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Abstract: In Information Geometry, the unit sphere of Lp spaces plays an important role. In this
paper, the aim is list a number of open problems, in classical and quantum IG, which are related to
Lp geometry.
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Gentlemen: there’s lots of room left in Lp spaces.

1. Introduction

Chentsov theorem is the fundamental theorem in Information Geometry. After Rao’s remark on
the geometric nature of the Fisher Information (in what follows shortly FI), it is Chentsov who showed
that on the simplex of the probability vectors, up to scalars, FI is the unique Riemannian geometry,
which “contract under noise” (to have an idea of recent developments about this see [1]). So FI appears
as the “natural” Riemannian geometry over the manifolds of density vectors, namely over

P1
n := {ρ ∈ Rn|∑

i
ρi = 1, ρi > 0}

Since FI is the pull-back of the map
ρ→ 2

√
ρ

it is natural to study the geometries induced on the simplex of probability vectors by the embeddings

Ap(ρ) =

p · ρ
1
p p ∈ [1,+∞)

log(ρ) p = +∞

Setting

p =
2

1− α
α ∈ [−1, 1]

we call the corresponding geometries on the simplex of probability vectors α-geometries (first studied
by Chentsov himself).

When building similar objects in infinite dimension or in the noncommutative case several
interesting questions arise, mostly involving Lp spaces.

The purpose of the present paper is to highlight some of the open problems in this area.
The epigraph before the Introduction is a half quote of a sentence by Saunders Mac Lane, which
is at the beginning of Chapter II in [2]. It is somewhat surprising that Information Geometry suggests
some intriguing questions about the geometry of Lp spaces.
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2. The α-Geometries in Finite Dimensions

First of all we may look differently at α-geometries using divergencies. A divergence on an
n-dimensional manifold M is a smooth function

M×M 3 (p, q)→ D(p, q) ∈ [0, ∞)

which separates points (it is zero iff p = q) such that the matrix

gD
ij = − ∂

∂pi

∂

∂qi
|p=qD(p, q) i, j = 1, ..., n (1)

defined in a local chart, is strictly positive definite for all p ∈ M. So any divergence, by the above
formula, has an associated Riemannian geometry. Let our manifold M be P1

n the simplex of strictly
positive probability vectors in Rn defined in Section 1.

An example of divergence on P1
n is the Kullback–Leibler relative entropy, defined as

DKL(ρ, σ) := ∑
i

ρi(log ρi − log σi)

Let p̃ be defined by
1
p
+

1
p̃
= 1 p ∈ [1,+∞]

The α-divergencies are defined as:

Dα(ρ, σ) := Dp(ρ, σ) := p · p̃ (1−∑
i

ρ
1
p
i σ

1
p̃

i ) α ∈ (−1, 1)

D−1(σ, ρ) := D1(ρ, σ) := DKL(σ, ρ)

The following result is well known.

Theorem 1. The geometries generated by the pull-back of the α-embeddings and the geometries generated by
the α-divergencies coincide.

Two complete references for the classical contents of Sections 1 and 2 can be found in [3,4]
while in [5] it is possible to find an overview of the new developments in Information Geometry.

3. The Unit Sphere of a (Doubly) Uniformly Convex Banach Space

How to transfer this to infinite dimensions? Let us restrict p ∈ (1,+∞) and let (X,F , µ) be any
measure space. Let M be a set of strictly positive probability densities on (X,F , µ), which is endowed
with a (possibly infinite dimensional) manifold structure (I remain purposely vague on this point
because in moving from finite to infinite dimension a number of delicate analytical questions arise
about regularity of the maps involved in these constructions and certainly a comprehensive approach
is very much needed).
The function

Ap(ρ) = p · ρ
1
p p ∈ (1,+∞)

can be seen as a (smooth) function from M to a sphere in the Lp(= Lp(X,F , µ)) space associated
to the above-mentioned measure space. So, what we could pull-back on M, say the α-geometry,
would be exactly the geometry of the Lp sphere.

Following Section 2 in [6] let us show that the sphere of Lp space, which is not a Riemann–Hilbert
manifold, has some “almost Riemannian” features.
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In what follows X is a Banach space and X̃ is its dual. We denote by SX the unit sphere of X and
if L ∈ X̃ and x ∈ X we write 〈L, x〉 = L(x). If ||x|| ≤ ||x + λy|| , ∀λ ∈ R we write x ⊥ y and say that x
is orthogonal to y.

The duality mapping J : X → P(X̃) is defined by

J(x) := {v ∈ X̃ : 〈v, x〉 = ||x||2 = ||v||2} (2)

The space X has the duality map property if J is single valued; in such a case we set x̃ := J(x)
(by the Hahn–Banach theorem J(x) 6= ∅ always).

We also say that X has the projection property if for any closed convex M ⊂ X and any x ∈ X there
is a unique m ∈ M such that

||x−m|| = inf{||x− z|| : z ∈ M} = d(x, M) (3)

In such a case we set πM(x) := m.

Definition 1. A Banach space X is doubly uniformly convex (DUC) if X and its dual X̃ are uniformly convex.

Typical examples of DUC are the Lp spaces. In general we have the following properties.

Proposition 1. Let X be a DUC Banach space.

(i) X has the projection property.
(ii) X has the duality map property.

(iii) x ⊥ ker(x̃).
(iv) If M := ker(x̃) then

πM(v) = v− 〈x̃, v〉
〈x̃, x〉 x

Proposition 2. Let X be a DUC Banach space.

(i) SX is a Banach submanifold.
(ii) TxSX , the tangent space to SX at x, can be identified with ker(x̃).

(iii) The projection operator πx : TxX → TxSX is given by

πx(v) = v− 〈x̃, v〉

Using this projection, the trivial connection on X induces a connection on SX that we call the natural
connection on SX .

When the Banach space X is a Hilbert space then the above construction gives nothing else that
the Levi–Civita connection on the unit sphere of X considered as a Riemann–Hilbert submanifold
of X. From this it follows that the unit sphere of a DUC Banach space inherits a kind of manageable
“Levi-Civita” connection from the trivial geometry of the ambient space.

The above results were proved in [6,7] where they were used to give the first rigorous treatment of
α-geometries in infinite dimension. In particular the classical basic formula relating the α-connections
to the exponential and mixture connections has been proved:

∇p =
1
p
∇m +

1
p̃
∇e
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4. Embedding Densities in the Unit Sphere of an Orlicz Space

Beyond the results of Section 3 there is a very simple idea: if we consider a density ρ on an
arbitrary measure space (X,F , µ) and Φ is a function on the positive axis, which admits an inverse
function Φ−1 then ∫

Φ(Φ−1(ρ)) =
∫

ρ = 1,

so that the function
ρ→ Φ−1(ρ)

should embed ρ into the unit sphere of “something”. This very simple (and vague) idea can be made
precise by the notion of Orlicz space, which we briefly recall (this was done in [7]).

A Young function Φ is a symmetric convex function Φ : R → R ∪ +∞ such that Φ(0) = 0
and limx→∞ Φ(x) = +∞. Let (X,F , µ) be a measure space and f : X → R a measurable function.
The Luxemburg norm || f ||Φ is given by

|| f ||Φ := inf
{

r > 0 :
∫

X
Φ
(
| f |
r

)
≤ 1

}
The Orlicz space generated by the Young function Φ is

LΦ := LΦ(µ) := { f is measurable : || f ||Φ < +∞}

If Φ(x) = ‖x|p/p, p ∈ [1,+∞) we get the Lp space endowed with the equivalent norm
|| f ||Φ = p1/p|| f ||p.

Let us consider now the cases where the Young function Φ is invertible when restricted
to the positive axis. If ρ is a density we call AΦ(ρ) := Φ−1(ρ) the Φ-embedding. Trivially we have:

∫
X

Φ
(
|AΦ(ρ)|

1

)
=
∫

X
Φ(Φ−1(ρ)) =

∫
X

ρ = 1

which implies that ||AΦ(ρ)||Φ ≤ 1. Indeed one can prove (see [7]) that

||AΦ(ρ)||Φ = 1,

so we may embed any density into the unit sphere of any Orlicz space associated to invertible
Young functions.

5. Curvature and Scalar Curvature

Let I ⊆ R be an interval and γ : I → R2 a sufficiently regular curve. The curvature in the point
γ(t) := (x(t), y(t)) is defined as

c(t) =
|x′y′′ − x′′y′|

[(x′)2 + (y′)2]3/2

Curvature coincides with 1/R where R is the radius of the osculating circle, namely the circle that
gives the best approximation of the curve in a given point.

For a general Riemannian manifold one can introduce the notion of scalar curvature according to
the following lines. In general if ∇ is an affine linear connection on a manifold M the curvature is
defined as (see p. 133 in [8])

R(X, Y)Z := [∇X ,∇Y]Z−∇[X,Y]Z.

where X, Y, Z are vector fields. Now consider the case where (M, 〈·, ·〉) is a Riemannian manifold and
∇ the associated Levi–Civita connection. The Riemannian curvature tensor is defined as (p. 201 in [8])

R(X, Y, Z, W) := 〈R(Z, W)Y, X)〉.
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Fix now a point ρ ∈ M and let σ ⊂ Tρ M be a 2-dimensional subspace. Using the exponential map we
may associate to σ a 2-dimensional embedded surface N := expρ(Br(0ρ) ∩ σ) formed by the geodesic
segment of length less than r, which start tangentially to σ. Let K(σ) denote the Gaussian curvature of N.
At pages 99–100 in [9] we have the following result.

Proposition 3. If u, v is a basis for the plane σ then

K(u, v) := K(σ) =
R(u, v, u, v)

〈u, u〉〈v, v〉 − |〈u, v〉|2

In particular if e1, e2, ..., en is an orthonormal basis of Tρ M we have, for i 6= j

K(ei, ej) = R(ei, ej, ei, ej)

The scalar curvature in ρ is defined as

Scal(ρ) := ∑
i 6=j

K(ei, ej)

From the very definition it is straightforward to deduce that the scalar curvature of an n-dimensional
sphere of radius R is constantly equal to

n(n− 1) · 1
R2

6. Problem 1. Does the Lp Scalar Curvature Behave Like Entropy?

We are ready to discuss the first problem of our list. Let us recall that the α-geometry on P1
2

is the pull-back geometry induced by the α-embeddings

Ap(ρ) =

p · ρ
1
p p ∈ [1,+∞)

log(ρ) p = +∞

Let cp(ρ) be the curvature of the α-geometry (where p = 2/(1− α)) at the density vector ρ ∈ P1
2 .

One immediately realizes that:
if p = 1 then cp(·) = constant = 0;
if p = 2 then cp(·) = constant = 1/2.
A straightforward calculation in [10] proves the following result.

Theorem 2. If p ∈ (1, 2) then the curvature cp(·) is a strictly Schur-convex function;
If p ∈ (2,+∞) then the curvature cp(·) is a strictly Schur-concave function.

This theorem is “visually” trivial: if you make a picture of the unit spheres of R2 endowed with
the Lp norms you will be convinced of the truth of the statement without any calculation.

It is natural to try to understand what happens in dimension n, namely, let us consider
the α-embedding on P1

n and let Scalp(ρ) be the associated scalar curvature. Also in this case one
has some trivial cases:

if p = 1 then Scalp(·) = constant = 0;
if p = 2 then Scalp(·) = constant = 1

4 (n− 1)(n− 2).
Indeed for p = 1 we have hyperplane and for p = 2 we have the geometry of

an (n − 1)-dimensional sphere whose radius is 2. The following natural conjecture remains open.

Conjecture 1. If p ∈ (1, 2) then the scalar curvature Scalp(·) is a strictly Schur-convex function;
If p ∈ (2,+∞) then the scalar Scalp(·) is a strictly Schur-concave function.
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Some steps toward a proof can be found in [11].

7. Petz Theorem

The Chentsov theorem has a noncommutative, “quantum” counterpart, the Petz classification
theorem [12,13]. In the quantum case the “noise” is represented by completely positive, trace preserving
maps. Let Mn be the space of complex n× n matrices, Hn the real subspace of Hermitian matrices
and D1

n the submanifold of (faithful) density matrices, namely

D1
n := {ρ ∈ Hn | ρ > 0, Tr(ρ) = 1 }

On the (real) manifold D1
n we lose the unicity of the Chentsov theorem: indeed on D1

n there are
many Riemannian metrics “contracting under noise”. However, Petz was able to characterize all the
metrics with this property; these metrics deserve to be called Quantum Fisher Information(s).

Theorem 3. There exists a bijective correspondence between Quantum Fisher Information(s) and Kubo–Ando
noncommutative means given by the formula

〈A, B〉ρ, f := Tr(A ·m f (Lρ, Rρ)
−1(B))

where f is the operator monotone function associated to the corresponding mean.

Obviously m f (Lρ, Rρ)−1 is a kind of generalized “division by ρ”.
So we have a big family of Riemannian metrics on D1

n, which play the role of Fisher information
in the quantum setting. Among them we are interested in those associated to the following operator
monotone functions:

fp(x) :=
1

p · p̃ ·
(x− 1)2

(x1/p − 1) · (x1/ p̃ − 1)
, p ∈ (1,+∞)

1
p
+

1
p̃
= 1

f1(x) = f∞(x) :=
x− 1

log(x)
p = 1,+∞

We have that fp = f p̃ and
f1 = lim

p→1
fp = lim

p→+∞
fp = f∞

The quantum Fisher information associated to f1 = f∞ is the BKM-metric while the one associated
to fp is the WYD(p)-metric.

8. Problem 2. Geometrization of WYD-Information in Infinite Dimensions?

The WYD(p) metrics are rather special among the quantum Fisher information(s): they are the
only one that comes from the pull-back of a dualized pairing, which was proved in [14]. As specified
in [15] one can look at this procedure as if we have quantum dynamics associated to a Schrödinger
equation, which is embedded using two conjugated α-embeddings. The final result of this procedure
is exactly the WYD(p) metric. In particular, for p = 2 one sees that the Wigner–Yanase information has
a geometric origin, it arises from the pull-back of the map

ρ→ 2
√

ρ

as the classical Fisher information [16].
Since WYD information appears in infinite dimensions [17] (Von Neumann algebra setting), it is

natural to ask if also in that case one can trace a geometric origin for that object. The ingredients
of the previous approach are quantum dynamics, Lp spaces and α-embedding: all these objects make
sense also in the von Neuman algebra setting; therefore, there is no clear obstacle in this direction.
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9. Problem 3. Petz Conjecture for the BKM Scalar Curvature: A Solution by Lp Geometry?

It has been suggested that the scalar curvature of Fisher Information could have a relevant
physical meaning in statistical mechanics being linked to the free energy. Maybe stimulated by Petz
began the study of the scalar curvature in quantum setting with special emphasis on the BKM metric.
He formulated the following conjecture in [18].

Conjecture 2. The scalar curvature of the BKM metric is a Schur concave function.

The truth of the Petz conjecture would be a consequence of the following conjecture.

Conjecture 3. There exists ε > 0 such that for p ∈ (1, 1 + ε) the scalar curvature of the WYD(p) metric
is a Schur-concave function.

Indeed this second conjecture looks much easier to understand than the Petz conjecture. Consider
the noncommutative α-geometry on D1

n namely the pull-back geometry induced by the α-embeddings

Ap(ρ) =

p · ρ
1
p p ∈ [1,+∞)

log(ρ) p = +∞

exactly as in the commutative case.
Let Scalp(ρ) be the scalar curvature of the α-geometry (where p = 2/(1− α)) at the density matrix

ρ ∈ D1
n. One immediately realizes that:

if p = 1 then Scalp(·) = constant = 0;
if p = 2 then Scalp(·) = constant = 1

4 (n
2 − 1)(n2 − 2).

Indeed for p = 1 we have a hyperplane and for p = 2 we have the geometry of a real
(n2 − 1)-dimensional sphere whose radius is 2. Imitating the commutative case we formulate
another conjecture.

Conjecture 4. If p ∈ (1, 2) then the scalar curvature Scalp(·) is a strictly Schur-convex function;
If p ∈ (2,+∞] then the scalar curvature Scalp(·) is a strictly Schur-concave function.

Therefore Conjecture 3 appears rather reasonable: the WYD(p) metric comes from a pair
of α-embeddings in duality, from a pair p, p̃ where 1/p + 1/ p̃ = 1. On the other hand, the BKM
metric appears in the limit p→ 1, p̃→ +∞. For p = 1 we have a flat geometry, scalar curvature is zero,
and for p̃ = +∞ we see a Schur-concave scalar curvature whose contribution could imply that the
BKM scalar curvature has a similar behavior, therefore proving Petz conjecture.

10. Problem 4. The Exponential Manifold by Orlicz Embedding?

Using the Orlicz spaces (in particular the Zygmund ones) in [19] a Banach manifold structure,
called the exponential statistical manifold, has been defined for the space of the strictly positive density
functions on an arbitrary measure space.

Because of the existence of the Φ-embeddings of Section 4 it is possible to ask: can the exponential
statistical manifold structure be derived (like the α-geometries) from the pull-back of an Orlicz embedding?

11. The α-Proudman–Johnson Equations and the α-Connections: The Lenells–Misiolek Result.
Problems 5, 6, 7

In Problem 1981–29 in the Arnold’s Problems the author asks to find equations of mathematical
physics that can be realized as geodesic flows on infinite-dimensional ellipsoids (see page 354 in [20]).
This question is natural in the light of the geometric approach to hydrodynamics due to Arnold himself
in [21]. In recent years this point of view has led to many similar results, a good reference for this
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is the Introduction of [20]. Still in recent years there has been a lot of interest in the study of the
α-Proudman–Johnson equations, see [22–24] for more details. A surprising link between α-geometries
and the α-Proudman–Johnson equations has been found by Lenells and Misiolek in [25]. A very rough
description is the following.

Let S1 = R/Z be the circle, D(S1) the group of smooth diffeomorphisms and Rot(S1) (isomorphic
to S1) the space of rigid rotations. Using the proper analog of the α-divergences the authors build the
α-geometries, and the associated α-connections ∇α on D(S1)/Rot(S1).

Lenells and Misiolek prove in [25] the following result.

Theorem 4. The geodesic equation of ∇α on D(S1)/Rot(S1) is the α-Proudman–Johnson equation

utxx + (2− α)uxuxx + uuxxx = 0

In particular, α = 0 yields the completely integrable Hunter–Saxton equation

utxx + 2uxuxx + uuxxx = 0

and α = −1 yields the completely integrable µ-Burgers equation

utxx + 3uxuxx + uuxxx = 0

Problem 5. Can the Arnold problem be solved for the α-Proudman–Johnson equations?
Lenells and Misiolek look at the α-connections through α-divergence. Imagine that also in

the diffeomorphism group context the α-embeddings produce the same result of the α-divergences,
similarly to the finite dimensional case. In such a case the geodesic equation could be the one
describing maximum circles on spheres of the Lp space thereby solving the Arnold problem for the
α-Proudman–Johnson equations.

Problem 6. Complete integrability for the α-Proudman–Johnson equations?
If the answer to the previous question is positive, does this help in understanding when one has

complete integrability for the α-Proudman–Johnson equations?
Problem 7. An Orlicz generalization of α-Proudman–Johnson equations?
If the answer to Problem 5 is positive and we can look at the α-Proudman–Johnson equations

as a by product of embedding of densities in the Lp spheres, it is natural to ask if using the Orlicz
embedding we can get a family of differential equations for which the α-Proudman–Johnson equations
is just the particular example associated to Lp spaces.
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