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Abstract: The growing interest in machine learning methods has raised the need for a careful study
of their application to the experimental single-particle tracking data. In this paper, we present the
differences in the classification of the fractional anomalous diffusion trajectories that arise from
the selection of the features used in random forest and gradient boosting algorithms. Comparing
two recently used sets of human-engineered attributes with a new one, which was tailor-made
for the problem, we show the importance of a thoughtful choice of the features and parameters.
We also analyse the influence of alterations of synthetic training data set on the classification
results. The trained classifiers are tested on real trajectories of G proteins and their receptors on a
plasma membrane.
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1. Introduction

Starting with the pioneering experiment performed by Perrin [1], the quantitative analysis
of microscopy images has become an important technique for various disciplines ranging from
physics to biology. Over the last century, it has evolved to what is now known as single-particle
tracking (SPT) [2–4]. In recent years, SPT has gained popularity in the biophysical community.
The method serves as a powerful tool to study the dynamics of a wide range of particles including small
fluorophores, single molecules, macromolecular complexes, viruses, organelles and microspheres [5,6].
Processes such as microtubule assembly and disassembly [7], cell migration [8], intracellular
transport [9,10] and virus trafficking [11] have been already successfully studied with this technique.

A typical SPT experiment results in a series of coordinates over time (also known as “trajectory”)
for every single particle, but it does not provide any directed insight into the dynamics of the
investigated process by itself. Mobility patterns of particles encoded in their trajectories have to
be extracted in order to relate individual trajectories to the behavior of the system at hand and the
associated biological process [12]. The analysis of SPT trajectories usually starts with the detection of a
corresponding motion type of a particle, because this information may already provide insights into
mechanical properties of the particle’s surrounding [13]. However, this initial task usually constitutes
a challenge due to the stochastic nature of the particles’ movement.

There are already several approaches to analyse the mobility patterns of particles. The most
commonly used one is based on the mean square displacement (MSD) of particles [10,14–17]. The idea
behind this method is quite simple: a MSD curve (i.e., an average square displacement as a function
of the time lag) is quantified from a single experimental trajectory and then fitted with a theoretical
expression [18]. A linear best fit indicates normal diffusion (Brownian motion) [19], which corresponds
to a particle moving freely in its environment. Such a particle neither interacts with other distant
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particles nor is hindered by any obstacles. If the fit is sublinear, the particle’s movement is referred
to as subdiffusion. It is appriopriate to represent particles moderated by viscoelastic properties of
the environment [20], particles which hit upon obstacles [21,22] or trapped particles [9,23]. Finally,
a superlinear MSD curve means superdiffusion, which relates to the motion of particles driven
by molecular motors. This type of motion is faster than the linear case and usually in a specific
direction [24].

Although popular in the SPT community, the MSD approach has several drawbacks. First of
all, experimental uncertainties introduce a great amount of noise into the data, making the fitting of
mathematical models challenging [10,14,25,26]. Moreover, the observed trajectories are often short,
limiting the MSD curves to just a few first time lags. In this case, distinguishing between different
theoretical models may not be feasible. To overcome these problems, several analytical methods that
improve or go beyond MSD have already been proposed. The optimal least-square fit method [10],
the trajectory spread in space measured with the radius of gyration [27], the van Hove displacements
distributions [28], self-similarity of trajectory using different powers of the displacement [29] or the
time-dependent directional persistence of trajectories [30] are examples of methods belonging to the
first category. They may be combined with the results of the pure MSD analysis to improve the outcome
of classification. The distribution of directional changes [31], the mean maximum excursion method [32]
and the fractionally integrated moving average (FIMA) framework [33] belong to the other class.
They allow efficient replacement of the MSD estimator for classification purposes. Hidden Markov
models (HMM) turned out to be quite useful in heterogeneity checking within single trajectories [34,35]
and in the detection of confinement [36]. Classification based on hypothesis testing, both relying on
MSD and going beyond this statistics, has been shown to be quite successful as well [26,37].

In the last few years, machine learning (ML) has started to be employed for the analysis of
single-particle tracking data. In contrast to standard algorithms, where the user is required to explicitly
define the rules of data processing, ML algorithms can learn those rules directly from series of data.
Thus, the principle of ML-based classification of trajectories is simple: an algorithm learns by adjusting
its behavior to a set of input data (trajectories) and corresponding desired outputs (real motion types,
called the ground truth). These input–output pairs constitute the training set. A classifier is nothing
but a mapping between the inputs and the outputs. Once trained, it may be used to predict the motion
type of a previously unseen sample.

The main factor limiting the deployment of ML to trajectory analysis is the availability of
high-quality training data. Since the data collected in the experiments is not really provable (otherwise,
we would not need any new classification method), synthetic sets generated with computer simulations
of different diffusion models are usually used for training.

Despite the data-related limitations, several attempts at ML-based analysis of SPT experiments
have been already carried out. The applicability of the Bayesian approach [18,38,39], random
forests [40–43], neural networks [44] and deep neural networks [41,45,46] was extensively studied.
The ultimate goal of those works was the determination of the diffusion modes. However, some of
them went beyond the pure classification and focused on extraction of quantitative information about
the trajectories (e.g., the anomalous exponent [42,45]).

In one of our previous papers, we compared two different ML approaches to classification [41].
Feature-based methods do not use raw trajectories as input for the classifiers. Instead, they require a set
of human-engineered features, which are then used to feed the algorithms. In contrast, deep learning
(DL) methods extract features directly from raw data without any effort from human experts. In this
case, the representation of data is constructed automatically and there is no need for complex data
preprocessing. Deep learning is currently treated as the state-of-the-art technology for automatic
data classification and slightly overshadows the feature-based methods. However, from our results,
it follows that the latter are still worth to consider. Compared to DL, they may arrive at similar
accuracies in much shorter training times, are usually easier to interpret, allow to work with trajectories
of different lengths in a natural way and often do not require any normalisation of data. The only
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drawback of those methods is that there is not a universal set of features that works well for trajectories
of any type. Choosing the features is challenging and may have an impact on the classification results.

In this paper, we would like to elaborate on the choice of proper features to represent trajectories.
Comparing classifiers trained on the same set of trajectories, but with slightly different features, we will
address some of the challenges of feature-based classification.

The paper is structured as follows. In Section 2, we briefly introduce the concept of anomalous
diffusion and present the stochastic models that we chose to model it. In Section 3, methods and data
sets used in this work are discussed. The results of classification are extensively analysed in Section 4.
In the last section, we summarise our findings.

2. Anomalous Diffusion and Its Stochastic Models

Non-Brownian movements that exhibit non-linear mean squared displacement can be described
by multiple models, depending on some specific properties of the corresponding trajectories. The most
popular models are the continuous-time random walk (CTRW) [9], random walks on percolating
clusters (RWPC) [47,48], fractional Brownian motion (FBM) [49–51], fractional Lévy α-stable motion
(FLSM) [52], fractional Langevin equation (FLE) [53] and autoregressive fractionally integrated moving
average (ARFIMA) [54].

In this paper, we follow the model choice described in [26,37,43]—namely, we use FBM,
the directed Brownian motion (DBM) [55] and Ornstein–Uhlenbeck (OU) processes [56]. With the
particular choice of the parameters, all these models simplify to the classical Brownian motion
(i.e., normal diffusion).

The FBM is the solution of the stochastic differential equation

dXi
t = σdBH,i

t , i = 1, 2, (1)

where σ > 0 is the scale coefficient, which relates to the diffusion coefficient D via σ =
√

2D, H ∈ (0, 1)
is the Hurst parameter and BH

t is a continuous-time, zero-mean Gaussian process starting at zero,
with the following covariance function

E
(

BH
t BH

s

)
=

1
2

(
|t|2H + |s|2H − |t− s|2H

)
. (2)

The value of H determines the type of diffusion in the process. For H < 1
2 , FBM produces subdiffusion.

It corresponds to a movement of a particle hindered by mobile or immobile obstacles [57]. For H > 1
2 ,

FBM generates superdiffusive motion. It reduces to the free diffusion at H = 1
2 .

The directed Brownian motion, also known as the diffusion with drift, is the solution to

dXi
t = vidt + σdB1/2,i

t , i = 1, 2, (3)

where v = (v1, v2) ∈ R2 is the drift parameter and σ is again the scale parameter. For v = 0, it reduces
to normal diffusion. For other choices of v, it generates superdiffusion related to an active transport of
particles driven by molecular motors.

The Ornstein–Uhlenbeck process is often used as a model of a confined diffusion (a subclass of
subdiffusion). It describes the movement of a particle inside a potential well and can be determined as
the solution to the following stochastic differential equation:

dXi
t = −λi(Xi

t − θi)dt + σdB1/2,i
t , i = 1, 2, θi ∈ R. (4)

The parameter θ = (θ1, θ2) is the long-term mean of the process (i.e., the equilibrium position of a
particle), λ = (λ1, λ2) is the value of a mean-reverting speed and and σ is again the scale parameter.
If there is no mean reversion effect, i.e., λi = 0, OU reduces to normal diffusion.



Entropy 2020, 22, 1436 4 of 25

3. Methods and Used Data Sets

In this paper, we discuss two feature-based classifiers: random forest (RF) and gradient boosting
(GB) [58]. The term feature-based relates to the fact that the corresponding algorithms do not operate
on raw trajectories of a process. Instead, for each trajectory a vector of human-engineered features is
calculated and then used as input for the classifier. This approach for the diffusion mode classification
has already been used in [41–43,45], but here, we propose a new set of features, which gives better
results on synthetic data sets.

Both RF and GB are examples of ensemble methods, which combine multiple classifiers to obtain
better predictive performance. They use decision trees [59] as base classifiers. A single decision tree
is fairly simple to build. The original data set is split into smaller subsets based on values of a given
feature. The process is recursively repeated until the resulting subsets are homogeneous (all samples
from the same class) or further splitting does not improve the classification performance. A splitting
feature for each step is chosen according to Gini impurity or information gain measures [58].

A single decision tree is popular among ML methods due to the ease of its interpretation.
However, it has several drawbacks that disqualify it as a reliable classifier: it is sensitive to even
small variations of data and prone to overfitting. Ensemble methods combining many decision trees
help to overcome those drawbacks while maintaining most of the advantages of the trees. A multitude
of independent decision trees is constructed by making use of the bagging idea with the random
subspace method [60–62] to form a random forest. Their prediction is aggregated and the mode of the
classes of the individual trees is taken as the final output. In contrast, the trees in gradient boosting
are built in a stage-wise fashion. At every step, a new tree learns from mistakes committed by the
ensemble. GB is usually expected to perform better than RF, but the latter one may be a better choice
in case of noisy data.

In this work, we used implementations of RF and GB provided by the scikit-learn Python
library [63]. The performance of the classifiers was evaluated with the common measures including
accuracy, precision, recall, F1 score and confusion matrices (although the information given by
those measures is to some extent redundant, we decided to use all of them due to their popularity).
The accuracy is a percentage of correct predictions among all predictions, that is a general information
about the performance of a classifier (reliable in case of the balanced data set). The precision and recall
give us a bit more detailed information for each class. The precision is a ratio of the correct predictions
to all predictions in that class (including the cases falsely assigned to this class). On the other hand,
the recall (also called sensitivity or true positive rate) is the ratio of correct predictions of that class
to all members of that class (including the ones that were falsely assigned to another class). The F1
score is a harmonic mean of precision and recall, resulting in high value only if both precision and
recall are high. Finally, the confusion matrices show detailed results of classification: element ci,j of
matrix C is the percentage of the observations from class i assigned to class j (a row presents actual
class, while the column presents predicted class).

The Python codes for the data simulation, features calculation, models preparation and
performance calculation are available at Zenodo (see Supplementary Materials).

3.1. Features Used for Classification

As already mentioned above, both ensemble methods require vectors of human-engineered
features representing the trajectories as input. In some sense, those methods may be treated as a kind
of extension to the statistical methods usually used for classification purposes. Instead of conducting a
statistical testing procedure of diffusion based on one statistic, what is often the case, we can combine
several statistics with each other bu turning them into features, which are then used to train a classifier.
This could be of particular importance in situations, when single statistics yield results differing from
each other (cf. [43]). It should be mentioned, however, that choosing the right features is a challenging
task. For instance, we have already shown in [41] that classifiers trained with a popular set of features
do not generalise well beyond the situations encoutered in the training set. Thus, great attention needs
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to be paid to the choice of the input features to machine learning classifiers as well. They ought to
cover all the important characteristics of the process, but at the same time, they should contain the
minimal amount of unnecessary information, as each redundant piece of data causes noise in the
classification or may lead to overfitting, for example (for a general discussion concerning a choice of
features, see, for instance, [64]).

Based on the results in [41,43], we decided to use the following features in our analysis, hereinafter
referred to as Set A:

• Anomalous exponent α, fitted to the time-averaged mean square displacement (TAMSD).
This exponent relates to the Hurst parameter in Equation (1) via α = 2H.

• Diffusion coefficient D, fitted to TAMSD.
• Mean squared displacement ratio, characterising the shape of a MSD curve. In general, it is given

with the formula

κ(n1, n2) =
1

N−n1
∑N−n1

i=1

∣∣Xi+n1 − Xi
∣∣2

1
N−n2

∑N−n2
i=1

∣∣Xi+n2 − Xi
∣∣2 − n1

n2
,

where n1 < n2. In this work, we set n2 = n1 + 1 and averaged the output over n1. In other words,
we used (n1 replaced by n for convenience):

κ =
1

N − 1

N−1

∑
n=1

κ(n, n + 1). (5)

• Efficiency, calculated as

E =
|XN−1 − X0|

(N − 1)∑N−1
i=1 |Xi − Xi−1|2

, (6)

which measures the linearity of a trajectory.
• Straightness, a measure of the average direction change between subsequent steps, calculated as:

S =
|XN−1 − X0|

(N − 1)∑N−1
i=1 |Xi − Xi−1|

. (7)

• The value of empirical velocity autocorrelation function [65] of lag 1 in point n = 1, that is

χ =
1

N − 2

N−2

∑
i=1

(Xi+2 − Xi+1) · (Xi+1 − Xi) .

• Maximal excursion, given by the formula

ME =
max(Xi+1 − Xi)

XN−1 − X0
. (8)

It is inspired by the mean maximal excursion (MME) [32], detecting the jumps that are long as
compared to the overall displacement.

• The statistics based on p-variation [52]:

V(p)
m =

N/m−1

∑
i=0
|X(i+1)m − Xim|p.

The usefulness of this statistic to recognition of the fractional Lévy stable motion (including
fractional Brownian motion) was shown in [52]. We introduce a quantity that verifies if for any
p the function V(p)

m of the variable m changes the monotonicity. We provide the information if
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for the highest value of p such that V(p)
m does change the monotonicity, it is convex or concave.

In short, we analyse V(p)
m as a function of m to provide one the following values:

P =


0 if it does not change the monotonicity,
1 if it is convex for the highest p for which it is not monononuous,
−1 if it is concave for the highest p for which it is not monononuous.

(9)

The first five features were already used in [41]. It should also be mentioned here that three of them are
based on MSD curves. There is one important point to consider while calculating the curves, namely
the maximum time lag. If not specified otherwise, we will use the lag equal to 10% of each trajectory’s
length. Since this choice is not obvious and may impact the classification performance, we will discuss
the sensitivity of classifiers’ accuracies to different choices of the lag in Section 4.5.

Apart from the set of features presented above, denoted Set A, we are going to analyse two other
sets: the one used in [40,41], referred as Set B, and the one proposed in [43] (set C). The lists of features
used in each set are given in Table 1 (for their exact definition, please see the mentioned references).
Sets A and B have several features in common. The link between sets A and C is not so apparent,
but the maximal excursion and p-variation-based statistics play in the description of trajectories a role
similar to the standardised maximum distance and the exponent of power function fitted to p-variation,
respectively.

Following [41], we consider four classifiers for each set of features: RF and GB classifiers built
with the full set (labelled as “with D”) and with a reduced one after the removal of the diffusion
constant D (“no D”).

Table 1. Features used for classification purposes in each of analysed sets.

Set A Set B Set C
(from [41]) (from [43])

Anomalous exponent α Anomalous exponent α Anomalous exponent α
Diffusion coefficient D Diffusion coefficient D Diffusion coefficient D

MSD ratio MSD ratio —
Efficiency Efficiency —

Straightness Straightness —
VAC (for lag 1) — —

Maximal excursion — —
p-variation-based statistics — —

— Asymmetry —
— Fractal dimension —
— Gaussianity —
— Kurtosis —
— Trappedness —
— — Standardised maximum distance
— — Exponent of power function

fitted to p-variation (for p = 1, 2, ..., 5)

3.2. Synthetic Data

Unlike the explicitly programmed methods, machine learning algorithms are not ready-made
solutions for arbitrary data. Instead, an algorithm needs to be firstly fed with a reasonable amount
of data (so-called training data) that should contain the main characteristics of the process under
investigation in order to find and learn some hidden patterns. As the classifier is not able to extract
any additional patterns from previously unseen samples after this stage, its performance is highly
dependent on the quality of the training data. Hence, the training set needs to be complete in
some sense.



Entropy 2020, 22, 1436 7 of 25

First, we created our main data set, which will be referred to as the base data set for the remainder
of this paper. It is analogous to the one used in [43]. We generated a number of 2D trajectories according
to the three diffusion models described in Section 2, with no correlations between the coordinates.
A single trajectory can be denoted as

Xn = (Xt0 , Xt1 , . . . , XtN ) , (10)

where Xti =
(

X1
ti

, X2
ti

)
∈ R2 is the position of the particle at time ti = t0 + i∆t, i = 0, 1, . . . , N. We kept

the lag ∆t between two consecutive observations constant.
The details of our simulations are summarised in Table 2. In total, 120,000 trajectories have been

produced, 40,000 for each diffusion mode, in order to balance the data set. The length of the trajectories
was randomly chosen from the range between 50 and 500 steps to mimic typical observations in
experiments. We set σ = 1 µm s−1/2 and ∆t = 1 s.

Table 2. Characteristics of the simulated trajectories used to train the classifiers. For the base training
set, the following values were used: c = 0.1, σ = 1µm s−1/2 and ∆t = 1 s.

Diffusion Class Model Parameter Ranges Number of Trajectories

Normal diffusion FBM H ∈ [0.5− c, 0.5 + c] 20,000
DBM v = (v1, v2), v1, v2 ∈ [0, c] 10,000
OU θ = 0, λ = (λ1, λ2), λ1, λ2 ∈ [0, c] 10,000

Subdiffusion FBM H ∈ [0.1, 0.5− c) 20,000
OU θ = 0, λ = (λ1, λ2), λ1, λ2 ∈ (c, 1] 20,000

Superdiffusion FBM H ∈ (0.5 + c, 0.9] 20,000
DBM v = (v1, v2), v1, v2 ∈ (c, 1] 20,000

Since the normal diffusion can be generated by a particular choice of the models’ parameters
(H = 0.5 for FBM, v = 0 for DBM and λ = 0 for OU), it is almost indistinguishable from the anomalous
diffusion generated with the parameters in the vicinity of those special values. The addition of the
noise complicates the problem even more. Thus, following [43], we introduced a parameter c that
defines a range in which a weak sub- or superdiffusion should be treated as a normal one. Although
introduced here at a different level, it bears resemblance to the cutoff c used in [37].

Apart from the base data set, we are going to use several auxiliary ones to elaborate on different
aspects of the feature choice. In Section 4.3, we will work with a training set, in which the trajectories
from the base one are disturbed with a Gaussian noise to resemble experimental uncertainties.
In Section 4.4, we will analyse the performance of classifiers trained on synthetic data generated
with σ = 0.38, corresponding to the diffusion coefficient D = 0.0715 µm2 s−1, which is adequate for
the analysis of real data samples. To study the sensitivity of the classifiers to the value of the cutoff c in
Section 4.6, we will use three further sets with c = 0, c = 0.001 and c = 0.01. In Section 4.7, a synthetic
set with σ = 2D, where D is drawn from the uniform distribution on [1, 9] will be used to check how
the classifiers cope with the trajectories characterised by heterogeneous mobilities.

For all data sets, the training and testing subset were randomly selected with a 70%/30% ratio.

3.3. Empirical Data

To check how our classifiers work on unseen data, we will apply them to some real data.
We decided to use the trajectories of G proteins and G-protein-coupled receptors already analysed
in [37,43,66]. To avoid some issues related with short time series, we limited ourselves to trajectories
with at least 50 steps only, obtaining 1037 G proteins’ and 1218 receptors’ trajectories. They are
visualised in Figure 1.
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Figure 1. Trajectories of the receptors (left) and G proteins (right) used as input for the classifiers.
Different colors are introduced to indicate different trajectories. The set of the receptors contains 1218
trajectories and the one of G proteins—1037 trajectories. The lengths of the trajectories are from range
[50, 401], the time step is equal to 28.4 ms and recorded positions are given in µm.

4. Results

The main goal of our work is a comparative analysis of classifiers trained using different sets of
features (see Table 1 for their definition). The classifiers were trained and tested on our base data set
and the auxiliary data sets, for comparison.

In order to optimise both classification algorithms, we looked for their hyperparameters using
the RandomisedSearchCV method from scikit-learn library. It performs a search over values of
hyperparameters generated from their distributions (in our case, discrete uniform ones). The term
hyperparameter in this context means a parameter required for the construction of the classifier,
which has to be set by a human expert before the learning process starts. In general, it influences the
performance of the classifier, hence its choice is essential.

4.1. Classification Results on Base Data Set Using Proposed Set of Features

We start with the classifiers trained on the base set (see Table 2 for details). We trained four
different classifiers: RF and GB for both the full set of attributes (“with D”) and a reduced one (“no D”).
Set A of features was used for representation of trajectories. The performance of these classifiers will
be treated as a benchmark in our further analysis.

The hyperparameters of the classifiers are presented in Table 3 (for the detailed explanation of
each of these parameters, please see [43,58]). It is worth noticing a difference in the ensemble sizes
between the full set and the reduced one—in case of the gradient boosting, we observe a ninefold
reduction of the number of trees. However, this difference does not reflect in the performance of the
classifiers. Taking the number of features into account, the value of the max_depth hyperparameter
for RF with D is surprisingly high. It seems to be an artifact of the hyperparameter tuning procedure
via random grid search. From our analysis (not included in this paper), it follows that this value can
be set to 20 without a negative impact on accuracy. Nevertheless, we decided to keep the original
result of the automatic hyperparameter tuning in order to treat all of the classifiers on the same footing.
We should probably add that the largest tree in RF was 38 levels deep, despite such a high value of the
maximum depth.

We begin the analysis of the classifiers by inspecting their accuracies. The results are shown in
Table 4. As we can see, both classifiers perform excellently, with more than 95% of correct predictions
for the test set. In the case of the training data, GB performs better than RF. However, RF is slightly
more accurate on the test set, indicating a small tendency of GB to overfit.
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Table 3. Hyperparameters of the optimal classifiers built on base data set with Set A of features. The full
set of features is labelled as “with D”. The “no D“ columns stand for the reduced set of features after
the removal of the diffusion coefficient D. N/A (i.e., “Not Applicable”) indicates hyperparameters
specific for random forest.

Random Forest Gradient Boosting

Hyperpareameters With D No D With D No D

bootstrap True True N/A N/A
criterion gini entropy N/A N/A
max_depth 80 10 50 10
max_features sqrt sqrt sqrt log2
min_samples_leaf 4 2 4 2
min_samples_split 2 10 10 2
n_estimators 800 600 900 100

Table 4. Accuracy of the best classifiers trained on the base data set (see Table 2) with Set A of features.
The “with D” and “no D” columns refer to the full and reduced (after removal of D) sets of features,
respectively. The results are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

Training 0.979 0.962 1.0 0.993
Test 0.957 0.955 0.956 0.955

To explain the relatively small differences in the performance between the “with D” and “no D”
versions of the classifiers, we may want to look at the importances of features. There are several ways
to calculate those importances. We used a method which defines the importance as the decrease in
accuracy after a random shuffling of values of one of the features. Results are given in Table 5. Just to
recall, features with high importances are the drivers of the outcome. The last important ones might
often be omitted, making the classification model faster to fit and predict. The results of the node
impurity importances (the total decrease in node impurity caused by a given feature, averaged over all
trees in the ensemble [67]) are similar.

Table 5. Permutation feature importances of the classifiers built on base data set with Set A of features.
The “with D” and “no D” columns refer to the full and reduced (after removal of D) sets of features,
respectively. The rows are sorted according to the decreasing importances for random forest with D.
The most and least important features are indicated with bold or underlining, respectively.

Random Forest Gradient Boosting

Feature With D No D With D No D

χ – VAC for δ = 1, n = 1 0.1428 0.0812 0.1612 0.2292
Anomalous exponent α 0.0212 0.0436 0.0244 0.0204

MSD ratio 0.0128 0.0194 0.0080 0.0168
Efficiency 0.0118 0.0074 0.0030 0.0046

Straightness 0.0110 0.0062 0.0064 0.0048
p-variation statistic P 0.0104 0.0090 0.0024 0.0060
Maximal excursion 0.0080 0.0046 0.0068 0.0094

D 0.0074 – 0.0056 –

It turns out that D is the least important feature for RF classifier trained on the full set and the
third one with the smallest importance for GB classifier. That is why its removal has a small impact on
the accuracy of prediction and why the classifiers trained on the reduced set of features with no D
are worth considering—we expect them to work better on unseen data having diffusion coefficients
different from the one used in the base set. Indeed, its removal does not change the performance of the
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classifier on the test set (see Table 4). Later in Section 4.7, we will show that in case of the training set
with varying D, the situation is different: D will become more important and excluding it from the set
will reduce the accuracy.

The most informative feature in all cases is the velocity autocorrelation function for lag δ = 1
at point n = 1. It is worth mentioning that this quantity has been already successfully used for the
distinction of subdiffusion models [68], but not in the ML context. The anomalous exponent α, which is
a standard method for the diffusion mode classification, is the second most important feature for
all models, with a significant influence on the results. Thus, it seems that the classifiers distinguish
between the models first and then assess the mode of diffusion.

To get more insight into the detailed performance of the classifiers, their normalised confusion
matrices are shown in Figure 2. Please note that the percentages may not sum to 1.0 due to rounding.
We see that all models have the biggest problems with the classification of normal diffusion. This is
simply due to the fact that the differences between normal diffusion and realizations of weak sub- or
superdiffusion are negligible and it is challenging to classify it properly even after introduction of the
parameter c (the role of which will be studied in more detail in Section 4.6).
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Figure 2. Normalised confusion matrices for classifiers built on base training data (see Table 2) with
Set A of features. The “with D” (top row) and “no D” (bottom row) labels refer to the full and reduced
(after removal of D) sets of features, respectively. All results are rounded to two decimal digits.

The values presented in Figure 2 may be used to calculate the other popular measures of
performance: precision, recall and F1 score (see Section 3). The results, rounded to three decimal
digits, are summarised in Table 6. Again, we see that the measures point to the highest error rate
for the normal diffusion: for the random forest model with D as one of the features, only 92.9% of
the trajectories classified as normal diffusion were in fact in this class (precision), whereas 94.4%
of freely diffusing trajectories were correctly classified (recall). Such a high error rate is related to
the mentioned lack of distinctions between the nodes—the normal diffusion is some kind of buffer
between subdiffusion and superdiffusion, thus it can be incorrectly classified as one of these two.
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Table 6. Precision, recall and F1 scores of the classifiers trained on base synthetic data with Set A of
features. For each classifier, the testing set consists of 12,000 trajectories per diffusion mode—that is,
36,000 in total. All classifiers were built on base data set with Set A of features.

Method Variant Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average

Precision 0.929 0.973 0.970 0.957
with D Recall 0.944 0.966 0.962 0.957

RF
F1 0.936 0.969 0.966 0.957

Precision 0.922 0.971 0.971 0.955
no D Recall 0.943 0.963 0.958 0.955

F1 0.933 0.967 0.964 0.955

Precision 0.928 0.972 0.970 0.956
with D Recall 0.942 0.966 0.961 0.956

GB
F1 0.935 0.969 0.965 0.956

Precision 0.925 0.970 0.969 0.955
no D Recall 0.940 0.964 0.960 0.955

F1 0.932 0.967 0.965 0.955

4.2. Comparison with Other Sets of Features

Below, we show the comparison of the classification results with all considered classifiers (based on
three different set of features) on our base data set (Table 2).

In Table 7, the accuracies on the test set are shown, calculated using the tenfold cross-validation
method [58]. As the calculation of the accuracy of the classifier is based on the single train/test
split, in an unfortunate case, the test set can contain the data with characteristics that have not
been seen by classifier during training, and thus the accuracy would be falsely low. The k-fold
cross-validation is a technique that helps to reduce that bias. The data is randomly split into k folds
(without replacement) and the model is trained and tested k times—each time one fold is the test set,
whereas the remaining ones create the training set. The overall accuracy is the mean of the accuracies
of each run. The hyperparameters of the particular models are summarised in Table 8 and they were
established using the RandomisedSearchCV method again.

Table 7. Accuracy of the classifiers built on the base data set using different sets of features, measured
using tenfold cross-validation method. All results are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

Set A 0.957 0.955 0.956 0.953
Set B 0.946 0.928 0.945 0.928
Set C 0.948 0.946 0.948 0.944

In the comparison of all these classifiers, the ones based on the set of features proposed in this
article provide the best results on our base synthetic data set. Actually, the choice of features was
inspired by two of our previous articles [41,43]. The new set combines the attributes used in those
papers: it contains the anomalous exponent α, diffusion coefficient D, efficiency, straightness and mean
squared displacement ratio that have been used in [41], and the normalised maximal excursion and
p-variation-based features used in [43].

Nevertheless, we need to underline here that it does not mean that this set of features is the
solution for all the classification problems—it simply seems to be the best choice for such synthetic
data set. The lack of universality of feature-based methods was already presented in [41]: the classifiers
did not generalise well to samples generated with slightly altered models.
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Table 8. Hyperparameters of the optimal classifiers built on base data set used for the calculation of
tenfold cross-validation accuracy in Table 7. The “with D” and “no D” columns refer to the full and
reduced (after removal of D) sets of features, respectively. N/A stands for “Not Applicable” (the first
two parameters are random forest specific). The definitions of the feature sets are given in Table 1.
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Se
tA

RF with D True gini 80 sqrt 4 2 800
no D True entropy 10 sqrt 2 10 600

GB with D N/A N/A 50 sqrt 4 10 900
no D N/A N/A 10 log2 2 2 100

Se
tB

RF with D True entropy None None 2 5 1000
no D True entropy None log2 1 10 600

GB with D N/A N/A 110 log2 2 10 400
no D N/A N/A 10 log2 4 5 100

Se
tC

RF with D True entropy 60 log2 4 2 900
no D True entropy 10 sqrt 2 10 600

GB with D N/A N/A 10 log2 2 2 100
no D N/A N/A 10 log2 2 2 100

To compare the performance of these models in more details, the values of recall, precision and F1
score are given in Table 9. For the sake of clarity, we only compare the random forest classifiers built on
the complete features’ sets (with the diffusion coefficient D). For the remaining cases, the behaviour is
alike, except for the fact that all measures for classifiers with features as in Set B but without diffusion
coefficient D are significantly lower than for other classifiers. We would like to underline here that
the set of features proposed in Section 3.1 provides the best results in all measures used here. For all
classifiers, the results for superdiffusion and subdiffusion are better than for normal diffusion class,
what is understandable, as the only kind of error that occurs is the misclassification of anomalous
diffusion trajectories as the normal diffusion. In case of normal diffusion, a part of misclassified
trajectories is labelled as superdiffusion, and another part is labelled as subdiffusion.

Table 9. Detailed performance comparison of random forest classifiers based on three sets of features,
built on the base data set. Metrics are calculated on the test data. All results are rounded to three
decimal digits. For each classifier, the test set consists of 12,000 trajectories per diffusion mode—that is,
36,000 in total.

Set of Features Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average

Precision 0.929 0.973 0.970 0.957
Set A Recall 0.944 0.966 0.962 0.957

F1 0.936 0.969 0.966 0.957

Precision 0.910 0.970 0.963 0.948
Set B Recall 0.934 0.957 0.950 0.947

F1 0.922 0.964 0.956 0.947

Precision 0.912 0.969 0.966 0.949
Set C Recall 0.935 0.958 0.951 0.948

F1 0.923 0.963 0.959 0.948
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4.3. Adding Noise

The results on our base data set are promising, but, unfortunately, real data are more challenging
to classify, as they usually contain some noise and/or measurement error. Thus, we added a random
Gaussian noise with zero mean and standard deviation σGn to our trajectories. In order to control the
noise amplitude with respect to standard deviation of a process, we followed the idea used in [40,41,43],
namely setting a random signal-to-noise ratio instead of σGn. The signal-to-noise ratio is defined as

Q =

{ √
D∆t+v2∆t2

σGn
for DBM,

√
D∆t

σGn
otherwise,

(11)

where v =
√

v2
1 + v2

2. The value of σGn was calculated for each trajectory separately, based on the
random value of Q drawn from the uniform distribution on interval [1, 9].

The accuracies of the classifiers trained on the data set with noise are given in Table 10. It is worth
comparing the results with Table 4—there is a decrease of the accuracy, especially in case of the reduced
set of features (“no D”), but both methods still classify the diffusion modes well. Nevertheless, in this
case, it turns out that the inclusion of the diffusion coefficient D as one of the features is important.
Still, for our synthetic data set with noise, the features in Set A seem to describe the characteristics of
the used processes most precisely.

Table 10. Performance of the classifiers trained on data with random Gaussian noise. Accuracies (for
test data only) are rounded to three decimal digits.

Random Forest Gradient Boosting

Features With D No D With D No D

Set A 0.950 0.937 0.949 0.937
Set B 0.941 0.918 0.941 0.918
Set C 0.944 0.932 0.943 0.930

4.4. Empirical Data

In order to present the methods in a practical context, we are going to apply the classifiers from
Sections 4.1 and 4.3 to real G protein data (see Section 3.3). Additionaly, to follow the approach
from [43], we will consider additional classifiers fed with the data set similar to the base one, but with
σ = 0.38, since this value corresponds to the mean diffusion coefficient of the real data sample
(D = 0.0715 µm2s−1). Accuracies of the additional classifiers are shown in Table 11. Interestingly,
they are slightly better than the ones for the base set. It seems that the change of the scale parameter
positively influenced the ranges of other characteristics, resulting in an increased accuracy (it worked
as implicit feature engineering in the absence of data normalization).

Table 11. Performance of the classifiers trained on data with σ = 0.38. Accuracies (for test data only)
are rounded to three decimal digits.

Random Forest Gradient Boosting

Features With D No D With D No D

Set A 0.961 0.959 0.960 0.958
Set B 0.949 0.927 0.948 0.928
Set C 0.953 0.951 0.952 0.949

Before we start to analyse the results for real data, there are several points to consider.
First, it should be emphasised once again that the data collected in experiments is not provable.
Since the ground truth is missing, we cannot really choose the best among the classifiers. We just
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could use some additional information about the G proteins in order to indicate if the classifiers work
reasonably or not. Second, real trajectories are often heterogeneous, meaning that a particle may
change its type of motion within a single trajectory [69]. Thus the classifiers fed with homogeneous
synthetic data may be not the best choice to work with such data.

In Tables 12–14, we show the results of classification of real data with the base classifiers, the ones
with the noise and the ones with σ = 0.38, respectively. In all three cases, we considered only the
“with D” classifiers (for the justification, see Section 4.7). The results obtained with the classifiers
trained on different data sets vary slightly, but they agree on a small percentage of superdiffusive
trajectories. This is somehow expected from the biological background: during their movement, the G
proteins and G-protein-coupled receptors pair, spending some amount of time immobilised. In the
same time, there is no evidence of any other force that can accelerate the movement.

Table 12. Classification results for real trajectories. The base data set (σ = 1, no noise; see Section 4.1)
with the full sets features (labelled as “with D” in the previous sections) was used for training.
The numbers may not add up precisely to 100% due to rounding.

Random Forest Gradient Boosting

Features Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 22% 26% 12% 17%
Set A Subdiffusion 76% 64% 84% 70%

Superdiffusion 1% 9% 2% 12%

Free diffusion 2% 7% 0% 0%
Set B Subdiffusion 97% 90% 99% 97%

Superdiffusion 0% 1% 0% 2%

Free diffusion 40% 45% 41% 40%
Set C Subdiffusion 59% 52% 57% 54%

Superdiffusion 0% 1% 1% 5%

Table 13. Classification results for real trajectories. The noisy data set (σ = 1, see Section 4.3) with the
full sets of features (labelled as “with D” in the previous sections) was used for training. The numbers
may not add up precisely to 100% due to rounding.

Random Forest Gradient Boosting

Features Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 28% 31% 27% 28%
Set A Subdiffusion 70% 61% 70% 61%

Superdiffusion 1% 6% 2% 9%

Free diffusion 3% 11% 2% 9%
Set B Subdiffusion 96% 86% 96% 87%

Superdiffusion 0% 1% 0% 3%

Free diffusion 45% 48% 41% 41%
Set C Subdiffusion 54% 49% 58% 53%

Superdiffusion 0% 1% 0% 5%

On our base data set, the classifiers based on Set A label most of both G proteins’ and G
protein-coupled receptors’ trajectories as subdiffusion (64–84%, depending on particle type and
method). This is somewhat in between the results of classifiers based on Set B and Set C, where the
former point to subdiffusion more frequently, while the latter apply only in 52–59% of cases.

Comparing the behaviour of the classifiers based on the different data sets used for training,
we can see that the classifiers built on the Set C are the most stable in some sense—they yield similar
results independently of the training data, indicating to a significant fraction of subdiffusive and freely
diffusing trajectories. For the new proposed set of features, Set A, as well as for Set B, the introduction
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of noise does not alter the classification significantly, but the decrease of the scale of the trajectories in
data set (setting σ = 0.38) leads to recognition of more trajectories as the normal diffusion, similarly
to the p-variation-based statistical test proposed in [37]. Alternately, the GB classifier based on Set
B and scaled data set classifies a significant percentage of trajectories as superdiffusive, which is
rather unexpected.

Table 14. Classification results for real trajectories. The data set with σ = 0.38 (no noise) and with
the full sets of features was used for training. The numbers may not add up precisely to 100% due
to rounding.

Random Forest Gradient Boosting

Features Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 42% 40% 36% 35%
Set A Subdiffusion 56% 54% 61% 58%

Superdiffusion 1% 5% 1% 5%

Free diffusion 51% 38% 44% 24%
Set B Subdiffusion 44% 50% 37% 44%

Superdiffusion 3% 10% 17% 30%

Free diffusion 54% 51% 54% 51%
Set C Subdiffusion 45% 47% 45% 46%

Superdiffusion 0% 1% 0% 1%

For the full picture, in Table 15, we also include the results for the classifiers built with the
reduced Set A—that is, without diffusion coefficient D (“no D”). Following the results for the synthetic
trajectories, where on the noisy data set the accuracy for the classifiers based on the reduced set of
features is smaller (see Table 10), we acknowledge that the results on that data set can be biased.
Indeed, such classifiers claim that most of the trajectories exhibit the normal diffusion, whereas the
classifiers built on the base and the scaled data set classify them as subdiffusion.

Table 15. Classification results for real trajectories. The classifiers were trained with the reduced Set A
(labelled as “no D”). The numbers may not add up precisely to 100% due to rounding.

Random Forest Gradient Boosting

Classifier Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 33% 35% 32% 30%
Base classifier Subdiffusion 65% 59% 65% 59%

Superdiffusion 0% 5% 2% 9%

Free diffusion 72% 58% 77% 60%
Trained with noise Subdiffusion 25% 34% 18% 29%

Superdiffusion 1% 6% 3% 10%

Free diffusion 34% 34% 28% 30%
Trained with σ = 0.38 Subdiffusion 63% 58% 69% 59%

Superdiffusion 1% 7% 2% 10%

To sum up, all the classifiers identify most trajectories as normal or subdiffusive, but the fraction
of both diffusion modes varies between classifiers. The scaling of trajectories in the training data set
has introduced significant changes in the results (please compare Tables 12 and 14), thus the properties
of particular features should be further examined (for example, their normalisation). Moreover, in [69],
the authors showed that the trajectories in the analysed data set change their character during the time
evolution. Different features used in the classifiers probably capture slightly different characteristics of
the trajectories; thus, the sensitivity of features for the heterogeneity of movement should be verified.
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4.5. Influence of MSD Calculation Methods

Some of the features used in our set—that is, the diffusion coefficient D, the anomalous exponent
α and the mean displacement ratio κ, are based on the time-averaged MSD. This quantity can be highly
biased for large lags, as then only a few displacements are included in the calculation of the mean
value. Alternately, if we choose to fit the diffusion coefficient or the anomalous exponent to only a few
data points (to MSD calculated for a few lags only), the estimation could be biased. This is a known
problem in the analysis of the biological data and has already been discussed in [26,70,71].

We have considered the influence of the number of lags on the accuracy of the classifiers and
trained them on the base data set with the values of features calculated using 50% or 10% of available
TAMSD length. In Table 16, the comparison of these accuracies on the test set is shown, using all three
sets of features. For each set, only the “with D” variant has been considered. The better results are
obtained with the shorter TAMSD curve, but the differences are only slight. Thus, we have set the 10%
as the fixed value for all our considerations.

Table 16. Accuracies on test sets for the classifiers built with the features’ sets with 10% or 50% of
MSD curve length used for calculation of the MSD-based features. All results are rounded to three
decimal digits.

Random Forest Gradient Boosting

Features 10% 50% 10% 50%

Set A 0.957 0.956 0.956 0.955
Set B 0.947 0.942 0.947 0.942
Set C 0.948 0.947 0.947 0.946

4.6. Sensitivity of the Model to Parameter C

Up to this point, we used set of synthetic data generated with c = 0.1 (see Table 2 for the meaning
of c). This parameter was used to define ranges, outside of which weak sub- or superdiffusion
should be distinguished from the normal one. It is time to analyse the impact of c on the prediction
performance of our classification models.

In Table 17, the accuracies on the test set of the particular classifiers are presented. The highest
value of this metrics for c = 0.1 could suggest that it is is the best choice, but there is the other side
of a coin—the highest c means that more trajectories in the data set were falsely labelled as normal
diffusion on the data set simulation stage, despite the fact that they were generated from models with
the parameters corresponding to the anomalous diffusion. In Table 18, the values of precision, recall
and F1 are shown for the random forest classifier (“with D”) trained on each of the analysed sets.
Although the precision for the normal diffusion grows with the increasing value of c, there is a drop
in the recall value between c = 0.01 and c = 0.1. Inversely, for both modes of anomalous diffusion,
the precision drops when changing from c = 0.01 and c = 0.1. It means that we not only make a
base mistake in labelling, falsely labelling some normal trajectories as anomalous ones at the data
set generation stage (what is not visible here), but also setting too high value of c parameter adds
some confusion.

The issue is visualised in Figure 3, where the histograms of predicted labels are shown (please
mind the logarithmic scale on y-axis). The ranges defined by the parameter C are indicated with
black dashed lines. All observations between the dashed lines were treated as normal diffusion by
the classifiers (such label was assigned at the data set generation stage as ground truth). Although for
c = 0.1 and all diffusion models, the major part of trajectories was classified correctly, the distribution
of the normal diffusion label assigned is wider than, for example, c = 0.01, especially in the case
of fractional Brownian motion. Thus, to diminish the error (understood as an incorrect label in
comparison to real diffusion mode, not assigned ground truth label), a smaller value of c should be
taken—for example, the mentioned c = 0.01.
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Figure 3. The histograms of assigned labels for different diffusion models, as predicted for the test sets
by classifiers built on data sets with different values of parameter c with Set A of features. Please mind
the logarithmic scale on y-axis. The dashed lines bounds the regions for which the normal diffusion
was assigned as ground truth despite the real character of trajectories.

Table 17. Accuracies on test set of the optimal classifiers built on data sets with different values of
parameter c and Set A of features. All results are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

c = 0 0.920 0.919 0.920 0.919

c = 0.001 0.924 0.924 0.923 0.923

c = 0.01 0.929 0.929 0.928 0.926

c = 0.1 (base) 0.957 0.955 0.956 0.955

4.7. Role of Diffusion Coefficient D

Finally, we move to the case in which parameter σ varies between trajectories. The data set for the
classification was prepared according to Table 2, but each trajectory was characterised by a random σ value
equal to

√
2D, where D was drawn from the uniform distribution on the interval [1, 9]. The same set of

features was used and an additional regularisation was performed in the classifier training procedure.
The accuracy results for such classifiers are shown in Table 19. As one can see, the classifiers are still

correct in more than 90% of cases and we can still consider them as useful. Interestingly, the changes in
D have bigger influence to values than adding noise, introduced in Section 4.3. Thus, our classifiers work
better in case of homogeneous environment with a constant diffusion coefficient, and as could be somehow
expected, the difference between the classifiers with the diffusion coefficient D as a feature and the ones
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without it is visible, in favour of the all features’ set. Thus, there is no reason to consider the reduced set of
features in future research.

Table 18. Precision, recall and F1 scores for classifiers trained on data with different values of the
cutoff c. Set A of features was used. All results are rounded to three decimal digits. For each data set,
the support of the testing set is 12,000 trajectories per diffusion mode, giving 36,000 in total.

c Value Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average

Precision 0.835 0.972 0.974 0.927
c = 0 Recall 0.950 0.910 0.900 0.920

F1 0.889 0.940 0.936 0.921

Precision 0.842 0.975 0.972 0.930
c = 0.001 Recall 0.952 0.915 0.906 0.924

F1 0.894 0.944 0.938 0.925

Precision 0.850 0.976 0.976 0.934
c = 0.01 Recall 0.955 0.918 0.913 0.929

F1 0.900 0.946 0.943 0.930

Precision 0.929 0.973 0.970 0.957
c = 0.1 Recall 0.944 0.966 0.962 0.957

F1 0.936 0.969 0.966 0.957

Table 19. Performance of the best classifiers trained on the data set with varying diffusion coefficient D
and Set A of features. Accuracies are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

Training 0.971 0.921 0.979 0.966

Test 0.919 0.912 0.920 0.909

In Figure 4, the confusion matrices of the analysed classifiers are shown. There is definitely more
confusion between superdiffusion and free diffusion, in both directions, but still there is no misclassification
between super- and subdiffusion (what would point to more serious problems with the classification). We
think that these results can be even improved with the revision of the diffusion coefficient estimation method.

4.8. Beyond Multi-Class Classification

Up to this point, the classifiers were set to output only one among three available classes. However,
both RF and GB classifiers are ensemble methods that determine the final output through voting of their
base learners (decision trees). That voting can be exploited to provide probabilities of being assigned to each
class. Their analysis can help in understanding the classifiers’ behaviour and sources of misclassifications.

In Figure 5, ternary plots for both random forest and gradient boosting classifiers based on full Set
A of features are shown. They complement the results shown in Table 4 and Figure 2. As we can see,
the majority of the points is concentrated at the edges of the plots, corresponding to a situation with at
most two non-vanishing class probabilities for given trajectories. The points located near the vertices depict
the trajectories with one dominant class. There is much less of a burden in case of the gradient boosting
classifier—the probability of assigning a trajectory to a finally claimed class is much higher and there are
almost no trajectories with non-zero probabilities for all classes. This is clearly linked to the construction of
both these classifiers. In random forest, each base classifier independently returns a predicted class and the
final output is the most frequent class returned. Thus, the spread of the predictions can be high. In gradient
boosting, the trees are constructed sequentially: each new one is supposed to correct the predictions of the
ensemble and its results have a higher weight in the final aggregation. Thus, the final trees are having the
greatest impact on the outcome and we expect GB to produce output with one dominant probability in
most of the cases.
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In Figure 6, predicted class probabilities for sample trajectories are shown, for random forest
(left graph) and gradient boosting (right graph). Indeed, the gradient boosting classifier was more
decisive, producing more univocal results, even if they were incorrect (please see the first trajectory
from the top and the second trajectory form the bottom).
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Figure 4. Normalised confusion matrices for classifiers built on training data with varying D and Set A
of features. All results are rounded to two decimal digits.
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Figure 5. Ternary plots of the class probabilities assigned to the testing data by the classifiers trained
on the base data set with Set A of features.

Finally, we can verify the distribution of the class probabilities for our experimental data (see Section 3.3
and 4.4), where the ground truth for the diffusion type is not known. In Figure 7, the corresponding
ternary plots for empirical data are presented, for random forest and gradient boosting classifiers (left and
right column, respectively) and for both G-protein-coupled receptors and G proteins (top and bottom row,
respectively). These graphs can clearly show us the trajectories for which the classifiers’ decisions were the
most vague—all points near the center of the triangle correspond to trajectories with significant probabilities
of all of three diffusion types. Moreover, we can see that in case of random forest, the trajectories classified as
superdiffusion had also a significant probability of being a normal diffusion, whereas the gradient boosting
classifier undoubtedly returned high probability of them belonging to superdiffusion.
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Figure 6. The class probabilities for exemplary trajectories from the testing set, based on the classifiers
trained on the base data set and constructed with Set A of features.

In Figure 8, the predicted class probabilities for several interesting trajectories are shown, for both
random forest (left graph) and gradient boosting (right graph). Again, the gradient boosting algorithm is
more firm, but in cases of misclassification, it also claims the incorrect diffusion type with less doubt. Such
an analysis of the classifiers decisions is a great starting point for further research—the output classifiers
build on different data sets and with different sets of features can be examined in detail to find the exact
source of a given prediction. That can also lead us to a reasonable model for the anomaly detection in
the trajectories.
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Figure 7. Ternary plots of the class probabilities assigned to empirical data by the classifiers trained on
the base data set with Set A of features.
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Figure 8. The class probabilities for exemplary trajectories from the empirical data set, based on the
classifiers trained on the base data set and constructed with Set A of features.

5. Conclusions

In this paper, we presented a new set of features (referred to as Set A, see Table 1) for the two
types of machine learning classifiers, random forest and gradient boosting, that on the synthetic data
set gives good results, better than the set used previously in [43]. We have analysed the performance
of our classifier trained and tested on the multiple versions of the synthetic data set, allowing us to
assess its usefulness, flexibility and robustness. Moreover, we compared the proposed set with the
ones already used in this problem, from [40,41,43]. Our set gives the best results in terms of the most
common metrics.

Although the results on the synthetic data set are promising, we acknowledge the challenge with
the application of the classifiers to real data. As discussed in [41], the classifiers trained on particular
models for given diffusion modes do not generalise well. In Section 4.4, we show that even the
classifiers with good accuracy return not clear result when used with the data of potentially different
characteristics. To some extent, it can be improved by including more models in the training data set.

Thus, we would like to underline the importance of the features’ selection for a given
problem—even for the same task (e.g., diffusion mode classification), both models chosen for the
training data generation and features chosen for their characterisation have a great influence on the
performance of classifiers. Moreover, the assumptions made in constructions of the classifiers, such as
hyperparameters’ values or simply the choice of classifier type, are also highly important.

Supplementary Materials: Python codes for every stage of the classification procedure, together with a short
documentation, are publicly available at Zenodo (https://doi.org/10.5281/zenodo.4317214).
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