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Abstract: Electric power forecasting plays a substantial role in the administration and balance of
current power systems. For this reason, accurate predictions of service demands are needed to
develop better programming for the generation and distribution of power and to reduce the risk
of vulnerabilities in the integration of an electric power system. For the purposes of the current
study, a systematic literature review was applied to identify the type of model that has the highest
propensity to show precision in the context of electric power forecasting. The state-of-the-art model
in accurate electric power forecasting was determined from the results reported in 257 accuracy tests
from five geographic regions. Two classes of forecasting models were compared: classical statistical
or mathematical (MSC) and machine learning (ML) models. Furthermore, the use of hybrid models
that have made significant contributions to electric power forecasting is identified, and a case of study
is applied to demonstrate its good performance when compared with traditional models. Among our
main findings, we conclude that forecasting errors are minimized by reducing the time horizon,
that ML models that consider various sources of exogenous variability tend to have better forecast
accuracy, and finally, that the accuracy of the forecasting models has significantly increased over the
last five years.
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1. Introduction

Electric power forecasting plays a substantial role in the administration and balance of
current power systems. The load forecasts help to identify strategies to optimize the operating
mechanisms in a determined period and thus ensure the demand even in situations adverse to the
system [1]. Accompanying the rapid advances in forecasting theory [2,3] and machine learning [4–6],
the technology in the energy forecasting research area has also developed rapidly [7]. Additionally,
the popular prediction methods for the generation and demand of energy can be divided into two
categories. The first category is statistical or mathematical methods, and the second category is modern
statistical-learning-based methods (also known as machine learning). In addition, hybrid methods can
be found that apply not only statistical tools but also other elements, such as mathematical optimization
or signal processing [8,9]. Additionally, other authors [10] consider hybrid approaches that focus
on a series of individual methods, such as noise reduction, seasonal adjustment and clustering,
to process the data in advance, whereas combined methods use weight coefficients. With respect to
the techniques implemented to forecast energy in recent years, in the international context, we can
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find a wide diversity; e.g., the application of kernel-based multitask learning methodologies [11],
energy load forecasting methodologies based on deep neural networks as in [12,13], methodologies
based on the classic time series approach as in [14–16], and mathematical representations as in [17–19].
Developing a model that achieves the highest forecasting precision in the context of electric power
has been the object of study in recent years. Additionally, the determination of the appropriate
input variables in load forecasting constitutes an important part of the forecasting procedure [20].
Due to the importance of the area, several review papers have appeared that present insights into
current applications and future challenges and opportunities [21,22]. However, existing review papers
examine the applications of a single model, e.g., an ANN [23], or cover only one energy domain,
e.g., solar radiation prediction [24,25], and do not perform comparisons among specific metrics, such as
MAPE, for multiple applications. Therefore, a systematic review to identify the type of model that has
the highest propensity to show precision in the forecast is the main objective of this paper.

Motivation and Scope of the Review

The number of papers published on the topic of electric power forecasting has been growing at an
exponential rate throughout the last decade, as Figure 1 shows. The order of magnitude of the increase
in the number of scientific publications on the subject revolves around 61.59%, between 2016–2020,
with respect to 2011–2015. Generally, the studies are site-specific, and the results strongly depend
on the nature of the model and the time horizon of the forecast, along with a large number of
other characteristics pertaining to the data and models. This is a major limitation, which makes a
generalization of the results difficult. A test of a given model over all different mentioned factors is
needed to measure the average effect of the model [25]. Consequently, the contribution of this paper is
to present the state-of-the-art of models in electric power systems and discuss their likely future trends,
considering:

• (I) The models that tend to provide precision in electric power forecasts according to the literature.
• (II) Exogenous sources that tend to lead to accurate forecasting of electrical energy according to

the literature.
• (III) Relationships between the times of forecasting and the accuracy of existing models.

Figure 1. Number of articles published per year. The line represents an exponential fit, highlighting
the yearly growth trend. The publications from 2020 are excluded since only partial data are available.

The rest of this paper is organized as follows. In Section 2, the methodology of the research is
presented. In Section 3, a description of the data set is presented. In Section 4, a performance analysis of
the forecasting models is presented, and finally, the overall discussion and conclusions are presented.
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2. Theoretical and Referential Framework

This chapter presents an analysis of the documents found in the literature during the last 15 years
on the subject of electric power forecasting.

2.1. Selection Criteria

The number of documents published on the topic of electric power forecasting has been growing
at an exponential rate throughout the last 15 years, as Figure 1 shows. We analyze in the review
the documents published for electric power forecasting contained in SCOPUS, Web of Sciences,
Science Direct and IEEE (Figure 2), according to the criteria shown in Figure 3 and following the steps
of the PRISMA (Preferred Reporting items for Systematic Review and Meta-Analyses) methodology.

A large number of papers published between January 2005 and March 2020 were analyzed.
The qualitative and quantitative synthesis of the analysis was collected from 164 documents selected
based on the criteria shown in Figure 3; the documents that only forecast electric power in buildings,
universities, homes, and rooms were excluded; likewise, if the time horizons are not mentioned in the
Abstract, the article was also skipped in our research. Similarly, if in an article, MAPE was not used as
a criterion for accuracy, it was not considered in our review. When considering the accuracy of the
results reported by the selected papers in terms of the MAPE Equation (1), we can compare samples of
different magnitudes, thus ensuring a common basis for intercomparison analyses.

It is important to highlight that under our filtering criteria a significant volume of valuable
references may have been excluded; in this sense, our searches may not be specific. If the readers are
interested exclusively in consulting documents related to forecasting under machine learning methods,
then they could consult [21], or if they are interested in specific documents on solar energy, they could
consult [25]; in the case of documents associated with the forecast under classical statistical techniques,
there are specific documents that can be consulted, such as [26].

Figure 2. PRISMA Flow Diagram.
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Figure 3. Search methodology for finding relevant literature.

2.2. Statistical Indicators of Accuracy in Electric Power Forecasting

The number of papers from the publications we studied that are eligible according to the criteria
was 164. We collected the mean absolute percentage error (MAPE), a statistical indicator of accuracy.
This index indicates an average of the absolute percentage errors (Equation (1)); the lower the MAPE, the higher
is the accuracy [27].

MAPE =
1

mk

m

∑
k=1

∣∣∣∣ tk − yk
tk

∣∣∣∣ ∗ 100 (1)

where tk is the actual value of electric power, yk is the forecasting value produced by the model, and m
is the total number of observations. The final quality-controlled database from the 164 documents
contained 4883 entries (MAPE, type of MAPE, country, date, input variables, model, type of model,
latitude, longitude, and size of sample), and we saved 257 entries associated with a MAPE value
linked to the best model proposed in the cases of study with data from 33 countries. The locations
are represented on the world map in Figure 4. We can see that the studied publications cover all
continents. Occupying the first positions in the list of the countries with the most electrical energy
forecast documents, under the criteria used, are Australia, China, Iran, and Turkey.

Figure 4. Number of forecasts by country considered in the review.

3. Description of the Dataset

The analysis was performed from five perspectives: the class of a forecasting model (MSC or ML),
the type of model (hybrid or not), the time horizon, and the input variables and performance trend
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over time (MAPE). The dataset analyzed in this paper contains 257 entries associated with a MAPE
value linked to the best model proposed in the document.

The MAPE value was classified according to the criteria drawn up by [28], which contain typical
MAPE values for business and industrial data and their interpretation in four evaluation criteria (in our
case, four prediction capabilities); this table was used in [29–32], and can be seen in Table 1.

Table 1. MAPE qualitative criteria.

MAPE (%) Prediction Capability

<10 Highly accurate prediction (HAP)
10–20 Good prediction (GPR)
20–50 Reasonable prediction (RP)
>50 Inaccurate prediction (IPR)

Table 2 shows that of the 164 documents processed in the systematic review, 99 contain a highly
accurate prediction (HAP). Additionally, more ML documents with an HAP were found than MSC
documents. Regarding the sources of variability considered by the documents that contained HAPs,
it can be seen that multivariate models have a higher recurrence than univariate models. As explained
in [10], despite the introduction of artificial intelligence, each of the individual methods are still not
able to produce the desired outcomes because of their disadvantages. For instance, neural networks
attain local optimal results instead of global optimal results. Expert systems excessively rely on
knowledge and cannot always obtain optimal results, whereas grey prediction systems are suitable for
exponential growth models. Thus, by considering every method’s merits and taking full advantage of
them, the concept of hybrid and combination methods developed rapidly.

Table 2. Systematic review documents. Techniques type used in electric power forecast and qualitative
values of the average MAPE.

MAPE Type Multivariate Model Univariate Model Total

Not Hybrid Hybrid Not Hybrid Hybrid

HAP ML [33–72] [6,27,73–91] [1,14,17,18,92–107] [29,32,85,108–122] 99

HAP MSC [15,123–147] [148,149] [1,14,17,18,92–107] [19,150–152] 52

GPR ML [153–157] [158] [159–162] − 10

GPR MSC [16,163] − − − 2

RP ML [164] − − − 1

Total 74 24 44 22 164

3.1. Forecasting Horizon

Figure 5 shows that the minimum MAPE values (<2) were reached more frequently when the
forecast time horizon is 5 min.
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Figure 5. MAPE value interval and the percent of forecasts extracted from the 164 documents
considered by time horizon.

3.2. Exogenous Influence

Because forecasting electric power demand is typically based on historical electricity consumption
and its relationship with exogenous influences, such as gross domestic product (GDP), population,
urbanization, income and exports, research on forecasting electric power demand has evolved using
both univariate and multivariate time-series models [15].

Similarly, weather associated variables such as humidity, temperature, and dew point are pertinent
for electric power forecasting for extensive time scales. For short-term forecasting such as minutes
ahead, the climate changes are already captured in the electric power series [165]. Forecasting models
using only previous electricity data (univariate) have been shown to provide HAP and to perform
better than models that also use weather variables as exogenous influences (multivariate) [166].
Nevertheless, the use of weather influences was found to be beneficial for electric power forecasting
horizons beyond several hours [166,167]. In Figure 6, it can be seen that the precision of the electric
energy forecast on average tends to improve when various sources of variability are considered.
In our sample of filtered documents, the average MAPE is lower for the forecasts whose models
consider sources of variability from the calendar information, weather information, and economic or
sociodemographic information, as in [60,125,130,146].

Figure 6. Average MAPE according to the considered source of variability.

4. Classes of Forecasting Models

From the multitude of methods that have been tested and evaluated, the ML and MSC classes
seem to be the main competitors.
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4.1. Classical Statistical Models

A popular technique such as time series forecasting is applied in several areas [25]. The most
widely used statistical method is the ARIMA of Box and Jenkins, which was applied with more force
during the eighties, when intelligent systems began to appear [168]. Several time series models make
use of the high autocorrelation for small lags in the time series of electric power, and supply electric
power forecasts using only previously measured values of electric power as input.

From the multitude of methods that have been tested and evaluated in this review, in this class,
regression analysis and ARIMA modeling seem to be the main competitors (Figure 7).

4.2. Classical Regression in the Time Series Context

To explain linear regression in the the context of time series, we assume some output or dependent
time series. Assume xt for t = 1, · · · , n, is being influenced by a collection of possible inputs or
independent series, such as zt1 , zt2 , · · · , ztq , where we first regard the inputs as fixed and known [169].
We express this relation through the linear regression model:

xt = β0 + β1zt1 + β2zt2 + · · ·+ βqztq + wt (2)

where β0, β1, · · · , βq are unknown fixed regression coefficients, and wt is a random error or noise
process consisting of independent and identically distributed (iid) normal variables with a zero mean
and variance σ2

w. For time series regression, it is rarely the case that the noise is white, and we will
need to eventually relax that assumption.

Classical regression models have been used in several academic papers for electric power
forecasting [97,98,102,124,130,134,138,140], reaching an accuracy in the forecast with an average MAPE
value of 1.569%. Classical regression is often insufficient for explaining all of the interesting dynamics
of a time series; instead, the introduction of correlations that may be generated through lagged linear
relations led to the autoregressive (AR) and autoregressive moving average (ARMA) models that were
presented in [169,170]. Adding nonstationary models to the mix led to the autoregressive integrated
moving average (ARIMA) model popularized in the landmark work by Box and Jenkins [169,171].

4.3. Autoregressive Integrated Moving Average

Autoregressive models are based on the idea that the current value of the series, xt, can be
explained as a function of p past values, xt−1, xt−2, · · · , xt−p, where p determines the number of
previous steps required to forecast the current value [169].

The acronym ARIMA refers to an autoregressive integrated moving average model.
ARIMA models can be applied to non-stationary data, and when the data are seasonal, the SARIMA
model can be implemented. The ARIMA and SARIMA models have been used in many studies for
forecasting [14–16,99,100,103,127,136], reaching forecast accuracies with an average MAPE value of
3.214%. A typical ARIMA (p, d, q) model can be expressed by Equation (3), where the variable ut is
replaced by a new variable wt obtained by differencing ut d times [25]:

wt = (1 − B)dut. (3)

4.4. Machine Learning (ML) Models

ML methods have been suggested in the academic literature as an alternative to MSC methods
for time series prediction, with the same objective. They attempt to improve the forecasting accuracy
precision by minimizing some loss functions, as for example the sum of squared errors. The distinction
between ML and MSC is in how the minimization is performed: the ML methods use nonlinear
algorithms while the MSC method use linear processes. The ML methods require a greater dependence
on computer science to be implemented and are more demanding than MSC methods, as they are
positioned at the intersection of MSC and computer science [172]. There are several approaches
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developed under ML theory. In this review, artificial neural networks (ANNs), support vector machines
(SVMs), decision trees (DTs), adaptive neuro fuzzy inference systems (ANFISs), and recurrent neural
networks (RNNs) were found to support the bases of the models that were implemented more
frequently in electric power forecasting (Figure 7).

Figure 7. Graph with nodes weighted by sample size for the case of the techniques (light-gray node)
and probability of occurrence for the MAPE intervals (dark-gray node).

4.4.1. Artificial Neural Networks (ANN)

Neural networks have been the subject of great interest for many decades due to the desire
to understand the brain and to build learning machines [173]. A neural network is an interconnected
assembly of simple processing elements, units or nodes whose functionalities are loosely based on animal neurons.
The processing ability of a network is stored in the inter-unit connection strengths, or weights, obtained by a
process of adaptation to, or learning from, a set of training patterns [174].

The ANN models have been used in many studies for electric power forecasting [6,39,44,46,48,53–
55,57–62,65,70,75,77,81,82,86,108,153,155,165,175,176] and have reached a forcasting accuracy with an
average MAPE value of 3.781%.

4.4.2. Recurrent Neural Networks (RNN)

Models known as a recurrent neural networks allow feedback connections; these models define
nonlinear dynamical systems but do not have simple probabilistic interpretations [173]. RNN models
have been used in many studies for electric power forecasting [64,69,71,73,88,90,157,177,178] and have
reached a forecasting accuracy with an average MAPE value of 3.610%.

4.4.3. Fuzzy Neural Network-Based Forecasting Methods

Fuzzy logic systems (or, simply, fuzzy systems (FSs)) and neural networks are universal
approximators; that is, they can approximate any nonlinear function (mapping) with any desired
accuracy and have found wide application in the identification, planning, and model-free control of
complex nonlinear systems, such as robotic systems and industrial processes. Fuzzy logic offers a
linguistic (approximate) approach to drawing conclusions from uncertain data, and neural networks
offer the capability of learning and training with or without a teacher (supervisor) [179].

Fuzzy logic algorithms have been used in many studies for electric power forecasting [10,27,33,
45,50,52,63,79,80,83,85,91,113,118,122,154,160,180,181] and have reached a forecasting accuracy with
an average MAPE value of 4.013%.
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4.4.4. Support Vector Machines (SVMs)

Support vector machines are supervised learning algorithms used for solving binary classification
and regression problems. The main idea of support vector machines is to construct a hyperplane such
that the margin of separation between the two classes is maximized. In this algorithm, each of the data
points is plotted as a data point in n-dimensional hyperspace. Then, a hyperplane that maximizes the
separation between the two classes is constructed [182]. This technique was originally designed for binary
classification but can be extended to regression and multiclass classification [173]. Support vector regression
algorithms have been used in many studies for electric power forecasting [41,47,49,76,109,110,112,114,
119,164,183–185] and have reached a forecasting accuracy with an average MAPE value of 4.326%.

5. Evaluation of Model Accuracy

As can be seen in Table 3, as mentioned in [77], there are many factors, such as economic
development, regional industrial production, holiday periods, weather conditions, social change,
electricity price, and population, that are unavoidable, affect electric power randomly, and allow the
data to demonstrate different features.

Short-term load forecast models that rely on weather information require the prediction of weather
parameters for the next few hours or at most the next few days [75]. Similarly, economic indicators and
electrical infrastructure measures are usually useful in forecasting electric power with a long forecast
horizon, e.g., a prediction of the annual peak load at least one year in advanced [39]. However, in the
daily peak load forecasting for the following month, these indicators are not effective, since the forecast
step and horizon are too short to observe their effect [75]; this behavior is shown in Table 3.

Similarly, from Figure 8, it can be seen that among the records of documents that reach HAP,
the average MAPE value is lower in the frameworks that implement hybrid models of ML and
multivariate dependency, such as those developed in [6,27,73–91]. To verify the hypotheses of the
differences in the means and variances in the MAPE, three hypothesis tests are carried out. Table 4
shows that for small and medium effects, the alternative hypothesis on the minor indicates that the
MAPE is accepted for the ML model, based on a hybrid method and with multivariate dependencies.

Figure 8. Boxplot of the papers included in the systematic review, with HAP-MAPE.
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Table 3. Summary of the papers included in the systematic review, with a HAP-MAPE, hybrid ML forecasting approach and multivariate model. The abbreviations
are displayed in Abbreviations Section. 1/ Average MAPE; 2/ Approximate sample size. The Classification of the forecasting models can be seen in Figure A1.

Ref Year Country Energy Type Technique Forecast Other Input MAPE 1/ N 2/ Scale Date Sample

[73] 2006 Australia No Specific ERNN; WT Electricity Load TM, HM, WS 0.794 26,297 Hours 1999 2002
[74] 2013 Iran Wind PSO; ACO Wind Power TM, WS 3.513 8736 Hours 2010 2011
[75] 2008 Iran No Specific ANN; EA Peak Load CI 1.760 26,280 Hours 1997 1999
[76] 2008 EEUU No Specific SVR; BT Electricity Load CI, TM, HM 1.960 30,144 Hours 2001 2004
[77] 2015 Australia No specific ANN Electrical power CI 3.710 70,080 Half-Hour 2006 2009
[78] 2017 UK No Specific PSO; ANN Load Demand CI, TM 1.723 8760 Hours 2008 2008
[79] 2016 Algeria No Specific HW-ES; KNN; WD;

Fuzzy-CM; ANFIS
Peak Electricity TM 2.796 1064 Days 2012 2014

[80] 2010 Iran No Specific ANFIS Electricity GDP, POP, EXP, CPI 2.789 37 Years 1971 2007
[81] 2017 Poland No Specific ANN; PCA Power Load CI, TM 1.235 26,280 Hours 2009 2012
[82] 2018 India No Specific ANN; PSO; GA Electricity

Demand
CPI, GDP 0.220 25 Years 1991 2015

[83] 2017 UK No Specific ELM; Fuzzy Electricity Load CI, TM, DP 1.435 43,852 Hours 2004 2008
[84] 2019 EEUU Wind NWP; WD; CNN Wind Power CI, TM, WS, DP 2.550 26,280 Hours 2015 2017
[85] 2008 Iran No Specific BNN; MCM; Fuzzy Load CI, TM 2.421 1460 Days 2004 2007
[27] 2018 Vietnam No Specific WT; ANFIS; COA Electricity CI, TM, HM, PRS,

RFL, RT, WS
4.330 132 Months 2003 2013

[86] 2017 UK No Specific ANN; JOA Electricity Load CI, TM, DP 5.710 52,560 Hours 2004 2009
[87] 2015 India No Specific ANN; BBO Electrical Energy GDP, POP 2.510 33 Years 1980 2012
[88] 2019 China Wind GM; ERNN; BP Power Generation TM, HM, WS, WDD,

PRS
3.730 1441 15 min 2016 2016

[6] 2019 Australia No Specific ANN; BOOT Electricity 57 Index 5.290 4300 6 h 2014 2017
[89] 2019 Uganda No Specific PSO; ABC Electricity POP, GDP, EP, NS 1.306 17 Years 1990 2016
[90] 2020 Australia Photovoltaic WD; LSTM Power TM, HM, WS, HR 1.868 213,984 5 min 2014 2016
[91] 2018 Turkey No Specific ANFIS Electrical Load CI, TM 8.869 8760 Hours 2017 2017
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Table 4. Hypothesis Test for Difference in Means. 1/ Levene Test (p-value); 2/ test (p-value).

Variable Hypothesis (H0) Homogeneity of Variance 1/ Difference in Means 2/ Effect Size
(Cohen’s)

Model µML ≥ µMSC 0.00386 0.07252 Small
Hybrid µYes ≥ µNo 0.09063 0.04321 Small

Dependency µMulti ≥ µUni 0.00125 0.00059 Medium

In this sense, a summary of the documents found in the review with MAPEs and HAPs that base
their models on ML with a hybrid approach and multivariate dependence is presented in the Table 3.
When we analyzed these documents, we observed that there are common elements; for example,
when building a word cloud from the abstracts, keywords and titles of these documents, we can identify
that in 24% of the cases multiple scale decomposition and wavelet theory (WT) were mentioned.

The wavelet transform, including filtering and forecasting, has been suggest for detailed
examination of the elements or structure of time series in several academic papers in recent years [73].
WT has been extensively implemented in electric power forecasting for decomposing electricity series
into series with particular characteristics that can be predicted more accurately than the original time
series [186–188].

6. Case Study

In this section, we propose a hybrid model to forecast the electric power by using a type of
recurrent artificial neural network known as long short-term memory (LSTM), developed by [189];
we also implemented wavelet decomposition for the data preprocessing (WD-LSTM), as was used
in [90]. We use the acronym WD-LSTM for the proposed hybrid model. The results were compared
with those of traditional neural network models (LSTM), as was applied in [71,177] and with results of
the lagged regression analysis as in [96].

The performance of this methods is demonstrated with a case study using an actual dataset
collected from Chile (Table 5). The objective is to illustrated the approach that allows the electric power
demand forecasting, in terms of its lagged values, identifying the type of model that tends to show
better forecast accuracy.

Maximum daily and hourly electric power demand data over a diverse period were used (Table 5).
Figure 9 shows that there is a regularity in electric power demand data. We observe a clear pattern
based on the year and day of the week. The electric power demand also follows a group of patterns
within any day and depending on the time of the day.

Table 5. Electric power demand object of forecasting.

Type Variable Date Set Size

Training Validation Test

Local
Energy

Dmax Maximum daily electricity demand (MW). 2006–2019 2475 1516 1062
Hed Hourly electricity demand (MW). 2016–2020 865 371 530

The values of four performance evaluation indicators—RMSE: root mean square error,
MAE: mean absolute error, R2: coefficient of determination, and MAPE: mean absolute percentage
error—showed that the hybrid deep learning model (WD-LSTM) exhibits superior performance in
both forecasting accuracy and stability.



Entropy 2020, 22, 1412 12 of 24

Figure 9. Electric power demand series (MW) in Chile.

Figures 10 and 11 provide the comparative hourly and daily-ahead performance results for
three types of days (weekday, weekend, and all days). They likewise provide the performance
evaluation results of regression, LSTM, and WD-LSTM applied to each dataset (training, validation,
and test). The hybrid deep learning model (WD-LSTM) had the best performance of all forecasting
models. The WD-LSTM method generated forecasting results with the lowest MAE, MAPE, and RMSE
and with the higher R2 in most cases. The results further reveal the robustness of the hybrid deep
learning model. The superior accuracy of the hybrid model is primarily due to the deep learning
framework comprising between two and four independent LSTM networks, which provide an
effective means to approximate inherent invariant features and structures. In addition, the low-
and high-frequency components exhibited in the electric power datasets can be better extracted by
wavelet decomposition. Likewise, each LSTM network managed to focus more on capturing the linear
and nonlinear relationships in the energy series, which could not be done with the lagged regression,
at least in non-linear cases.

Figure 10. Performance evaluations of different methods for each type of day.
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Figure 11. Performance evaluations of different methods for hour.

7. Discussion and Conclusions

This paper presented a systematic review of the forecasting models for electric power from
the last 15 years based on ML and MSC techniques. We presented an in-depth analysis of the
performance of electric power forecasting models and compared different forecasting models based on
their MAPE values. A rigorous framework for comparing different classes of models was introduced,
thus generating a reliable picture of the state-of-the-art models’ accuracy of electric power forecasting.
We were able to identify that a large number of techniques are being used and are aimed at forecasting
electrical energy; the techniques with the greatest use are in the fields of ML and ANNs, followed by
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those that implement algorithms with fuzzy logic and RNNs, while in the MSC area, the use of ARIMA
models and regression analysis predominates.

The results can be stratified from three perspectives. The forecasting models (I) from the hybrid
class, (II) of multivariate dependency, and (III) based on the machine learning approach demonstrate
the best performance for electric power forecasting. Regarding the hybrid models, it is highlighted that
24% of the adjustments with the greatest forecasting precision merged wavelet theory into their models.
With regard to multivariate models, we were able to identify that those models that incorporate various
sources of variability in their adjustment tend to have, on average, greater precision in their forecasts.

A case of study was presented, in which the implementation of MSC and ML models was
compared; we found that the linear models, such as lagged regression, are relatively simple and cannot
capture with precision the inherent nonlinear structure of the electric power time series, whereas the
deep learning models implemented have a better performance.

Likewise, it was observed that when decomposing the series according to the type of day of
electricity consumption (workday or weekend), the models tend to have better forecast accuracy and,
in the same way, forecasting errors are minimized by reducing the time horizon (hourly).

Due to electric power systems’ participation in the growing trend of environmental optimization
around the world, a substantial increase in the contribution of diverse sources to the energy generation
is observed. This trend brings about challenges in terms of electric power generation and distribution
system operation, because the dimension and complexity of such advances, among other aspects,
require the use of a computational intelligence systems that act as sources of data and deal with the
control, management, and trading needs at the distribution level in an efficient and robust manner.
In this sense, further research could deepen the understanding of the relationship between the type of
energy, climate, preprocessing techniques, and performance of machine learning models under various
normalized metrics of residuals.
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Abbreviations

The following abbreviations are used in this manuscript:

Nomenclature
Artificial bee colony ABC Gray model GM
Ant Colony Optimization ACO Gross domestic product GDP
Adaptive Neuro Fuzzy Inference System ANFIS Hybrid Monte Carlo HCM
Artificial Neural Network ANN Humidity HM
Autoregressive Integrated Moving Aevrage ARIMA Horizontal Radiation HR
Bayesian Clustering by Dynamics BCD Holt Winters HW
Bayesian neural network BNN Jaya optimization algorithm JOA
Biogeography based optimization BOA K-nearest neighbors KNN
Back propagation BP Long short term memory LSTM
Calendar information CI Number of subscribers NS
Convolution Neural Network CNN Numerical Weather Prediction NWP
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Cuckoo Search Algorithm COA Principal component analysis PCA
Consumer Price Index CPI Population POP
Deep Belief Network DBN Air pressure PRS
Dew point DP Particle Swarm Optimization PSO
Evolutionary Algorithm EA Radial basis function network RBF
Extreme learning machine ELM Rainfall RFL
Electricity price EP Rainy time RT
Elman Recurrent Neural Network ERNN Recurrent Neural Network RNN
Exponential smoothing ES Regression Analysis RA
Exports EXP Support Vector Regression SVR
Fuzzy Neural Network FNN Temperature TM
Gaussian Process GP Wind direction WDD
Genetic algorithm GA Wind speed WS
Generalized Additive Model GAM Wavelet theory WT

Appendix A

Figure A1. Classification of the forecasting models.
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