). electric dipole–electric dipole coupling, (b). magnetic dipole– magnetic dipole coupling, (c). electric
quadrupole–electric quadrupole coupling, (d). electric dipole–magnetic dipole coupling, (e). electric
dipole–electric quadrupole coupling, (f). magnetic dipole–electric quadrupole coupling.

3. Discussion

Before we come to final conclusions, let us make several comments on the proposed scenario and
the acquired results.

The scheme described above to induce multipole–multipole coupling between the emitters and
eventually generate entanglement exploits a simple illumination scheme with a plane wave and
does not require experimentally challenging preparation of the initial state of the quantum emitters.
As demonstrated above, the resulting coupling strengths are rather stable across the simulation domain,
which means precise positioning of the emitters is not required. Regarding the orientation of the
multipolar moments of the emitters, a certain degree of control would however be beneficial. We have
focused our analysis on the orientations in which higher-order interaction channels give rise to spatial
asymmetry of the results. We deem this asymmetry to be a measure of the impact of these channels
feasible for detection in experimental scenarios. Other orientations lead to similar orders of magnitude
for enhancements, but may blur the asymmetry. As long as the dominant components of the transition
moments are oriented as assumed above, all the qualitative features of our results should be conserved
and significant.

Regarding the degree of entanglement, one could increase its stationary value through refined
engineering of the nanoparticle, as well as through the application of a stronger driving field, which
would help to overcome the decay rates. In the analysis above, we kept the drive moderate in order
not to break the Markovian approximation [20], which is at the heart of the applied model [23].

We analyzed and discussed the influence of light–matter interaction channels beyond the electric
dipole on collective phenomena that occur at the presence of a pair of quantum emitters near a silver
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plasmonic nanosphere. As a result, we found there to be significant influence on these quantities of the
interference term between the electric and the magnetic dipoles, which modifies the results obtained
within the typically applied electric-dipole approximation. This influence is of both a quantitative and
qualitative character. First of all, the interference term may modify the achieved interaction strengths
and decay rates by up to 8% in relatively stable spatial domains, and even by 100% at selected points.
Secondly, it induces asymmetry of spatial distributions of the investigated quantities. On the other
hand, our findings suggest that the influence of even higher-order terms would merely be a small
correction, negligible in the particular case of geometry discussed in this work.

In this article, we described methods that could be exploited to include the electric-dipole,
magnetic-dipole, and electric-quadrupole light–matter interaction channels in the analysis of
quantum-optical scenarios involving small numbers of quantum emitters near nanoparticles.
We confirmed the significance of terms beyond the electric-dipole approximation for
multipole–multipole coupling, collective decay, and the degree of entanglement of emitters at close
vicinity of a silver nanosphere. In the discussed example, we found the dominant correction to
originate from the magnetic dipole–electric dipole interference channel. Other geometries where the
electric-quadrupole channel may be enhanced were also proposed [50–53] and we expect them to
have an impact on the collective effects considered here. Finally, nanostructures made of dielectrics or
including dielectric components which support magnetic response at low absorption losses might be
used for similar purposes [54–58].

4. Materials and Methods

Detailed introduction to the Green’s tensor’s formalism for field quantization in dispersive
media can be found in [21]. Derivation of effective Hamiltonian parameters beyond the regime of
electric-dipole approximation is given in [36].

Calculations of electromagnetic Green’s tensor around the investigated nanostructure were
performed using the Metallic Nanoparticle Boundary Element Method (MNPBEM) toolbox for
Matlab [49]. According to the developers of MNPBEM, to assure reliable results, one should calculate
fields at a distance from the particle’s surface not smaller than the mean distance between the
collocation points of the surface discretization, which in our example is equal to approximately
1 nm. To evaluate the impact of higher-order channels, first and second derivatives of the field are
necessary. As a result, the reliable distance from the nanoparticle grows to 2 nm. Scripts are available
from the corresponding author upon reasonable request. They can be directly generalized to account
for other nanostructure geometries. Concurrence was calculated directly from formula (15) assuming
the Markovian approximation holds.
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