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Abstract: Network models provide a general representation of inter-connected system dynamics.
This ability to connect systems has led to a proliferation of network models for economic
productivity analysis, primarily estimated non-parametrically using Data Envelopment Analysis
(DEA). While network DEA models can be used to measure system performance, they lack a statistical
framework for inference, due in part to the complex structure of network processes. We fill this
gap by developing a general framework to infer the network structure in a Bayesian sense, in order
to better understand the underlying relationships driving system performance. Our approach
draws on recent advances in information science, machine learning and statistical inference from the
physics of complex systems to estimate unobserved network linkages. To illustrate, we apply our
framework to analyze the production of knowledge, via own and cross-disciplinary research, for a
world-country panel of bibliometric data. We find significant interactions between related disciplinary
research output, both in terms of quantity and quality. In the context of research productivity,
our results on cross-disciplinary linkages could be used to better target research funding across
disciplines and institutions. More generally, our framework for inferring the underlying network
production technology could be applied to both public and private settings which entail spillovers,
including intra- and inter-firm managerial decisions and public agency coordination. This framework
also provides a systematic approach to model selection when the underlying network structure
is unknown.

Keywords: networks; data envelopment analysis; entropy; generalized multicomponent Ising model;
Georgesçu-Roegen flows and funds model; Bayesian statistics; knowledge production

1. Introduction

Economic production often results from complex systems of inter-connected production processes,
forming a unified network production technology. Data Envelopment Analysis (DEA) methods have
long been used to estimate production technologies and measure relative performance. Network DEA
(NDEA) models provide a generalization to assess the performance of complex systems, in which
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separate production subtechnologies are linked. Network linkages include intermediate output/input
relationships [1–4], as well as dynamic connections across time [5,6] and location [7–9], and two-way
feedback effects between subtechnologies [10]. Chen et al. [11] consider potential pitfalls related to
subtechnology efficiency, frontier projection, and the treatment of intermediate quantities when using
envelopment methods. Chen et al. [12] and Cook et al. [13] review the literature for two-stage network
models. Kao [14] provides a more recent, comprehensive review of the NDEA literature. Several
handbooks [13,15] cover topics related to practical implementation of NDEA.

While NDEA models can accommodate a large number of sub-activities and interactions, the curse
of dimensionality requires that the number of sub-activities/interactions be relatively small compared
to the number of observations for NDEA to discriminate differences in performance. This poses a
tradeoff between better structurally representing system dynamics and better assessment of relative
performance. To avoid the curse of dimensionality, we estimate a relatively parsimonious NDEA
model and then use the resulting performance estimates as inputs into an entropy-based statistical
model that allows recovery of a wider set of network interactions.

Uncertainty surrounding model selection poses another common limitation for NDEA. Kao [16]
argues that it is not possible to a priori choose which network model to apply in a given empirical
context. Most existing studies analyze productivity networks in a descriptive way, without considering
them in a statistical framework. As a result, the network structure is generally assumed and not
estimated. Trinh and Zelenyuk [17] offer one exception, proposing a bootstrap-based comparison
between average DEA-NDEA efficiency scores and their distributions, but without questioning the
network structure, i.e., assuming the NDEA structure.

We propose a statistical-based approach to reconstruct (infer) the network’s structure,
for nonparametrically-estimated productivity frontier models. We develop a Bayesian framework that
relies on recent Pseudo-Likelihood techniques introduced in the physics of complex systems [18–21]
for estimation. Our approach can be considered semi-parametric because it bases inference of the
network structure on a parametric Bayesian approach generalized multicomponent spin model) to
make inference for nonparametric NDEA productivity networks.

Up to now, statistical inference for NDEA models has been constrained by the lack of standard
inferential tools needed to evaluate complex systems. We provide a reasonable and robust inferential
approach that allows us to reconstruct productivity networks empirically, starting from the observed
NDEA data. The expected new insight gained by applying our methodology is then to infer
the productivity network structure from the data instead of assuming it a priori. Although our
inferential approach is parametric and relies on various parametric assumptions and Bayesian statistics,
its foundation is laid by Georgesçu-Roegen [22] in which the economic process follows the second law
of thermodynamics—the entropy law.

Our work also closely relates to recent developments in the econometrics of information [23–25],
statistical inference, and machine learning [26,27]. By including work from information science
and machine learning methods borrowed from the physics of complex systems, we fill an existing
gap in the NDEA literature related to the choice of the network structure, described as an open
issue in recent books on the subject [15,16]. Ours is also a timely contribution, as the diffusion of
computational power of computers permits the implementation of new inferential tools based on
machine learning techniques.

Our empirical illustration examines cross-country and cross-discipline knowledge production
spanning 16 STEM (Science, Technology, Engineering, Math) fields and 17 years. We estimate
research linkages across individual fields, both within and across countries over time, to assess
research performance in both quantitative and qualitative terms. Our key insight from the
application is that while estimated efficiency measures for research output exhibit generally low
correlations across disciplines, we find that many of these disciplines exhibit relatively high
interdependencies. Simple correlation measures fail to capture underlying structural relationships
connecting research disciplines.

Our framework for inference extends previous applications that model knowledge networks
through NDEA (see [6,28–31]). Daraio [32] shows that the complexity of research productivity and
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the expansion of networks in economics provides impetus for the search for new and more general
models of the production process. Our application extends Daraio et al. [33] to estimate scientific
knowledge productivity, offering a more general network model that accounts for the complexity of
research production.

The paper unfolds as follows. In the next section, we illustrate the main features of the economic
model. Section 3 presents the axioms of the underlying DEA models and their connection to those
of the general NDEA model. Included is a schematic of the general types of structures of NDEA
models. This section also introduces the Georgesçu-Roegen [22] flow and funds model (GRFF) and
its connection with our NDEA model. Section 4 illustrates the connection between the statistical
approach proposed and the GRFF model. Section 5 introduces the knowledge production network
that we estimate, including a schematic of the possible cross-disciplinary links that our statistical
second stage estimates can reveal. Next is a description and summary statistics of the data, followed
by the outlines of the alternative parsimonious NDEA models we estimate in the first stage. A formal
statement of the NDEA problem objective and constraints follows. Descriptive analyses of the first
stage productivity models are included, followed by the main results of the application of the second
stage to our knowledge production. The final section provides a discussion of our approach and results.
We include two technical appendices: Appendix A contains an introduction to the Ising spin glass
model while Appendix B provides additional technical details on the Pseudo-likelihood approach.
We also include a more detailed summary of our data in Appendix C.

2. The Economic Model

The axiomatic production theory behind this paper and described in Section 3, is found in [1,34]
and [35]. Färe and Grosskopf [3] introduce the concept of NDEA and extend the axioms to a network
setting. Section 3.2 highlights the correspondence of the axiomatics of NDEA with the representation
of the production process with flows and funds a la Georgesçu-Roegen. This correspondence yields
a new, more general framework for modeling production processes by integrating the production
process, information theoretic approaches to econometrics, machine learning and statistical inference
from the physics of complex systems.

As described by Prieto and Zofio [4], NDEA within an input-output model (for an introduction and
a deep overview see [36]) allows us to gauge potential productivity gains by comparing technologies
corresponding to different “economies”. Such models represent a network where different sectoral
nodes use primary inputs (endowments) to produce intermediate input and outputs (according to
sectoral technologies). In graph theory terms, in an input-output model, each sector (industry) is
represented by a node and each flow of intermediate inputs and outputs is represented by a link.
Hence, it is possible to optimize primary input allocation, intermediate production and final production
using NDEA. This framework allows us to model the different sub-technologies corresponding to
alternative production processes, to assess efficient resource allocation among them, and determine
potential output gains that could be realized by reducing inefficiencies. In this setting, we use statistical
inference to estimate the chains/path connections within and between nodes in order to reveal the
underlying structure of the input-output system (see [36], p. 675).

3. Axiomatics of DEA Network Models

3.1. DEA

3.1.1. Basic Axioms

NDEA is widely used in economics and operations research to assess efficiency and productivity
in complex technologies or systems. As of 23 November 2020 Google Scholar identifies 173,000 articles
identified under ‘Network DEA’ between 1996 and 2020. It is an extension of Data Envelopment
Analysis (DEA) which was introduced by Charnes, Cooper and Rhodes [37]. As its name suggests,
DEA envelops input-output data to identify the best practice ‘frontier of technology’ in the sample data.
Individual data points are compared to that best practice frontier to determine relative performance.
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A well-known issue associated with DEA is the curse of dimensionality: adding more inputs
and outputs to the model requires more data to discriminate performance. DEA as an estimator has
a slow rate of convergence, making statistical inference difficult. This difficulty is inherited by and
compounded in NDEA. NDEA has the additional issue of inference concerning the structure of the
more complicated model structure, which connects multiple subtechnologies. This can be structured
in many ways, i.e., there are many potential models. This motivates our research question: is there a
statistical way to infer the structure of the network model? And can we use that as guidance in model
selection when we are forced to specify fairly parsimonious network models due to the lack of data
and curse of dimensionality. Our contribution is the derivation and application of just such a statistical
approach to structure inference and model selection for NDEA.

NDEA models are a generalization of the basic DEA or activity analysis models of technology
and efficiency; they are often referred to as looking inside the black box technology assumed in more
reduced-form DEA efficiency models. NDEA can be used to model production processes when the
choice of inputs/outputs in one period affects what can be produced in subsequent periods. In addition,
NDEA can be used to model production processes where intermediate products are produced in one
stage of production and are then used to produce final outputs in another stage. They are also useful
when production entails spillovers that can enhance (as in our knowledge production application) or
detract from production by other producers/DMUs.

Following [1], we show that the axiomatic underpinnings are similar to those of the standard
DEA-estimated technology. Notationally, for inputs, x ∈ <G

+ , and outputs, y ∈ <M
+ , we define the

graph of technology, or production set, which relates inputs to outputs:

GR = {(x, y) : x can produce y}.

Depending on the problem at hand, we can model the technology equivalently in terms of the
input set:

L(y) = {x : (x, y) ∈ GR}

or the output set,

P(x) = {y : (x, y) ∈ GR}.

For estimation, activity analysis (DEA) models generally employ a set of linear constraints on
the inputs and outputs to construct the so-called piecewise linear frontier of the technology set,
whether GR, L(y) or P(x), in accordance with the basic axioms of production theory (listed below and
following [35]).

Following the terminology coined by Charnes, Cooper and Rhodes [37] let there be D activities or
Decision Making Units (DMUs) i.e., γ = 1, . . . , D. Each activity (DMU) has an associated input–output
vector (xγ, yγ) = (xγ1, . . . , xγG, yγ1, . . . , yγM). Kemeny, Morgenstern and Thompson [38] relaxed the
von Neumann [39] axioms that all inputs/outputs for each DMU be strictly positive and proposed
the following non-negativity conditions on the input and output data, where the data are sometimes
referred to as ‘coefficients’. These conditions essentially require that the data matrix be of full rank.
These include:

• ∑M
m=1 yγm > 0, γ = 1, . . . , D, each DMU produces some output;

• ∑D
γ=1 yγm > 0, m = 1, . . . , M, each output is produced by some DMU;

• ∑D
γ=1 xγg > 0, g = 1, . . . , G each input is used by some DMU;

• ∑G
g=1 xγg > 0, γ = 1, . . . , D each DMU uses some input.
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If these assumptions are satisfied, then following [35], Färe and Grosskopf [1] show that the basic
activity analysis (DEA) technology, here specified as an output set:

P(x) = {y : ym <
= ∑D

γ=1 λγyγm, m = 1, . . . , M,

∑D
γ=1 λγxγg <

= xg, g = 1, . . . , G, (1)

λγ
>
= 0, γ = 1, . . . , D}

satisfies the axiom set below, which provides a minimal set consistent with neoclassical production
theory. We note that the λ variables are so-called intensity variables which serve to ‘construct’ the
piecewise linear frontier of the technology/output set. A typical DEA application using the constraints
in P(x) above (1), seeks to maximize outputs for each DMU, subject to the input and output constraints
based on the entire data set. This yields an efficiency score for each DMU, where a value of unity
signals best practice performance.

The basic production axioms include:

A.1 0 ∈ P(x), ∀x ∈ <G
+, y /∈ P(0), y ≥ 0. (inactivity is feasible);

A.2 x ∈ L(y), λ >
= 1⇒ λx ∈ L(y) (weak disposability of input);

A.2S x >
= xo ∈ L(y) ⇒ x ∈ L(y) (strong disposability of input);

A.3 y ∈ P(x), 0 <
= θ <

= 1⇒ θy ∈ P(x);
A.3S y <

= yo ∈ P(x)⇒ y ∈ P(x) (strong disposability of output);
A.4 ∀x ∈ <G

+, P(x) is bounded;
A.5 The graph is a closed set.

These are minimal axioms consistent with neoclassical production theory. A.1 allows for
inactivity, A.2–A3S describe feasible constraints on inputs and outputs, imposed through the respective
inequalities imposed in the input and output constraints in P(x). A.4 requires that DMUs cannot
produce unlimited output with given inputs, and A.5 requires that the graph technology set contain its
boundary, which then serves to identify best practice.

In addition, it is often convenient to assume convexity of the input and output sets. The general
result is that if each subtechnology in the network satisfies the Kemeny et al. conditions [38], then the
network satisfies the axioms above. Similarly, if each subtechnology exhibits constant returns to scale,
then the network also exhibits constant returns. We note that this holds for directed networks.

3.1.2. What Makes a Network?

We introduce the general structure of the network model with a figure first introduced by [40],
which illustrates several types of networks. See also [41]. The box in the figure represents the basic
DEA models with exogenous inputs xo entering the ‘black box’ producing outputs y4 exiting the
black box technology. Ignoring the interior of the box would be consistent with the DEA technology
described by the linear constraints in (1). The network model allows specification of multiple processes
or subtechnologies. Here we assume that there are three sub-technologies

P1, P2, P3

organized as in Figure 1, where outputs from P1 and P2 enter P3 as inputs.
We extend this model to include a source, ‘o’, which distributes inputs to the network and a

sink, ‘4’, which collects the network outputs. The notation identifies the source of the variable with a
subscript and the destination with a superscript. So xi

o, i = 1, 2, 3 means that input xo is distributed to
the three subtechnologies, and we have

xo >= x1
o + x2

0 + x3
o .
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Similar notation is used for outputs, so y3
2 means that outputs from P2 are inputs into P3. The final

output is

y = y4
1 + y4

2 + y4
3,

with the appropriate choice of dimension of the output vectors. This schematic includes the possibility
of parallel subtechnologies or processes such as P1 and P2, as well as sequential sub-technologies
which could be linked through time providing a basis for a dynamic network or supply chain, echoing
the earlier work of Georgesçu-Roegen.

A formal mathematical statement of the network problem we solve in our illustration is deferred
to Section 5.

xo

x1
o

x2
o

x3
o

y3
1

y3
2

y4

P1

P2

y4
1

y4
2

y4
3P3

Figure 1. Three node network with input source and output sink.

3.2. Connection with Georgesçu-Roegen’s Flows and Funds Model

The network model analyses the joint actions of different activities within a process. Our theoretical
framework allows us to analyze and represent production processes much such as the Georgesçu-
Roegen Flows and Funds model (hereafter GRFF model) as subtechnologies which are connected to
form the broader network via a maximum entropy condition. In this section, we show how the GRFF
Model bridges the axiomatic of NDEA and estimation techniques based on complex systems.

NDEA models use the structure of networks to model production processes. Georgesçu-Roegen
in the 1970s proposed a production model based on “organized elementary process” which can be
in line or in parallel. We observe here that this production element is implicitly used in NDEA
models. The “organized elementary process” of the GRFF model is the main ingredient or kernel of
the axiomatics of NDEA introduced in Section 3 and of the transformation processes modelled in the
NDEA literature. We think we are the first to point out the correspondence illustrated in Figure 2.

Figure 2 contains three panels. The North-West panel shows the elementary unit of the
Georgescu-Roegen production model, the so-called “organized elementary process” which can be
of parallel or in-line production. The North-East panel illustrates the Network DEA models that we
presented in the previous section, characterized by both parallel (P1 and P2) and in-line production
processes (such as P1 and P3 or P2 and P3). The South panel shows two examples of processes modeled
in NDEA models. The model on the left illustrates a two-stage production process in parallel while
the model on the right shows a four-stage production process in line. As mentioned above, GRFF’s
“organized elementary process” is implied in the North-East and South panels and for this reason,
in Figure 2, we reported in dashed form the arrows from the North-West panel towards the other two
panels. In this way, we highlight how GRFF’s “organized elementary process” is implicitly contained
in the other two panels.

The schematic representation of NDEA and the possibility of including both parallel and
sequential sub-technologies can be linked then to the GRFF model. Generally (see e.g., [42]), the model
takes into account the actual characteristics of production elements and processes, such as, indivisibility,
complementarity, tacitness and heterogeneity of productive knowledge.
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In the GRFF model, a flow is an input or an output that enters or exits from a process (for example,
energy, water, software, loom, computer, etc.). A fund provides its services to several processes that
occur over time (for example, worker, software, land, loom, computer, etc.). A distinction is made
between the agents of production processes and the services that they provide. Activities consist of
different operations which require the performance of one or more elementary tasks. An elementary
task is an operation which, by definition, is not further divisible (for instance, loading or unloading an
intermediate product or cutting a piece of fabric). The GRFF model can be implemented both at the
microeconomic level, considering individual case studies, and at the macroeconomic level, analysing a
set of production units in different sectors of activity.

Figure 2. Connections among GRFF Model, our Axiomatics of NDEA and examples of NDEA models .

The GRFF model allows the analytical representation of the organization of production processes
including the organization and time dimension of production processes. The formulation of the
network production technology presented in Section 3 is an implementation of the GRFF model.
The GRFF model may also be connected to the neo-Schumpeterian interpretative framework of
production of new processes by means of creation and diffusion of knowledge [43], in which there is
an interplay between capabilities, transactions and scale and scope to explain the boundary and the
competitiveness of the analyzed units [44].

4. The Statistical Model

4.1. Maximum Entropy and Georgesçu-Roegen

The principle of maximum entropy serves as the foundation of the theory of inference [45],
providing the statistical mechanics to reconstruct probabilistic information from incomplete data.
Physical systems evolve spontaneously and possess stability characteristics at equilibrium, which is
characterized by the value of maximum entropy. The key to the application of the principle (see [45])
is associating to a probability density function (pdf) an entropy function that measures the dispersion
or uncertainty with which the occurrence of possible events are expected. This allows us to introduce
constraints, based on our knowledge of the system, that can be treated with the formalism of Lagrange
multipliers (see Section 4.2 for more details).

Generally, entropy may be interpreted as: (i) a measure of disorder in a system, (ii) a measure of
our ignorance of a system, and (iii) an indicator of the irreversible changes in a system [46].
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The Austrian school posits the economy as a complex system that is the outcome of uncoordinated
individual behavior [47,48]. In such systems, equilibria do not always refer to a “stationary state”
but instead are related to the concept of attractors. An attractor is a deterministic sequence of states
which are cyclically visited by the system. As such, it becomes impossible to fully understand macro
processes by examining individual behavior. Although representatives of the Austrian School had
a skeptical regard to the use of mathematical tools in economics [49], their ideas can be expressed
through the lense of statistical thermodynamics or the theory of information (see also [50]).

In chapter VI of his 1971 book [22], Georgesçu-Roegen describes the introduction of
statistical mechanics and highlights the connection of economic processes with the second law of
thermodynamics, i.e., the entropy law.

We draw the connections here between statistics, economic productivity, and physics of complex
systems. As is well known, the correlation between two variables can be influenced by other
confounding factors, and does not imply a direct causal effect of one variable on another. On the other
hand, interactions or interdependencies refer to strict relationships between variables, allowing us to
describe the impact of the variation of one variable on another. Economic productivity models can
be used to analyze these interdependencies in a production process, as well as the interconnections
between different economic sectors. Physics investigates the interactions between particles in order to
analyze direct and reciprocal effects.

We finally highlight the fact that in information theory the maximum entropy problem can be
reformulated as a minimum cost of coding, which is actually a function defined as the opposite of the
entropy [51].

We aim to derive the level and the structure of interactions between disciplinary research
productivities. We can think of this as an inverse problem, as inference of the underlying network
is drawn from observational data [25]. Importantly, Georgesçu-Roegen [22] provides the theoretical
support for the unknown model parameters, and justification of the assumptions underlying our
statistical model.

4.2. Maximum Entropy Estimates

We define our variables as the vectors si = (s(1)i , ..., s(γ)i , ..., s(D)
i ), i = 1, ..., N. Here and in the

following bold style marks a vector quantity. Subscripts, e.g., i, indicate disciplines, whereas the
superscript index γ = 1, .., D refers to a given Country. The observable si depends on the observation
time t, thus the set of data {s(t)} = {s1(t), ...si(t), ..., sN(t)} can be defined, where t = 1, ..., T identifies
a given realization of the generic set of variables or configuration {s}. To simplify the notation, where
unnecessary, the index t will be omitted. The element of our variable, s(γ)i , in the case of our application
to knowledge production (see Section 5.1), is related to productivity in the discipline i of the Country
γ as follows

s(γ)i (t) =
∆(γ)

i (t)√
∑D

γ=1 ∆(γ)
i (t)2

; ∆(γ)
i (t) = π

(γ)
i (t)− πi(t); (2)

πi(t) =
1
D

D

∑
γ=1

π
(γ)
i (t); γ = 1, ..., D; i = 1, ..., N; t = 1, ..., T. (3)

π
(γ)
i (t) is the productivity of country γ in disciplinary subject category i at time t. We let πi(t) represent

the world-country average of productivity in subject i, so that si = 0 and s2
i = 1

N . We can use this
formulation to account for the recent trend of increasing worldwide scientific productivity, considering
deviations from the world-country average productivity, ∆(γ)

i (t), in place of π
(γ)
i (t). While the average

scientific productivity increases over time, the distribution of the deviations around the means does
not. See the evidence reported in [52].
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Shannon’s [51] theorem states that entropy (S), defined in statistical mechanics, is a measure of the
‘amount of uncertainty’ related to a given discrete probability distribution p(s). Accordingly, S[p] is
given by

S[p] = −K ∑
{s}

p(s) log[p({s})], (4)

where K is a positive constant and p({s}) is the pdf (probability density function) of the configuration
{s}. This quantity is positive, additive for independent sources of uncertainty and it agrees with the
intuitive notion that a uniform (or broad) distribution represents more uncertainty than does a sharply
peaked distribution. It is immediate to verify the latter observation in the one-dimensional case by
considering Equation (4) and taking into account the property of the discrete distribution of probability,
pi ≤ 1.

In making inference on the basis of incomplete information we must use that probability which
maximizes the ‘amount of uncertainty’ or entropy subject to whatever is known [45]. This yields an
unbiased assignment, avoiding arbitrary assumption of information which by hypothesis we do not
have [45]. For a set of variables {s} the so-called empirical expected value of a given function of {s} is
defined as the average of the function over the observed realization (the mean) of {s}, in the present
case the average over time. Since some empirical expectation values can be measured, formally this
means that p({s}) can be found as the solution of a constrained optimization problem, i.e., maximizing
the entropy of the distribution subject to conditions that enforce the expected values to coincide with
the empirical ones. We will refer to the quantities whose averages are constrained as ‘features’ of
the system. For simplicity, we choose to observe the lower order statistics of the data which can
bring information about the underlying network of interactions between variables, i.e., pairwise
correlations. The features of the system we are considering are thus the two-variable combinations
si · sj, i, j = 1, ..., N, i 6= j. The optimization problem reduces to

Maxp({s})S[p], (5)

with the constraints

∑{s} p({s}) = 1 and < si · sj >= 1
T ∑T

t=1 si(t) · sj(t), i, j = 1, ..., N, i 6= j, (6)

where ‘< >’ is the true average over the distribution p. The symbol ‘·’ denotes the Hadamard product
of two vectors. The first constraint accounts for the correct normalization of the pdf, whereas the
second one arises from the required equality between true and empirical average of the above-defined
features. Generally, if certain interdependencies are known to exist between the elements of the
matrix S[p], constraints can be imposed to account for these interdependencies. However, instead
of imposing a priori interdependency constraints we chose to infer them instead of assuming their
existence. Solving Equation (5) with the constraints (6) leads to

p({s}) = e−
1
2 ∑i 6=j Jijsi ·sj

Z
. (7)

The chosen parameters, Jij, are symmetric, i.e., Jij = Jji (There is a link between the assumption of
equilibrium underlying a Boltzmann-Gibbs distribution, and symmetry of the pairwise interactions.
Symmetric couplings lead to a steady state described by the Boltzmann-Gibbs distribution while
asymmetric couplings lead to a non-equilibrium state [53]. We can assign to the system a particular
dynamics, which leads it to a given steady state distribution. Recent developments achieved for
dynamical inverse Ising model [54,55] could represent an interesting extension of the present work,
which is left for future research). The constant Z can be determined by exploiting the constraint
∑{s} p({s}) = 1, obtaining Z = ∑{s} e−∑i 6=j Jijsi ·sj . The parameters Jij are determined by requiring the
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second constraint to be fulfilled. Asymmetric Jij can always be re-conducted to symmetric Jij, which
give rise to the same values of pdf if this latter is the Gibbs distribution in Equation (7).

We observe that the pdf defined in Equation (7) coincides with the Maxwell-Boltzmann probability
distribution function at a given fixed temperature,

p({s}) = e−H({s})

Z
(8)

related to an Ising model with spin si, interaction parameters Jij and zero magnetic field, described by
the Hamiltonian

H = −1
2

N

∑
i 6=j

Ji,jsi · sj. (9)

The quantity Z in Equations (7) and (8), constant with respect to {s} but dependent on the set of
parameters {J} with generic element Jij, is called in this context the partition function.

The connection between maximum entropy and maximum likelihood is indeed well known
(see e.g., [56]) and the pdf in Equation (7) which satisfies the constraint on the parameters Jij given
in Equation (6) can properly be derived by searching the maximum of the so-called Likelihood
function within the class of models of the Boltzmann distribution related to an Ising model with zero
magnetic field. The Likelihood function is defined in the context of Bayesian inference (see e.g., [26]).
By assuming that (i) each realization of the set {s} is drawn independently, (ii) the data have been
generated by a (known) model, which depends on the set of (unknown) pairwise parameters {J},
one aims to find the optimal values of {J}, i.e., the ones which maximize the conditional probability
p({J}|{s}). From the Bayes theorem [26] it follows that

p({J}|{s}) = p({s}|{J})p({J})
p({s}) = p({s}|{J})p({J})∫

{J} p({s}|{J})p({J}) . (10)

The probability p({J}|{s}) is called posterior, p({J}) prior, p({s}) evidence and p({s}|{J}) Likelihood.
If the prior is the uniform distribution, as we assume here, the most probable a posteriori set of variables
is, as a consequence of Equation (10), the one which maximizes the Likelihood function. Under the
further assumption that the Likelihood function belongs to the class of Boltzmann distribution
functions, the so-called Log-Likelihood function can be defined as

l({J}) =
T

∑
t=1

log[p({s(t)}|{J})] =
T

∑
t=1
−H({s(t)}|{J})− T log(Z({J})). (11)

If one assumes that the system can be described by an Ising-like, pairwise interacting model
(see Appendix A for an introduction and additional details) with zero external field, the Hamiltonian
H is the one defined in Equation (9). We observe that in the definition of the Log-Likelihood function
in Equation (11) the hypothesis of independency of the realizations of the configuration {s} at different
times has been exploited, see point (i) above. Thus, the optimization problem reduces to choosing
the set of parameters {J}, which maximize the pdf in Equation (11). A quick calculation of the
first and second derivatives of Equation (11) with respect to the parameters Jij shows that the set of
parameters which maximizes Equation (11) should indeed maximize Equation (5) with the constraint
in Equation (6).

The Ising model has been widely applied in different fields, such as modelling the behaviour
of magnets in statistical physics [57], image processing and spatial statistics [58–60], modelling
of neural networks [61] and social networks [62]. It is, however, worth noting that by exploiting
Shannon’s theorem the Ising model does not arise from specific hypotheses about the underlying
network but instead is the least-structured model consistent with the measured pairwise correlations.
In Appendix A, we outline how the Ising spin glass model is introduced in the physics of complex
systems. Table 1 describes the main components of our model and the correspondence between the
Ising spin model from statistical physics and economic productivity analysis.
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Table 1. Model’s components.

Statistical Physics Productivity Analysis

Generalized Multicomponent spin model Disciplinary productivity, defined in
with arbitrary interactions network DEA in an input-output framework

node variable or multicomponent spin: deviation from world-country average productivity
si = (s1

i , ..., s(γ)i , ..., sN
i ) of discipline i and countries (γ)

Pairwise node interactions or couplings: Ji,j
pairwise interdependencies between
productivity of different disciplines

Hamiltonian: generalized cost function
H = − 1

2 β ∑N
i,j=1 Jijsi(t) · sj(t)−∑N

i=1 si(t) · hi linked to the estimation of the likelihood

β: inverse of the temperature external global parameter

hi: local magnetic field contextual environmental variables of discipline i

The Jij in physics measure a direct and reciprocal (mutual) effect (the interaction) of one entity on
another entity (and vice versa). The concept of interaction in physics can find its correspondence in
the interdependency in Input-Output economic analysis. The latter means the existence of a mutual
influence between sectors (disciplines).

The coupling parameters Jij generate the configurations of the system that may be characterized
by the correlations between the spin variables, the so-called overlap measures (see also [63]), defined
as follows:

Qij = 1/T
T

∑
t=1

si(t) · sj(t), (12)

where t = 1, ..., T is time. As it is well known, a correlation measures the association between
two variables. It shows a tendency of one variable to change with some regularity when the other
changes, but this tendency may be moderated (influenced) by other factors, and depends on the whole
configuration, including indirect effects. Correlation does not mean a direct effect or relation. On the
other hand, interactions or interdependencies (Jij) refer to strict relationships between variables which
allow us to describe the impact of the variation of one variable on another. Assuming this model to
make inference permits us to consider correlations beyond the interdependencies among the units of
analysis. As we will see in the application (see Section 5), the productivity of two disciplines may be
correlated because they tend to be associated in their variation, but they may not interact. Here we
impose Jij ≥ 0 without loss of generality. The Jij represent the interaction strength between i and j.
The higher the value of Jij the stronger is the interaction between i and j.

4.3. Maximum-Likelihood and Pseudo-Likelihood Estimates

Though the likelihood function definition has deep roots in information theory, Bayesian inference
and statistical mechanics, as discussed in the Section above, the realization of an optimization algorithm
able to draw the optimal {J} is hindered by the general intractability of computing Z({J}) and its
gradient [18,26]. Hence, in place of maximizing the likelihood function, we may define and maximize
a different objective function, the so-called pseudo-likelihood. It is possible to show [18,64] that
the estimation of the parameters obtained by a pseudo-likelihood maximization is consistent with
the maximization of the likelihood function, that is the two functions are maximized by the same
set of parameters. This statement becomes exact in the case of infinite sampling [18]. We do not
discuss in detail here how these results are achieved. We discuss only the guidelines, redirecting for
details elsewhere (see e.g., [65] and the references cited in this sub-section). By its very establishment,
the pseudo-likelihood function permits to solve the optimization problem avoiding the troubles
related to the computation of Z({J}). It has indeed the advantage to be maximized in polynomial
time. The pseudo-likelihood function is based on the so-called local conditional likelihood functions,
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p(si|{s\i}) at each node of the network, si, i = 1, ..., N. The symbol {s\i} means a set of variables sj
with i 6= j. The local conditional probability (single variable pseudo-likelihood) at the i-th node is

p(si|{s\i}) =
1
Zi

e−Hi(si |{s\i}) (13)

The local Hamiltonian Hi(si|{s\i}) = −si · [ 1
2 ∑1,N

i 6=j Ji,jsj] and the local partition function is

Zi = ∑{si} e−Hi(si |{s\i}). Letting l′(si|{s\i}) = log[p(si|{s\i})], the Log-Pseudo-Likelihood function is

λ({J}) =
T

∑
t=1

N

∑
i=1

l′(si(t)|{s\i(t)}). (14)

The gradient of the log-pseudo-likelihood function with respect to the parameter Jij can be easily
calculated, obtaining

∂

∂Jij
λ({J}) = 1

2
T
[ 1

T

T

∑
t=1

si(t) · sj(t)− < si · sj >i,{J}
]
, (15)

where ‘< >i,{J}’ states for ensemble average calculated for the pdf p(si|{s\i}) with parameters set
{J}. It is possible to rephrase it, obtaining

∂

∂Jij
λ({J}) = 1

2
T
[ 1

T

T

∑
t=1

si(t) · sj(t)− << si · sj >i,{J}>{J}
]
, (16)

where ‘< >{J}’ states for ensemble average calculated with the pdf in Equation (7) or Equation (8)
with set of parameters {J}. The gradient of the log likelihood function is

∂

∂Jij
l({J}) = 1

2
T
[ 1

T

T

∑
t=1

si(t) · sj(t)− < si · sj >{J}
]

(17)

By comparing Equations (15) and (16) it is possible to infer that in the limit of large T: (i) both the
gradients go to zero if the elements of the set {J} are the ‘true’ parameters defining the pdf which
generates the data; (ii) ∂

∂Jij
λ({J})→ ∂

∂Jij
l({J}).

Specifics on computation of log-pseudo-likelihood function and its gradient with respect to Jij,
and details on optimization algorithm are reported in Appendix B.

The methods employed and the codes written to implement the related algorithms have been
tested on the Ising model with known coupling coefficients on random graphs, thus guaranteeing the
right convergence of the inference procedure and the proper reconstruction of the interaction network.

5. Application to Knowledge Production

5.1. The Knowledge Production Network

We point out that our proposed inferential approach used to recover the broader network structure
can be applied to different network models developed for diverse fields of applications. To illustrate
its potential, we apply the method to the field of knowledge production. Taking into account the data
available for the empirical analysis, we will work with a network that has the form shown in Figure 3.

In the context of the GRFF model we assume that accumulated knowledge from previous periods
is a fund variable and new knowledge produced in the form of publications in the current period is a
flow. Two fund sources arise from accumulated knowledge: knowledge that a DMU itself produced in
previous periods, z, and spillover knowledge accruing from the knowledge (publications) that other
DMUs produced in previous periods, Y. In turn, the flow of new knowledge produced by a DMU in
the current period becomes part of the fund of own accumulated knowledge it can draw upon in a



Entropy 2020, 22, 1401 13 of 30

subsequent period and that new knowledge spills over and becomes a fund available to other DMUs
in subsequent periods.

2

….. …..

J1,2

….. …..

J1,3

….. …..

….. ….. ….. …..

….. …..

….. …..

….. …..

….. …..

J1,N

J1,4 J1,5 J1,6

J1,i

J1,...

3

4
5 6

i

1

i

N

N

…

Figure 3. An illustration of the network model. Each disciplinary productivity πi, which is a node in
this network, includes the country-level set of disciplinary productivity π

γ
i with γ = 1, ..., D.

Figure 3 illustrates the structure of the network that we will reconstruct using our new semi
parametric approach in Section 5. This network models the interdependencies existing between
disciplinary productivity/efficiency, πi, where disciplines i = 1, ..., N are the Scopus subject categories.
The network nodes πi comprise the respective productivity measures, π1

i , ..., π
γ
i , ..., πD

i , for each
country γ = 1, ..., D. We consider the main 53 world countries according to their scientific production.
The productivity/efficiency of country γ in discipline i, π

γ
i (omitting the time t from the notation for

an easier reading), is computed in a DEA setup through the Shephard output distance function for
each country relative to the discipline-time specific technology (Pγ,t

i that will be introduced in detail in
Section 5) as

π
γ
i (xγ,t

i , zγ,t
i , Yγ,t

i , yγ,t
i ) = inf{πγ

i : yγ,t
i /π

γ
i ∈ Pγ,t

i }. (18)

The reciprocal of the Shephard output distance function, 1/π
γ
i , measures the proportional expansion

of observed outputs that could be achieved if the DMU were to become efficient.
Figure 3 shows a network of disciplinary productivities πi, each of them composed by

country-level productivity π1
i , ..., π

γ
i , ..., πD

i . For instance, the productivity of Chemistry πChem

is composed by the country-level productivity π
Arg
Chem, ..., π

γ
Chem, ..., πUSA

Chem, where ‘Arg’ stands
for Argentina.

The disciplinary interdependencies or interactions are represented by the pathways, Jij.
Importantly, these pathways are generally unknown, and must be inferred, although if knowledge of
the interactions is known, constraints can be incorporated that account for those interactions. Example
disciplinary interdependencies include the use of new computational methods from computer science
by those in mathematics or the natural sciences; advances in neuroscience by those in medicine and
nursing; new findings in environmental science by those in earth sciences and agriculture. Indeed,
as we will see in the application, the present study illustrates an interdependency pathway between
physics and the social sciences. Although it is theoretically possible to include the inputs/outputs of
all disciplines in the technology, by doing this we would encounter two problems. First, assuming
the homogeneity of all disciplines in their knowledge production, which is clearly not the case,
and second, the curse of dimensionality would likely render all DMUs to be on the efficient frontier.
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Therefore, we first estimate productivity/efficiency for specific disciplines within a specific country in
an NDEA model. Then, we use those productivity/efficiency estimates to infer the generally unknown
connections between disciplines using the method described in Section 4.2.

5.2. Data and Descriptive Analysis

Our world-country bibliometric data were extracted from the Scopus database, for 16 disciplinary
subject categories from 1996 to 2012. Data problems in bibliometric studies are well known. A common
way to reduce them is to analyze macro-level bibliometric data. Comparative analysis is more reliable
when the unit of analysis is more aggregated because in a larger sample size, micro random errors
mutually compensate [66]. The potential for changes in coverage from inclusion or exclusion of
journals to disproportionately affect smaller countries with fewer publications presents another issue
of concern. This may lead to unreliable values when a country only has a small number of scholarly
outputs [67]. To avoid this problem, we consider the 53 most productive countries (in terms of scientific
productivity), which account for more than 95% of the world scientific production in the considered
period. (The 53 countries (Country Alpha 3 Code labels) analysed in this paper are: 1 = ARG, 2 = AUS,
3 = AUT, 4 = BEL, 5 = BGR, 6 = BRA, 7 = CAN, 8 = CHE, 9 = CHL, 10 = CHN, 11 = COL, 12 = CZE,
13 = DEU, 14 = DNK, 15 = EGY, 16 = ESP, 17 = FIN, 18 = FRA, 19 = GBR, 20 = GRC, 21 = HKG,
22 = HRV, 23 = HUN, 24 = IND, 25 = IRL, 26 = IRN, 27 = ISR, 28 = ITA, 29 = JPN, 30 = KOR, 31 = MEX,
32 = MYS, 33 = NGA, 34 = NLD, 35 = NOR, 36 = NZL, 37 = PAK, 38 = POL, 39 = PRT, 40 = ROU,
41 = RUS, 42 = SAU, 43 = SGP, 44 = SRB, 45 = SVK, 46 = SVN, 47 = SWE, 48 = THA, 49 = TUN,
50 = TUR, 51 = TWN, 52 = UKR, 53 = USA).

Luwel [68] and Aksnes et al. [69] report the main issues related to the integration of bibliometric
data with other inputs data, in particular R&D expenditures. Methodological problems in measuring
productivity at the macro level are mainly due to a lack of standardization in the measurement of
resources and outcomes across countries. Moreover, the methodologies for collecting input and
output data have been developed largely independently from each other. We attempt to bypass
these issues of standardization and measurement by working with simpler quantity data on inputs
and outputs for this paper. We restrict research inputs to the number of publishing authors, NA,
and outputs to the number of publications, P, as well as the number of highly cited publications
(top 10%), HCP. These indicators are the most known and commonly used indicators for the
assessment of the contributions scholars make in their research publications to the advancement
of scholarly knowledge [70]. Bibliometrics and quantitative studies of science are heavily related to
these indicators [71]. The data on NA come from Elsevier Bibliometric Research Project (EBRP). In the
elaborations carried out to estimate the interactions (Jij) and infer the network structure, to increase
the number of available data we transformed yearly data into weekly data by means of a linear
interpolation. This leaves 833 observations of weekly total publications and highly cited publications
for the 1996–2012 panel.

Table 2 gives an overview of all the indicators available for the present study. The list of the
Scopus 27 subject categories is reported in Table 3.
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Table 2. List of Indicators.

Ind Description

P Number of articles (integer count)

Pf Number of articles (fractional count, based on authors affiliations)

C Total citations (4 years window, i.e., for articles in 2006,
citations are from 2006–2009)

CPP Total citations per paper (4 years window, i.e., for articles in 2006,
citations from 2006–2009)

HCP Number of articles in top 10 per cent of most highly cited
articles in a discipline

PINT Number of internationally co-authored papers

PNAT Number of nationally (but not internationally) co-authored papers

PINST Number of papers co-authored by members of different
institutions within a country

PSA Number of non-collaborative (single address) papers

NA Number of publishing authors

Table 3. List of the 27 Scopus’ subject categories.

asjc Subject DescriptionCode Category

10 GENE General
11 AGRI Agricultural and Biological Sciences
12 ARTS Arts and Humanities
13 BIOC Biochemistry, Genetics and Molecular Biology
14 BUSI Business, Management and Accounting
15 CENG Chemical Engineering
16 CHEM Chemistry
17 COMP Computer Science
18 DECI Decision Sciences
19 EART Earth and Planetary Sciences
20 ECON Economics, Econometrics and Finance
21 ENER Energy
22 ENGI Engineering
23 ENVI Environmental Science
24 IMMU Immunology and Microbiology
25 MATE Materials Science
26 MATH Mathematics
27 MEDI Medicine
28 NEUR Neuroscience
29 NURS Nursing
30 PHAR Pharmacology, Toxicology and Pharmaceutics
31 PHYS Physics and Astronomy
32 PSYC Psychology
33 SOCI Social Sciences
34 VETE Veterinary
35 DENT Dentistry
36 HEAL Health Professions

Table 3 reports in bold the 16 subject categories considered in the analysis and the variables
available for each discipline. We excluded social sciences and humanities disciplines whose coverage
of scholarly outputs in indexed journals is much lower than the other subject categories considered.
Table 4 presents descriptive statistics for the selected disciplines, namely: BIOC, COMP, ENGI,
MEDI and PHYS. Appendix C reports descriptive statistics on the other disciplines that will be
analysed in the paper.
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Table 4. Summary Statistics Performance Variables, by Discipline (ASJC code) (53 Countries, 1996–2012,
901 Observations Each Discipline).

BIOC (13) Mean Std. Dev. Min Max

Articles 4357.6 9723.4 44 85,295
Highly Cited 529.1 1572.1 0 15,480
Number of Authors 10,499.4 23,931.7 95 229,139

COMP (17)

Articles 2727.5 7315.9 7 80,276
Highly Cited 355.6 1013.9 0 10,123
Number of Authors 4161.6 11,548.7 11 128,273

ENGI (22)

Articles 5433.7 14,078.9 31 156,349
Highly Cited 739.5 1804.5 0 19,830
Number of Authors 8981.8 23,456.8 54 293,605

MEDI (27)

Articles 7672.4 17,175.3 95 165,181
Highly Cited 1027.9 2929.3 0 28,743
Number of Authors 15,773.2 34,286.3 211 351,702

PHYS (31)

Articles 4396.5 8271.2 19 58,244
Highly Cited 559.9 1208.5 0 10,591
Number of Authors 6946.0 14,391.0 26 127,209

5.3. Models for Estimating Knowledge Production

Our network models borrow from previous work on knowledge production ([6,30]), while the
production variable choices are modeled after Georgesçu-Roegen, where we include both flow variables
and funds variables. We think of knowledge production in a production axiomatic framework, in which
we include author count as a flow type input variable, and cumulated previous own publications as a
fund or knowledge stock, which produces a flow of publication outputs.

What makes it a network is the fact that the cumulated publications of a discipline in one country
are available to other countries in the same discipline, and previous cumulated publications from other
countries in that discipline also are available to the discipline in the ‘home’ country as a fund-type
input variable. This specification proxies the public good/externality nature of publications as well as
their role in contributing to the stock of knowledge.

Table 5 outlines the examined basic (static) and network productivity models, which we separate
into two categories: Quantity (1) and Quality (2). The first category represents ‘quantity of knowledge,’
using raw publication counts (P) to measure final knowledge output. Within this category, the basic
model (1.1) uses the stock of previous publications within each country and the number of authors (NA)
as the knowledge inputs. The corresponding network model (1.2) also includes the stock of previous
publications from other countries as a knowledge spillover input. The second category represents
‘quality of knowledge,’ using the number of highly cited publications (HCP) in place of raw publication
counts, for both previous publication inputs and current publication final outputs. While citations are
widely used to indicate publication quality, we note that there are several other potential alternatives,
including SCImago journal rank (SJR) (Lee et al., 2016), peer reviews [72], and restricting to top-tier
journals [73]. Quality models 2.1 and 2.2 serve as the quality-adjusted versions of quantity models 1.1
and 1.2, using the HCP approach to distinguish quality. We add a simple productivity model given by
the ratio of publications to authors (P/NA) as a baseline.
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Table 5. Network DEA Models of Knowledge Production.

Models Inputs Output

(0) Simple
productivity model Own author count (NA) Own current pubs (P)

(1) Quantity
1.1 (Basic) NA, own prev pubs P
1.2 (Network) NA, own prev pubs, other prev pubs P

(2) Quality
2.1 (Basic) NA, own prev HCP Own current HCP
2.2 (Network) NA, own prev HCP, other prev HCP Own current HCP

Figure 4 illustrates the network for the hypothetical case of two countries, γ and γ′, both for
discipline i in period t. Their flow inputs are the author counts denoted by x and their final outputs
are denoted by y. The previous publication fund variables that provide the network connection are
denoted as Y and the own previous fund variables are denoted by z.

xγ,t
i , zγ,t

i

t, z, i
Production γ

yγ,t
i

xγ′ ,t
i , zγ′ ,t

i

t, z, i
Production γ’

yγ′ ,t
i

Yγ,t
i

Yγ′ ,t
i

Figure 4. Network Technology for Knowledge Production.

5.4. Production Efficiency Estimated Using NDEA

To fix ideas, and following [6], let each country be indexed by γ = 1, . . . , D, for periods t = 1, . . . , T.
We will augment their model by including disciplines i = 1, . . . , N, here N = 16. Denote flow input
as xγ,t (here a scalar, but possibly a vector). Fund variables include own country cumulated past
publications denoted as zγ,t

i , and other country cumulated previous publications as Yγ,t
i . Final output

is own country current period publications denoted as yγ,t
i .

Again, following [6], we define the own country fund variable z as the sum of the previous
3 periods’ publications for that country, which we denote as zγ,t

i = ∑3
τ=1 yγ,t−τ

i , where τ = 1, 2, 3
represents the 3 previous years. Similarly, we use Yγ,t

i = ∑3
τ=1 ∑D

γ′ 6=γ yγ′ ,t−τ to represent spillover
knowledge from other countries’ previous publications.

We can now state the formal problem we are estimating to solve for efficiency in the NDEA model.
As explained in Section 5.1, we employ the Shephard output distance function as a performance
measure for each country, i.e., it is the explicit objective function. The distance function for country γ

in discipline i, π
γ
i , is defined as

π
γ
i (xγ,t

i , zγ,t
i , Yγ,t

i , yγ,t
i ) = inf{πγ

i : yγ,t
i /π

γ
i ∈ Pγ,t

i (xγ,t
i , zγ,t

i , Yγ,t
i )}. (19)

This objective function scales observed country output to the frontier of the output set Pγ,t(.) and
takes a value of unity for a country on the frontier and a value less than one for a country that is below
the frontier. Using DEA (see Section 3.1), the reference technology (output set) for period t, serves as
the constraints in our problem:
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Pt(xγ,t
i , zγ,t

i , Yγ,t
i ) = {y : (xγ,t

i , zγ,t
i , Yγ,t

i ) can produce y}may be written

Pγ,t
i (xγ,t

i , zγ,t
i , Yγ,t

i ) = {yt :
D

∑
γ=1

λ
γ,t
i yγ,t

i
>
= y, (20)

D

∑
γ=1

λ
γ,t
i xγ,t

i
<
= xγ,t

i , (21)

D

∑
γ=1

λ
γ,t
i zγ,t

i
<
= zγ,t

i (22)

D

∑
γ=1

λ
γ,t
i Yγ,t

i
<
= Yγ,t

i , (23)

λ
γ,t
i

>
= 0, γ = 1, . . . , D; i = 1, . . . , N; t = 1, . . . , T, }

where the λ
γ,t
i are intensity variables that form the best-practice frontier technology from the observed

inputs and outputs. Equation (20) is the constraint with respect to own country current output
(publications), Equation (21) is the input flow constraint, Equation (22) is a fund constraint with respect
to own cumulated previous publications and Equation (23) is a fund constraint with respect to other
country cumulated publications–the spillover constraint. We solve this problem for each discipline
in each country using linear programming. These solutions are the data for the second stage which
estimates the correlations Q and the parameters J, as described below.

As described in Section 4.2, the statistical analysis of the knowledge production we propose here is
developed in the framework of information theory, where through the well-known Shannon theorem,
the entropy is introduced and defined. We can measure the so-called pairwise correlation functions or
overlaps from the collected data. Assuming that we only get this information, by following the line of
the Shannon theorem it is possible to find the class of the probability distribution (which will depend
on some adjustable parameters, the set J), which maximizes the entropy with the constraint that the
pairwise correlations obtained from such probability distribution match the measured ones. In this
way the probability distribution (see Equation (12) with the Hamiltonian of the so-called Ising model
(see Equation (13)), and also Appendix A), is directly obtained by maximizing the entropy introduced
in the Shannon theorem with the aforementioned constraint, without any further unverifiable (thus
arbitrary) hypothesis. In this respect, the entropy introduced in the Shannon theorem represents a
measure of the ‘amount of uncertainty’. For example, limiting to the case of a discrete probability
distribution, if any constraint is superimposed (i.e., any a priori knowledge is available), the entropy
function introduced by Shannon is maximum for a uniform distribution. This agrees with our intuitive
notion that a broad distribution represents more uncertainty than a sharply peaked one. Figure 3 is a
sketch of an Ising model whose variables are defined in the knowledge production framework. It is
thus linked to the entropy defined from information theory because the adoption of the Ising model is
a direct consequence of the maximum entropy principle, as discussed above.

5.5. Results

We estimate our two models for each of the 53 countries and 16 disciplines, reported in Table 3.
To summarize the results, we present the annual output share-weighted geometric means of the
productivity values by discipline, for the alternate versions of Models 1 and 2: Total publications (basic
and network, 1.1 and 1.2) and highly cited publications (basic and network, 2.1 and 2.2). For comparison
with our model estimates we include the simple ratio of publications to authors (P/NA). The rank
order correlations of P/NA and estimated production efficiency are reported in Table 6 for selected
disciplines: Computer Science (COMP), Engineering (ENGI), Medicine (MEDI) and Physics (PHYS).
Not surprisingly, the lowest correlations occur for the basic DEA quantity model (1.1) and the NDEA
quality model (2.2). In contrast, the two quantity models (1.1 and 1.2) and the two quality models
(2.1 and 2.2) tend to have the highest correlations in each of the disciplines.
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Table 6. Rank Correlations of Productivity for Selected Disciplines (COMP, ENGI, MEDI and PHYS).

DEA and NDEA Models

COMP P/NA 1.1 1.2 2.1 2.2

P/NA 1.000
1.1 0.532 1.000
1.2 0.389 0.635 1.000
2.1 0.417 0.314 0.262 1.000
2.2 0.229 0.104 0.416 0.719 1.000

ENGI P/NA 1.1 1.2 2.1 2.2

P/NA 1.000
1.1 0.545 1.000
1.2 0.437 0.646 1.000
2.1 0.386 0.430 0.337 1.000
2.2 0.139 0.222 0.555 0.655 1.000

MEDI P/NA 1.1 1.2 2.1 2.2

P/NA 1.000
1.1 0.605 1.000
1.2 0.548 0.805 1.000
2.1 0.544 0.413 0.418 1.000
2.2 0.350 0.279 0.502 0.729 1.000

PHYS P/NA 1.1 1.2 2.1 2.2

P/NA 1.000
1.1 0.536 1.000
1.2 0.165 0.371 1.000
2.1 0.390 0.382 0.235 1.000
2.2 −0.032 −0.033 0.452 0.619 1.000

We are interested in studying the interdependencies across disciplines as well as within disciplines
at a macro or country level. The interactions between knowledge production efficiency may
differ by type and magnitude, as well as their ultimate effects on the associated disciplines and
countries. Our NDEA estimates provide within disciplinary connection across countries, but not
across disciplines.

For instance, collaboration between researchers in two disciplines, say physics and health can
mean that gains in efficiency in one discipline are reinforced by gains in efficiency in another discipline.
Interdisciplinary research requires that the researchers in each discipline to learn the vocabulary,
terminology, the notation, the ideas, and so forth of other disciplines. Those disciplines and researchers
who can overcome the transaction costs of learning the vocabulary, terminology, etc. can expand
this more general/interdisciplinary knowledge. Our method identifies those disciplines where such
gains are possible. In contrast, if interdisciplinary transaction costs are too high, as might occur when
researchers come from two very different disciplines, then gains in efficiency in one discipline may
serve to lower efficiency in another discipline.

There may also be cases in which two or more disciplines with different levels of production
efficiency interact such that the more productive disciplines slow down while the less productive
disciplines increase their productivity. For this reason, analyzing the correlations or indirect
connections (the overlap measures Qij introduced in Equation (12)) between (disciplinary) efficiency
levels can be interesting. However, going further and estimating their interdependencies (Jij) can
provide more useful information to analyze the way in which scientific knowledge is produced and
organized worldwide. This information could be useful for policy makers who determine which
disciplines or topics to prioritize and how to distribute research funds among disciplines.

Figure 5 shows the estimated interdependency parameters (Jij) -left panels- and the inferred
networks -right panels for the three production efficiency models. Top panels refer to the simple
productivity model (P/NA), middle panels show the Model 1.2 (network quantity model) and the
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bottom panels report Model 2.2 (network quality model) results. In the left panels of Figure 5,
the darker squares indicate higher Jij and the NW to SE diagonal comprises all white squares since
Jii = 0 by hypothesis.

Figure 5. Estimated Jij (left panels) and inferred networks (right panels) for the three production
efficiency models. Top panels refer to the simple productivity model (P/NA), middle panels show the
network quantity model 1.2 and the bottom panels show the network quality model 2.2 results.

The reconstructed networks reported in the right panels of Figure 5 are derived from the estimated
Jij obtained by the maximization of the pseudo-likelihood function. The Jij are the edges. The diameter
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of the node for discipline i is proportional to the number of interactions Jij. The thickness of the edge
depends on the intensity of the related interaction.

Figure 6 shows the calculated overlap measures (Qij) and the estimated interdependencies (Jij)
for the different productivity models. The methodology introduced in Section 4 hence allowed us to
empirically infer the network structure existing among disciplinary productivity going beyond the
simple overlap (or correlations) measures (Qij).

Figure 6. Overlaps (Qij) and Interdependencies (Jij) of the simple productivity model (P/NA)
(top panel), the network quantity model 1.2 (middle panel) and the network quality model 2.2 (bottom
panel). The Northeast values reported in bold are the Jij while the Southwest values correspond to the
Qij. See Table 5 for model specifications.
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For instance, we can analyze the correlations and interdependencies between the productivity
of disciplines CHEM with IMMU and MATE. In the basic quantity model (Figure 6—top panel)
CHEM and IMMU and CHEM and MATE show the same overlap measure Qij = 0.16, meaning that
their production efficiency tend to be positively associated. On the other hand, their respective
interdependencies are different. In fact, Jij between CHEM and IMMU is zero, while the
interdependency between CHEM and MATE is 0.970, meaning that the productivities of CHEM
and MATE present a high level of interdependency (mutual interaction).wae Similarly, the correlations
(indirect connection) between PHYS with IMMU and MATE are respectively 0.10 and 0.12, while their
interdependencies are respectively 0 and 0.49. This means that PHYS interacts with MATE, but not
with IMMU, although the respective production efficiencies are correlated.

Inspecting the middle and the bottom panels of Figure 6 we note that the interaction (Jij) between
PHYS and MATE is 0.79 in the quantity model (1.2) and 0.52 in the quality model (2.2) while the
respective correlations are 0.15 and 0.1.

We can conduct a comparative qualitative analysis between the three different models to explain
the results and how the technique works. We solved an indirect problem to estimate the Jij values for
each dataset and each model separately, so the inferred network structure is the optimal structure for
each dataset.

For instance, the values of JAGRI,PHAR in the three panels of Figure 6 are 0.000 (top), 0.471 (middle)
and 0.475 (bottom). These values indicate there is no interdependency between AGRI and PHAR in the
simple productivity model (P/NA) as the score is zero, while the interdependencies between AGRI
and PHAR are much stronger in the quantity and quality models in which the knowledge production
assumes as inputs NA, own previous publications and other previous publications and as output own
current publications (Mod. 1.2) while Model 2.2 considers the same inputs/output than model 1.2 but
uses the number of Highly Cited Publications (HCP). Similarly, JMATH,PHAR is 0.013 according to the
simple productivity model, showing a weak interaction among the two simple productivities estimated
by the number of publications per author, while there is no interaction between the productivities of
the two disciplines if we measure them according to Model 1.2 and 2.2 (see Table 5) as the J values for
MATH and PHAR in middle and bottom panels are zero.

We can also compare the simple productivity model (P/NA) with the quantity models (1.1 and 1.2)
to consider any possible effects posed by the curse of dimensionality, given our sample size and model
dimensions. The overall results are quite similar: the only differences are due to the DEA modelling
and so we should prefer the results of the Model 1.2 which accounts for the Georgesçu-Roegen’s fund’s
modelling of the knowledge production.

We then compared the quantity vs. quality results for the network models (1.2 and 2.2), to see
whether the obtained estimates were consistent. We found for instance that the interaction between
Physics (PHYS) and Computer Science (COMP) in the quantity model (1.2) is 0.033 while their
interaction in the quality model (2.2) increases up to 0.172. In contrast, the interaction between Physics
and Chemistry that is 0.186 in the quantity model goes down to zero in the quality model.

As we may expect, the interactions between CHEM and CENG are quite high in all the three
models (0.466 in the simple productivity model, 0.785 in Mod. 1.2 and 0.896 in Mod 2.2); other expected
results are the high interactions of COMP with ENGI and MATH because these disciplines share the
same community. A striking result is the interactions we observe between PHYS and MEDI which is
quite high in the Quality model (Mod. 2.2, with a value of 0.303) but absent in the Quantity model
(Mod. 1.2). A policy implication of this result could be made in the discussion about supporting
Societal Challenges that are focused on Medical Sciences and the important role that Physics could
play in this context.

The results commented in this section show the usefulness of the analyses carried out in the
previous section to shed deeper and new light on the interactions among disciplinary productivity that
we would not have been able to derive if we had reduced the analysis to the simple productivity model
(P/NA). Differently from existing bibliometric literature [74,75] we consider not only the outputs
of scientific production, but also their efficiency in knowledge production. In addition, differently
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from existing efficiency literature [6] we estimate the interdependencies among disciplinary efficiency
thanks to the application of the inferential approach proposed in Section 4.

6. Discussion and Conclusions

Network Data Envelopment Analysis (NDEA) models are often used to measure producer
performance when separate production technologies are linked across divisions, time, and spillovers
can occur between different producers. In theory, NDEA models can accommodate complex,
multi-product technologies with inputs used to produce intermediate products and final outputs.
However, in practice, the degree of complexity a researcher can introduce is limited by the number of
available observations used to construct the technology in what is known as the curse of dimensionality.
It is also not obvious how to test for the appropriate structure of the network. In this paper we
address these issues with a new theoretical method based on Shannon’s entropy that allows us to
infer wider linkages between various producers without having to specify those links within the
NDEA model. Our method specifies a NDEA technology and provides nonparametric estimates
of producer performance relative to that assumed technology. Then, in a second stage, we employ
a semiparametric Bayesian framework that allows us to estimate, rather than assume, the network
structure. This second stage exploits advances in the physics of complex systems, machine learning and
econometrics of information and reveals additional linkages in the network—in our case—allowing us
to infer connections between knowledge disciplines.

While we consider our main contribution to be providing an inferential method to identify
structure in NDEA models, we consider our application to knowledge production to be of interest in its
own right. The economics of science [76] reminds us that researchers do research for different reasons,
including their interest in “puzzle solving”, reputation based on the priority of their discovery, awards
and recognition for their achievements, and also through publications which can play a key role in
funding and promotion. Research is also a public good, generating knowledge spillovers that can be
difficult to capture and quantify. Like any public good, this can lead to underprovision in the market.

The economics of science tells us that the production of scientific research involves multiple
inputs, including knowledge, time, materials and equipment. Some inputs are embedded in people
(knowledge and time in particular), and most of these inputs are expensive. As observed by
Stephan [76], incentives and cost matter for science and economics, particularly for shaping the
most efficient mix of resource allocation across disciplines.

In this paper, we combine concepts from economic production theory, Bayesian statistics, and the
physics of complex systems to infer the cross-disciplinary and cross-country interactions of research
activities. Such understanding is key to achieving the efficient mix of resources for research. The NDEA
estimates can be used to derive correlations between disciplines and those same NDEA estimate can
be used in a second stage to infer interdependencies between disciplines. For instance, controlling for
the quality of publications, math and medicine exhibit positive association, but zero interdependency.
In other cases, such as physics and math, there are relatively low correlations of productive efficiencies
between the two disciplines, but a high interdependency. We find non-trivial interactions in many
cases, which seems promising for future work in this area. Our framework and results could be
of particular interest to policy-makers and agencies tasked with prioritizing research funding areas.
For instance, the relatively high interaction between physics and medicine might suggest the need to
include topics from the physical sciences in new funding for medical research.

This approach could also be applied to other knowledge network systems beyond academic
research, such as innovation and technology advance for industrial processes. For instance, a similar
framework could be used to estimate the interdependencies of structural industrial profiles, in the
form of industrial value added, and structural innovative/technological profiles, based on patents.
Inference of the underlying network topology could be used to target research and development funds
within the firm, and target public investment decisions.

Summing up more generally, the proposed statistical inferential framework may be applied
in a variety of productivity network problems, to infer the underlying structure of the network.
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The framework developed here is based on complex systems behavior modeling and estimation.
There are many possible extensions, left for further studies, including the implementation of
out-of-equilibrium time-dependent Ising model.
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Appendix A. The Ising Spin Glass Model

The Ising spin glass model is made up of a lattice, where each node of the lattice is associated with
a vector variable si at the i-th site in the D—dimensional space, that represents the spin of a particle.
See Figure A1 for an illustration.

Figure A1. Illustration of an Ising Model. Jij > 0 correspond to ferromagnetic couplings; Jij < 0
correspond to anti-ferromagnetic couplings.

Using the relevant Ising and thermodynamic terminology, we can develop a simple spin model to
describe the stationary states of our system. For a given couple i and j the ‘energy’ unit is given by

Jijsi · sj, (A1)
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whereas the Hamiltonian is

H = −1
2

β
N

∑
ij=1

Jijsi(t) · sj(t)−
N

∑
i=1

si(t) · hi. (A2)

The parameters of the system are the intensity of the external magnetic field hi, the pairwise interactions
Jij, β = (kBT)−1. The Hamiltonian in (A2) describes an Ising model, originally introduced to study
the behavior of ferromagnetic systems. The Ising model, when used in the study of different systems,
e.g., productivity network, can thus also account for a site-independent weight, β, and external biases,
hi. For the sake of simplicity we fix here β = 1 and hi = 0, ∀i ∈ (1, N). Jii = 0, Jij = Jji. The total
energy of the system is E =< H >. If the system is in equilibrium at a given ‘temperature,’ T, then the
energy distribution of the units follows the Boltzmann law, given by

F(E) =
1
Z

e−E/kBT , (A3)

where Z is the partition function introduced in Section 4.2. The component e−E/kBT is known as the
Boltzmann factor and kB is Boltzmann’s constant.

The model assumes ergodicity of the system, i.e., the time average of functions on our
spin variables equals the average of these same functions over their probability distributions.
This hypothesis is commonly assumed for processes that involve human systems, including time
series econometrics.

Appendix B. Pseudo-Likelihood Approach to Inverse Inference Problem

We report in the following specifics of the objective function used in the optimization algorithm
to infere the set of parameters {J}, i.e., the Pseudo-Log-Likelihood function, and of its gradient.
The fact that the gradient of the Log-Pseudo-Likelihood function can be calculated exactly makes the
computational solution of the inference problem faster and more reliable. By relying on Equations (13)
and (14), the expression of the Log-Pseudo-Likelihood function is obtained once one has an explicit
expression for the local Hamiltonian, Hi(si|{s\i}) = −si · [ 1

2 ∑1,N
i 6=j Jijsj] and for the local partition

function, Zi = ∑{si} e−Hi(si |{s\i}). We define Ai =
1
2 ∑1,N

j Jijsj, thus

Hi(si|{s\i}) = −si ·Ai (A4)

and

Zi = ∑
{si}

esi ·Ai ∝
∫ 1

−1
dsiesi ·Ai =

D

∏
γ=1

∫ 1

−1
ds(γ)i es(γ)i A(γ)

i =
D

∏
γ=1

2 sinh(Aγ
i )

Aγ
i

. (A5)

The proportionality constant in Equation (A5), equal to the inverse of the total number of all
possible si configurations, does not influence the following derivations and it will be not explicitly
considered. The sum ∑{si} e−si ·Ai in Equation (A5) has been calculated by approximating the discrete
variables with continuous variables, whose values can continuously vary in the interval [−1, 1].
The Pseudo-Log-Likelihood function takes thus the expression

λ({J}) =
T

∑
t=1

N

∑
i=1

[
si(t) ·Ai(t)−

D

∑
γ=1

log(
2 sinh(A(γ)

i (t))

A(γ)
i (t)

)
]
+ const. (A6)
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The gradient of the Log-Pseudo-Likelihood function is given in Equation (15). To calculate the gradient
of the Pseudo-Log-Likelihood with respect to the set of parameters Jij we thus need to calculate the
quantity < si · sj >i,{J}. It is

< si · sj >i,{J}=
∑{si} si · sje

−Hi(si |{s\i})

∑{si} e−Hi(si |{s\i})
=

1
Zi

sj ·
∫ 1

−1
dsisiesi ·Ai =

1
Zi

D

∑
γ=1

D

∏
α=1

s(γ)j

∫ 1

−1
ds(α)i s(γ)i es(α)i A(α)

i =

1
Zi

D

∑
γ=1

s(γ)j

 1,D

∏
α 6=γ

2

A(α)
i

sinh A(α)
i

 2

[A(γ)
i ]2

(
A(γ)

i cosh A(γ)
i − sinh A(γ)

i

)
. (A7)

By rephrasing the expression of Zi reported in Equation (A5) we obtain

Zi ∝ 2 sinh(A(γ)
i )

A(γ)
i

∏1,D
α 6=γ

2 sinh(A(α)
i )

A(α)
i

. Inserting this latter expression in Equation (A7), we get

< si · sj >i,{J}∝
D

∑
γ=1

s(γ)j
2(

A(γ)
i

)2

(
A(γ)

i cosh (A(γ)
i )− sinh (A(γ)

i )
) A(γ)

i

2 sinh(A(γ)
i )

=

D

∑
γ=1

s(γ)j

 1

tanh (A(γ)
i )
− 1

A(γ)
i

 ,

and finally (the proportionality constant for Zi({J}) and < si · sj >i,{J} is the same)

∂

∂Jij
λ({J}) = 1

2
T

Qij −
1
T

T

∑
t=1

D

∑
γ=1

s(γ)j (t)

 1

tanh (A(γ)
i (t))

− 1

A(γ)
i (t)

 .

(A8)

To deal with a lower number of parameters in place of maximizing the Log-Pseudo-Likelihood function,
given by the sum of the single-node Log-Pseudo-Likelihood functions (Equation (14)), each single-node
Pseudo-Log-Likelihood function is maximized. Since the couplings in the Ising model should be symmetric the
final estimate of the Jij parameter is obtained by taking the average (Jij + Jji)/2.

Appendix C. Full Scopus 16 Data Summary

Table A1. Summary Statistics Performance Variables, by Discipline (ASJC code) (53 Countries,
16 Disciplines, 1996–2012, 901 Observations Each Discipline).

Discipline Mean Std. Dev. Min Max

AGRI (11)
Articles 2448.1 4565.2 29 41,261
Highly Cited 328.5 772.9 0 10,068
Number of Authors 4906.4 9635.7 54 97,432

BIOC (13)
Articles 4357.6 9723.4 44 85,295
Highly Cited 529.1 1572.1 0 15,480
Number of Authors 10,499.4 23,931.7 95 229,139

CENG (15)
Articles 1211.6 2488.6 11 22,203
Highly Cited 155.0 333.2 0 3557
Number of Authors 2617.4 5788.1 26 65,580
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Table A1. Cont.

Discipline Mean Std. Dev. Min Max

CHEM (16)
Articles 2686.3 4983.4 31 46,252
Highly Cited 305.0 712.5 0 6460
Number of Authors 5147.5 10,292.8 55 111,789

COMP (17)
Articles 2727.5 7315.9 7 80,276
Highly Cited 355.6 1013.9 0 10,123
Number of Authors 4161.6 11,548.7 11 128,273

EART (19)
Articles 1628.3 3360.1 15 24,836
Highly Cited 239.8 582.2 0 4862
Number of Authors 2558.2 5,774.8 20 50,348

ENER (21)
Articles 635.7 1625.8 3 16,685
Highly Cited 85.0 187.4 0 1974
Number of Authors 1360.0 3771.0 6 47,669

ENGI (22)
Articles 5433.7 14,078.9 31 156,349
Highly Cited 739.5 1804.5 0 19,830
Number of Authors 8981.8 23,456.8 54 293,605

ENVI (23)
Articles 1367.7 2827.3 18 22,742
Highly Cited 177.4 400.2 0 3657
Number of Authors 2806.4 6034.3 41 52,584

IMMU (24)
Articles 1164.6 2406.0 16 18,650
Highly Cited 143.2 395.4 0 3597
Number of Authors 3141.2 6630.4 38 57,748

MATE (25)
Articles 2751.3 5835.9 22 58,492
Highly Cited 330.5 745.3 0 6939
Number of Authors 4982.2 11,305.5 27 132,822

MATH (26)
Articles 1804.3 3773.5 7 32,690
Highly Cited 253.9 616.4 0 7565
Number of Authors 2588.5 6174.5 12 63,005

MEDI (27)
Articles 7672.4 17,175.3 95 165,181
Highly Cited 1,027.9 2929.3 0 28,743
Number of Authors 15,773.2 34,286.3 211 351,702

NEUR (28)
Articles 968.8 2389.3 2 20,520
Highly Cited 115.8 360.8 0 3340
Number of Authors 2284.5 5636.0 4 53,241

PHAR (30)
Articles 1103.2 2285.4 12 17,750
Highly Cited 134.6 336.2 0 3385
Number of Authors 2959.7 6299.1 22 53,288

PHYS (31)
Articles 4396.5 8271.2 19 58,244
Highly Cited 559.9 1208.5 0 10,591
Number of Authors 6946.0 14,391.0 26 127,209
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