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Abstract: Entropy profiling is a recently introduced approach that reduces parametric dependence in
traditional Kolmogorov-Sinai (KS) entropy measurement algorithms. The choice of the threshold
parameter r of vector distances in traditional entropy computations is crucial in deciding the accuracy
of signal irregularity information retrieved by these methods. In addition to making parametric
choices completely data-driven, entropy profiling generates a complete profile of entropy information
as against a single entropy estimate (seen in traditional algorithms). The benefits of using “profiling”
instead of “estimation” are: (a) precursory methods such as approximate and sample entropy that
have had the limitation of handling short-term signals (less than 1000 samples) are now made capable
of the same; (b) the entropy measure can capture complexity information from short and long-term
signals without multi-scaling; and (c) this new approach facilitates enhanced information retrieval
from short-term HRV signals. The novel concept of entropy profiling has greatly equipped traditional
algorithms to overcome existing limitations and broaden applicability in the field of short-term signal
analysis. In this work, we present a review of KS-entropy methods and their limitations in the context
of short-term heart rate variability analysis and elucidate the benefits of using entropy profiling as an
alternative for the same.

Keywords: entropy profiling; heart rate variability; short-term HRV time series; irregularity analysis;
complexity analysis; tolerance; non-parametric K-S entropy

1. Introduction

Heart rate variability (HRV), a variation in the time interval between successive heart beats, is a
prognostic indicator of various physiological conditions, such as disease, stress, aging, fitness and
gender [1–3]. A heart rate signal is non-stationary [4], and its variability follows non-linear dynamics
that are both complex and chaotic in nature [5,6]. HRV analysis is a popular non-invasive technique to
assess cardiac health and other significant physiological conditions. Every physiological condition
is linked to a change in heart rate variability and its complexity, thereby making HRV analysis a
significant clinical tool. The physiological process of HRV being highly non-linear in nature cannot
be contained fully by linear approaches. This necessitates the use of non-linear dynamic methods to
carry out HRV analysis. Of these, the commonly used statistical measures are correlation dimension,
Lyapunov exponents, entropy algorithms and Poincare plot.
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Due to procedural and economical constraints, it is generally preferred to conduct HRV analysis
on “short-term” data. The use of short-term data facilitates quick signal acquisition, and hence supports
a patient-friendly procedure, and reduces diagnosis and consultation times, leading to reduced medical
expenses; and also will have minimal influences from motion artifacts [7]. To analyze short-term
HRV data, the most popularly used non-linear tools are the KS-entropy (Kolmogorov-Sinai) methods.
Non-linear KS-entropy algorithms, such as approximate entropy (ApEn) and sample entropy (SampEn),
are efficient in dealing with short-term data, but their dependence on input parameters affects the
quality of information retrieval to a great extent. Elimination of the parametric dependence of such
methods will prove beneficial in the context of information retrieval from short-term heart rate data.

The issue of parametric dependence has been dealt in different ways. Entropy methods have been
modified to (a) reduce the impact of parameters on them [8], (b) formulate a process for logical selection
of parameters rather than a random selection [9], eliminate parameters from their formulations [10]
and so on. However, the actual source of the issue remains unexplored. A single choice of parameter
gives a single entropy estimate that does not always represent complete information present in the
HRV. Using multiple parameter choices would mean calculating multiple entropy estimates (entropy
at all potential parameter values). This generates a profile of entropy values, in contrast to a single
estimate of entropy. This certainly means enhanced information retrieval from the signal.

How entropy profiling can be done efficiently and how the profiling can be used to improve
short-length HRV signal analysis have been the main contributions of our research. To the best of our
knowledge, there has not been done any extensive review on the means to address entropy methods’
parametric dependence. Having introduced a novel solution to address the same, we find the time and
opportunity suitable to present a detailed review on KS-entropy methods, their limitations, research
progress and our novel idea of entropy profiling. A flow chart of contents in this review paper is given
in Figure 1. The content could be seen as divided into four main branches: (1) an introduction and
necessary background information; (2) case studies and results; (3) a detailed discussion of the results
and impacts; (4) conclusive comments and future research directions.
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Figure 1. Flowchart of contents in this review paper. The content has been organized under four major
branches: (1) an introduction and background; (2) case studies and results; (3) a detailed discussion of
the results and impacts; (4) conclusive comments and future research directions.
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This paper presents a review on the newly introduced method of “entropy profiling” meant
for the analysis of short-term HRV signals. Entropy profiling was developed as an alternative or
improvement to existing KS-entropy methods. Contributions of this review can be summarized as:

• An explanation of the parametric dependency of KS-entropy measures and its
impact on short-term HRV analysis.

• A summary of approaches proposed in the last two decades to address parametric dependency
and a summary of persisting issues.

• Explaining the concept, formulation and geometric meaning of entropy profiling as a solution to
persisting issues in the context of KS entropy for short-term HRV analysis.

• Summary of significant research directions based on the provided entropy profiling solution.

2. Kolmogorov Entropy Methods

Kolmogorov–Sinai (KS) entropy was formulated by [11] to quantify signal/time-series regularity.
This was further improved by [11–14] and has since then been quite popular.

The KS entropy can be defined as the conditional probability of two segments of a time-series
(of data length N) matching at a length m + 1 if they match at a length m, where the matching
of segments is decided by a threshold r, given by r = k times SD of signal, where k can take
values between 0 and 1. The KS-entropy measure is evaluated for the parameter limits r → 0, m→ ∞
and N → ∞ [13,14]. The KS entropy of a given time series {x(n); 1 ≤ n ≤ N} can be formulated as
shown below.

For a given value of the embedding dimension m:

1. Form (N −m + 1) vectors of length m each, given by

{Xm
i : 1 ≤ i ≤ (N −m + 1)}

where, Xm
i = {x(i + k) : 0 ≤ k ≤ m− 1} . (1)

2. Similarly, form (N −m) vectors of length (m + 1) each, given by{
Xm+1

i : 1 ≤ i ≤ (N −m)
}

where, Xm+1
i = {x(i + k) : 0 ≤ k ≤ m} . (2)

3. Take each Xm
i vector of step 1 as a template vector and find its distance from every vector of Xm

j ,
where the distance is given by

dm
ij = {max|Xm

i − Xm
j |: 1 ≤ j ≤ (N −m + 1)}. (3)

4. Let Bi be the count of the number of vectors of Xm which lie within a distance r of the vector Xm
i .

5. The probability of a vector Xm
j to lie within a distance r of the vector Xm

i is given by

Cm
i (r) =

Bi
N −m + 1

. (4)

6. Finally, we take the average of the natural logarithms of these probabilities for i ≤ (N−m + 1) as

Φm(r) =
1

N −m + 1

 N −m + 1
∑

i = 1
lnCm

i (r)

 . (5)
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7. Repeating steps 3 to 6 for the (m + 1) dimension, we get

Φm+1(r) =
1

N −m

 N −m
∑

i = 1
lnCm+1

i (r)

 . (6)

The above steps are repeated for limiting values of N, m and r, till a convergence of [Φm(r)−Φm+1(r)]
is obtained and this converged value corresponds to KS entropy or simply Entropy of the signal.

Entropy(N, m, r) = lim
r → 0

lim
m→ ∞

lim
N → ∞

[Φm(r)−Φm+1(r)]. (7)

The existence of such strange attractors makes the method computationally expensive in
most cases.

2.1. Approximate Entropy(ApEn)

In 1991, S.M. Pincus [13] introduced a new regularity statistic called “approximate entropy”
which is an approximated version of Kolmogorov-Sinai (KS) [13,14] entropy. ApEn is the KS entropy
estimated at a single value of r, m and N.

Given a time series {x(n); 1 ≤ n ≤ N} of length N,

ApEn(m, r) = Φm(r)−Φm+1(r), (8)

where Φm(r) and Φm+1(r) are calculated as per steps 1 to 7 of the KS-entropy method. Single values of
embedding dimension m and tolerance r are chosen from recommended ranges of {2,3,4} and {[0.1–0.2]
times SD of signal} respectively.

2.2. Sample Entropy(SampEn)

ApEn was considered a biased measure since its computation included self-matches of
sub-sequences i.e., while calculating vector distances from Equation (3), distance of every vector from
itself is also included in the set. These self matches do not contribute logically to the procedure. They are
included only to prevent entropy values from being undefined (min(Bi) = 1 in Equation (4). However,
as a consequence, ApEn always showed higher regularity than the signal contained. Yet another issue
was ApEn being highly influenced by data length N [15–17]. In order to rectify these issues, Richman
and Moormann, in 2000, proposed “sample entropy” [16]. Sample entropy completely eliminated
self matches from the evaluation process and was observed to be more consistent in comparison to
ApEn [15,17]. However, this increase in accuracy and consistency was at the cost of getting undefined
values of SampEn at lower values of N and r and higher values of m [10,18].

SampEn formulation is a slightly modified version of ApEn formulation. Here, self-matches
in vectors are eliminated from the formulation and also the same number of template vectors are
generated in both m and m + 1 dimensions. For a given time series data of length N, sample entropy is
calculated as

SampEn = ln
Φm(r)

Φm+1(r)
(9)

where
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Φm(r) =
1

N −m

N −m
∑

i = 1
Cm

i (r) (10)

Φm+1(r) =
1

N −m

N −m
∑

i = 1
Cm+1

i (r) (11)

Cm
i (r) being the probability of a vector Xm

j to lie within a distance r of the vector Xm
i , 1 ≤ j ≤

(N −m), j 6= i. Similarly, Cm+1
i (r) is the probability of a vector Xm+1

j to lie within a distance r of the

vector Xm+1
i , 1 ≤ j ≤ (N −m), j 6= i.

Several other modified and improved versions of KS entropy such as multiscale entropy [19,20],
cross entropy [13,21], permutation-based KS entropy [22] and so on have been introduced and tried on
real-time biomedical data sets.

3. Limitations of KS-Entropy Methods

KS-entropy methods have had several limitations right from their inception. The first and foremost
being the bias in ApEn due to the calculation of self-matches [23]. As a result, SampEn was introduced
and widely accepted as a better alternative. What still remains as the most crucial part of calculating
these entropy measures (ApEn and SampEn) is the selection of appropriate parameter values for m
and r [9,24–27]. If not chosen with a certain level of discretion, these parameters may give completely
wrong estimates of signal regularity [28]. For most signals, the recommended choice of m is 2 and
r is 0.1–0.25 times the standard deviation (SD) of the signal. However, the choice has been always
inconsistent over different data groups. Many studies have reported the generation of misleading and
ambiguous results when using prescribed parameter values. Additionally, different values of m and r
lead to different entropy values for the same time-series data [14,16]. This implies that the selection
of [m, r] in itself introduces a bias in the entropy calculation. Researchers have attempted to either
eliminate or reduce the impact of parameters [m, r] on entropy procedures.

3.1. Tolerance r

The r parameter being the most critical of all happens to be the major source of inconsistencies
reported so far. When using medical signals, Pincus et al. suggested a value of r in the range of 0.1 to
0.25 times standard deviation (SD) of the time series signal [14]. However, when choosing r in this
prescribed range, several experimental failures were reported [9,24–27]. Researchers realized that
the suggested r range could not be generalized across different data. Thus, some tried to come up
with new techniques to define a more logical selection of r. Others tried to lessen the role of r when
implementing entropy formulations.

Lu et al. [9] came up with the idea of rmax, the r value yielding maximum entropy. rmax was
believed to be a more rational choice of r when estimating approximate entropy of a signal. However,
in addition to the fact that the idea could not be implemented on other statistics such as SampEn [29],
the formulation to calculate rmax was inconsistent across data groups [29]. Chen et al. [8] proposed
fuzzy entropy (FuzzyEn). The method made use of a similarity function based on fuzzy membership,
to asses sub-sequence matching of vectors. In the case of ApEn and SampEn, a Heaviside function
performed the action instead. Overall, the impact of r was much less on FuzzyEn, compared to that
on precursors such as ApEn and SampEn. Additionally, unlike SampEn, FuzzyEn did not produce
indefinite values of entropy at any point of r [8,18].

Despite these new solutions, the ground problem remains. Entropy values, be it ApEn, SampEn
or FuzzyEn, tend to differ with a change in the r choice, for the same given signal [10,30]. Thus,
arriving at the most right choice of the parameter continues to be critical. Lessening the influence of r
on formulations alone does not address the main problem.
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In 2015, another group of researchers tried to fully eliminate the r parameter from their new
entropy formulation called distribution entropy (DistEn) [10]. In place of r, they used a new parameter
M, denoting the number of bins in the empirical probability distributions used to compute DistEn.
M is not as critical a parameter as r, therefore the method has definitely provided a significant direction
to the existing problem. However, again DistEn cannot be considered the right solution in this
case because it is a Shannon-entropy based formulation, whereas ApEn, SampEn and FuzzyEn are
KS-entropy based. These two families of entropy estimation that have formative differences cannot be
compared in the same scale. An elaborate discussion on all the above methods is given in upcoming
sections of the manuscript.

3.2. Impact of r Choice in Short-Term HRV Analysis

Since their inception, ApEn and SampEn have extensively found application in extracting
regularity based information from short-term (2–15 minutes of data) HRV signals. A few of the
applications include detection of cardiac arrhythmias such as atrial fibrillation [31,32] and cardiac
dysfunctions such as congestive heart failure [33,34] and myocardial infarction [35,36], age based and
gender based discrimination of HRV signals [7,37–39], fetal heart rate analysis [36,40], sleep apnea
detection [15] and so on. Despite being widely used for short-term HRV analysis, existing questions
and problems associated with the methods are as follows:

1. ApEn and SampEn are known to produce misleading regularity results owing to their parametric
restrictions, particularly the r parameter. A wrong choice of r may give completely unreal
regularity estimates for a signal. Thus, the current scheme of r selection in entropy methods
makes regularity estimation unreliable.

2. A lack of logical flexibility in choosing r places its share of restrictions on signal length as well.
For the currently available mode of r selection, at least 1000 data points ('15 min data) from
the incoming signal are required for analysis. Thus, is ApEn or SampEn incapable of handling
signals below 1000 data points? This cannot be explored or concluded unless the lameness in r
selection procedure is addressed. Thus, how do we make entropy methods suitable for use on
short-length (<15 min) data?

Reportedly, an r choice from 0.1–0.25 times SD (standard deviation) of the signal is recommended
for signals of length between 50 to 5000, while estimating ApEn at an m = 1 or 2 [23]. This was
followed in SampEn estimation too. However, various studies started reporting the inappropriateness
of using such a generalized r choice across data sets and urged the need for proper discretion while
making the choice [9,28,30,40,41].

3.3. HRV Complexity Analysis

ApEn and SampEn are primarily “irregularity” statistics. They assess a signal’s state of orderliness
(or chaos) by surveying existential patterns interpreted from the signal. An “irregular” signal may
not always be associated with a high level of “complexity” and vice-verse. For example, when an
original time series (say, one that represents an underlying complex system) is randomized to form
its surrogate time series, ApEn or SampEn will be higher for the surrogate series than the original.
However, is this increase in randomness (or entropy) also a reflection of increase in complexity of the
representative system? No, because technically, randomization breaks the inherent structure of the
originally complex series, leading to information loss, in other words loss of content/complexity [42].

In such a case, can the irregularity statistics such as ApEn and SampEn be equipped to retrieve
“complexity” information as well? Well, the answer is yes, this has been made possible by the idea of
“multiscaling” in entropy analysis. Costa et al. suggested that “complexity” in a system is unveiled
only by exploring the system at multiple spatio-temporal scales while “irregularity” in the system
can be determined from a single-scale based analysis (as is done in ApEn or SampEn). This implies:
irregularity when examined at multiple spatio-temporal scales can lead us to complexity related
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information. Thus, Costa et al. in their work proposed to conduct SampEn estimations at multiple
scales (ranging from 2 to 20), giving us the popularly known technique of “multiscale sample entropy
(MSE) analysis.” MSE analysis demonstrated to detect cardiac abnormalities such as atrial fibrillation
(AF) and congestive heart failure (CHF), successfully revealed complexity information from the
respective HRV signals, by placing SampEn of healthy HRV above that of diseased HRV at the higher
scales (beyond scale 12 for AF and scale 2 for CHF) [43]. This is owing to the fact that a healthy cardiac
system is more complex in relation to one that is affected by AF or CHF [44,45].

The only limitation of MSE is the inability of the method to handle short-term data. At every
increasing scale in MSE, the original time series is coarse-grained by the scale factor, thereby reducing
data length from the original N to ' N

scale . The coarse-graining procedure is demonstrated in
Figure 2 below.

Figure 2. Procedure of coarse-graining in multiscale sample entropy (MSE) analysis.

Thus, if N is originally 1000, then at scale 20 the series length available for SampEn estimation
will be only around 50. From the previous section on existing problems with regularity analysis,
we understood that the regularity statistic SampEn cannot handle N < 1000, unless the irresolute
r-selection issue is resolved. Thus, currently the minimum length required at the highest scale in MSE
is 1000. Lower the original data length N, lower will be the maximum scale achievable. For Costa,
since she explored scales till 20, the original data length of HRV signal she used was 20,000 [43].

4. How Has “r-Dependence” Been Addressed by Other Researchers?

To rationalize r selection, Lake et al. [40] in 2002 formulated a generalized approach where
SampEn is first calculated for a range of r values and then the optimal value (of r) is selected such
that the relative error between SampEn and CP (conditional probability of a match at length m + 1,
given there is a match at m ) is minimized. The main drawback in this approach is that the initial range
of r for which SampEn values are calculated, is again chosen from the recommended 0.1–0.25 times
the standard deviation (SD) of the signal. This may not be ideal, since the optimal r value might even
exist outside this range, as there is no evidence that says otherwise.

In 2008, Lu et al. [9] introduced the concept of “maximum approximate entropy (MaxApEn)”
for logical selection of data specific r—denoted by rmax. The value of rmax represents the tolerance at
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which ApEn is maximum for a given signal. Since MaxApEn was observed to correctly reflect signal
irregularity, the process of selecting rmax was considered optimal and rational [9]. However, to find rmax

and MaxApEn, ApEn corresponding to different potential r values must be calculated. This traditional
approach is highly cumbersome [9,24] and inefficient. This involves repeated computation of ApEn
for each given value of r (r = { i∗SD

100 : i ∈ Z ∧ 1 ≤ i ≤ 100}). As a remedy, Lu et al. proposed a set
of generalized equations to calculate rmax of the signal [9]. These equations were extrapolated with
reference to random Gaussian white noise signals of unit standard deviation. For this, ApEn of the
signals was explored at different values of r between 0 and 1 varying in steps of 0.01. At a given value of
m, rmax was defined as a function of signal length and signal variability. In their work, Lu et al. derived
generalized equations for rmax at three different values of embedding dimension; m = 2, 3 and 4.
The rmax obtained thus was used to find MaxApEn. Despite being computationally efficient, the
equation based approach has certain limitations that make its use unreliable and inconsistent: (i) since
general equations were derived on the basis of random linear signals, they fail to work for signals
exhibiting non-linear dynamics [24,28]; (ii) there may be applications that require the use of an
embedding dimension m > 4, which will then demand burdensome derivations all over again; (iii) the
approach uses a partial range of r for calculating ApEn values, instead of finding the actual potential
r range for the given data. It is known that a function f (x) : x ∈ X has a real maximum at a point
say xmax, if f (xmax) > f (x)∀x ∈ X. Hence, knowledge of X in its complete form is necessary to
find xmax and f (xmax). Here, the ApEn range is restricted to values corresponding to an r range of
[0 1 ∗ SD of signal], which may not be the required potential range to calculate rmax and MaxApEn,
(iv) the approach uses a constant r resolution of 1

0.01∗SD of signal in the computation. The choice being
arbitrary may not be capable of capturing all potential r values in the range. A low or insufficient
resolution reduces the accuracy of global measures such as “maximum.” Therefore in case of calculating
rmax and MaxApEn, the entire conceivable range of r has to be defined with an appropriate resolution.

To demonstrate this, the average variation of ApEn with r (r = { i∗SD
100 : i ∈ Z∧ 1 ≤ i ≤ 100}) for

three types of data (periodic, intermediate and chaotic) has been plotted in Figure 3. Ten realizations
each of the three sets (periodic, intermediate and chaotic) of signals are used here. The logistic map
equation from chaotic systems toolbox of MATLAB 2019Rb is used: xn+1 = axn(1− xn); a denotes
level of irregularity; xn is the initial value and is kept at 0.5. The generated signal is then superimposed
with a random white noise whose noise level is kept at 0.1. a is equal to 3.5, 3.75 and 4 in the function
corresponding to a periodic, intermediate and chaotic level signal respectively.

The average rmaxTr (rmax obtained by the traditional approach) in each of the three cases is found
to be 0.008436, 0.01641 and 0.02717 respectively. On the other hand, the average rmaxEqn (rmax obtained
by Lu et al.’s approach ) value for each of the three data sets is 0.3033, 0.2915 and 0.2620 respectively
(Figure 3). For periodic and intermediate signals, the average rmaxEqn obtained by Lu et al. method [9]
is greater than 1 ∗ SD of the signal, which is non-existent in the defined ApEnTr (ApEn profile obtained
traditionally in the r range of 0.01SD to 1SD) space. Moreover, the average MaxApEnTr (MaxApEn
obtained by the traditional approach) values for periodic and intermediate signals are 1.269 and 1.166
respectively, whereas for the same signals MaxApEnEqn (MaxApEn obtained by Lu et al.’s approach)
values are non-existent in the defined ApEnTr space. For the chaotic data, although rmaxEqn value is
found within 1 ∗ SD of the signal (Figure 3), bothrmaxTr (0.02717) and MaxApEnTr (1.267) values are
significantly different from rmaxEqn (0.2620) and MaxApEnEqn (0.55). It is obvious that, the MaxApEnEqn
value obtained for chaotic signal is smaller than the actual maximum ApEn value of the signal, which is
measured as MaxApEnTr.

In 2009, a new entropy measure called FuzzyEn (fuzzy entropy) was introduced by Chen et al. [8],
where the tolerance parameter r was replaced by a tolerance function (a fuzzy function involving
r), to decide sub-sequence matching. The method was a considerable improvement from ApEn and
SampEn, since the estimate’s dependence on r significantly reduced.
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Figure 3. The average variations of ApEn with r of periodic, intermediate and chaotic data sets are
shown. rmaxTr , MaxApEnTr values of the data calculated by the traditional method are indicated in
the top left corner and rmaxEqn values calculated by the equation method are marked close to their
respective curves.

4.1. Fuzzy Entropy (FuzzyEn)

For a given signal of length N, FuzzyEn is given by

FuzzyEn(N, m, r) = ln
Φm(r)

Φm+1(r)
(12)

where

Φm(r) =
1

N −m

N −m
∑

i = 1
Cm

i (r) (13)

and

Cm
i (r) =

1
N −m− 1

N −m
∑

i = 1, i 6= j
Dm

ij (14)

Here, Dm
ij = µ(dm

ij , r) is the similarity degree defined by a fuzzy membership function µ which in

this case is an exponential function given by exp(−( dij
r )2). Thus, Cm

i (r) is the probability of a vector
Xm

j to be similar to the vector Xm
i by a degree Dm

ij , for1 ≤ j ≤ (N − m),j 6= i. For all experiments
conducted in this study, FuzzyEn is evaluated at an r value of 0.15 ∗ SD of signal and an m value
of 2. However, FuzzyEn was still bound by limitations of having to make an irrational assumption
of r [30]. Liu et al. [46] in 2013, proposed FuzzyMEn (fuzzy measure entropy), to improve the
stability (with respect to r) and discriminating ability of FuzzyEn. More recently, in 2015, Ji et al. [47]
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have yet again tried to improve the stability, discriminating ability and noise robustness of FuzzyEn,
by introducing rFuzzyEn (refined fuzzy entropy). Despite the advent of several versions of FuzzyEn,
the fundamental problem of irresolute r selection remains unsolved.

Lake et al. [31] introduced a new regularity measure called CosEn (Coefficient of SampEn) in 2011.
Here, the optimal value of threshold r is chosen based on the principle of a “minimum numerator
count.” This method eliminates the data length limitation seen in SampEn estimation, thereby enabling
analysis on signals with N as low as 12 data points. In 2018, another study [48] implemented the same
“minimum numerator count” concept on FuzzyMEn (fuzzy measure entropy) and achieved better
efficiency than CosEn. However, the problem with “minimum numerator count” method is that it
needs the user to keep changing r value, and repeatedly carry out the estimation procedure till an
optimal CP (conditional probability of a match at length m + 1, given there is a match at m ) is reached.
Thus, the method undoubtedly has disadvantages discussed above, as in the earlier approaches.

4.2. Normalized Fuzzy Measure Entropy (Normalized FuzzyMEn)

From the given time series, a set each of local and global vector sequences are formed
(as elaborated in [32]), Lm

i and Gm
i respectively at an embedding dimension m. Then, the local

and global similarity degrees or fuzzy functions are computed as

DLm
ij (nL,rL) = exp

(
−
(

dLm
ij

rL

)nL
)

(15)

and

DGm
ij (nG,rG) = exp

(
−
(

dGm
ij

rG

)nG
)

(16)

where dLm
ij and dGm

ij are the distances between the local and global vector sequences respectively,
computed as per [32]. The mean values of these fuzzy functions are computed as BLm(nL, rL) and
BGm(nG, rG), respectively. The same steps when repeated with an embedding dimension m + 1,
produce mean fuzzy functions ALm+1(nL, rL) and AGm+1(nG, rG). The fuzzy local and global measure
entropies are then estimated as

FuzzyLMEn =

ln
(

BLm(nL ,rL)
ALm+1(nL ,rL)

)
+ ln(2rL)− ln(RRmean)

(17)

and
FuzzyGMEn =

ln
(

BGm(nG ,rG)
AGm+1(nG ,rG)

)
+ ln(2rG)− ln(RRmean)

(18)

respectively. Finally, normalized FuzzyMEn is given by

HNF = FuzzyLMEn + FuzzyGMEn (19)

Here, rL and rG are the local and global thresholds of distance and are estimated using the minimum
numerator count method [31,32]. nL and nG, the local and global similarity weights both are assigned
a value of 2 here.

In 2015, there was yet another attempt to address r-selection issues in entropy estimates. Peng Li
came up with DistEn (distribution entropy) [10], where the tolerance parameter r was completely
eliminated and replaced by another parameter “M.” Now, DistEn is an approach based on empirical
distribution functions and M constitutes the number of bins in this distribution. DistEn does compute
vector-to-vector distances as in the case of statistics such as SampEn and FuzzyEn, however instead of
then finding vector matches (using r), DistEn generates a probability distribution function of these
distances (using M), eventually calculating the Shannon entropy. Despite the fact that DistEn performs
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far better than SampEn (specially at lower data lengths), it is to be understood that they do not come
from the same family of probability measurement. Empirically, SampEn of a signal is a measure of
its conditional probability to remain similar at embedding dimensions m and m + 1. Thus, signal
regularity is measured at embedding dimensions m and m + 1. On the other hand, for DistEn, entropy
is measured from the distribution of vector distances only at an embedding dimension m. Hence,
the information obtained using these two measures are entirely different and so cannot be taken as a
direct answer to the problem of irresolute r selection in SampEn (or any of the KS-entropy methods).

Thus, as far as HRV regularity analysis is concerned, parametric dependence on r is still a huge
existing problem. A solution to this could result in ApEn, SampEn, FuzzyEn and the like being made
suitable, more accurate and reliable for “short-length” (N < 1000, i.e., less than 15 min data) HRV
irregularity and complexity analysis.

5. Entropy Profiling as a Solution

Most existing entropy methods are highly dependant on a single choice of the tolerance parameter
(r) for measuring signal irregularity or complexity. This single choice of r is usually picked from a
predefined range of values. When it comes to the analysis of short-term signals, these methods become
all the more sensitive to this choice of r. If not chosen rightly, the estimation might end up giving us
inaccurate information about the signal. In order to improve the accuracy and reliability of signal
information retrieved, we hypothesize that it is necessary to find entropy at all potential r values,
instead of a single chosen r value. This approach of entropy profiling (in contrast to entropy estimation)
will give a more complete information as against the partial one obtained when using just a single r.
Now, it becomes equally important to demonstrate accuracy in finding all potential r values for such a
profiling. For this, we introduce a data-driven algorithm that finds potential r values by exploiting
the dynamics of the given signal [49,50]. The algorithm is automatic and not based on any random
assumption as in other methods. In the following two subsections, we explain the need for entropy
profiling in the context of measuring signal irregularity and signal complexity, respectively.

5.1. Signal Irregularity

Approximate entropy (ApEn), introduced by Pincus in 1991 [13] was the first in series from
the Kolmogorov–Sinai (KS) entropy family to be widely known as a useful non-linear measure for
short-term HRV analysis [14,25,26,51–54]. ApEn is an approximate quantification of KS entropy [14].
ApEn is a function of data length N, embedding dimension m and tolerance of inter-vector distance
r. ApEn measures the conditional probability of two segments of a signal (of length N) matching
at a length m + 1 if they match at a length m. Segment matching is evaluated with the help of the
parameter r, where r = k ∗ SD of signal; k takes values between 0 and 1 [13,14]. SD denotes standard
deviation of the time-series signal. ApEn that is considered a biased regularity measure was later
in 2000 replaced by sample entropy (SampEn) [16] and in 2007 replaced by corrected approximate
entropy (CApEn) [55]. The source of the bias was the counting of self-matches in signal segments.
Additionally, the estimation of ApEn was found to be inconsistent with change in parameters m and r,
causing flipping of values [16,26,53]. CApEn corrected ApEn’s bias towards regularity by eliminating
self-match counts from the algorithm [55]. However, CApEn did not gain much popularity within the
research community due to the already well accepted SampEn. In addition to eliminating self-match
counts from its formulation, SampEn shows a more consistent behavior in situations where ApEn
does not [16]. However, SampEn also has its limitations. Relative consistency of SampEn is not
exhibited with all data sets. Particularly, for data where N < 200, SampEn is as sensitive to the change
of parameters m and r as ApEn [16,26]. The tolerance of segment-match r is found to be the most
critical of parameters. Parametric sensitivity of ApEn and SampEn to “r” does negatively impact the
proficiency of signal information retrieval. A perfect choice of r is therefore most essential to produce
accurate values of SampEn [9,25,26].
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As mentioned earlier, traditional SampEn measurement uses a single r choice for its estimation.
This approach is unreliable mainly because of SampEn’s sensitivity to any change in r. For the same
signal, a different choice of r produces a different SampEn [16], meaning that the signal could have
two estimates for the same information. This will be completely misleading. Consequently, we believe
that generating a complete SampEn profile in response to a data specific set of r values will address
the issue. Here, we will be able to use even the insensitivity of SampEn as added information, thereby
turning the limitation into an advantage. Such an approach will lead to enhanced information retrieval
from short-term HRV signals.

Given a signal, there are two challenges in trying to acquire a potential set of all r values:

1. Insufficient information: It is first of all necessary to know how many r values should be in the
set, what should be the minimum and maximum values of r in the set and so on. In other words,
the range and resolution of r values in the set should be defined. We know that previous studies
have used a general r range of (0− 1) ∗ SD of signal and highest r resolution of 1

0.1∗SD of signal for
the purpose. However, these recommended values do not hold any proof of uniform credibility
across all data sets [9,18,25,28]. Moreover, these choices have mostly been random. Since our
approach aims at generating a complete profile for a given signal, we must ensure that all
significant changes in r and thereby entropy are captured. This cannot be achieved if we go with
random parametric selection once again. Data driven choices become indispensable here.

2. Computational expense involved: Even if we are successful in listing all potential r values for the
given signal, the next challenge is to estimate entropy at each of these r values. With available
expertise, the only way to do this is by repetitively estimating entropy at each r. The process
could be complex and time consuming for high dimensional signals. A computationally efficient
approach also becomes indispensable here.

This is where our novel “cumulative histogram method (CHM)” for entropy profiling finds place,
the method being computationally efficient and completely data driven [49,50].

5.2. Signal Complexity

Chaos or order in a physiological system does not always reflect its level of complexity [19,43,56].
A system with highly uncorrelated interactions will be more complex to comprehend. A signal arising
from such a complex system should be categorized as complex, irrespective of the regularity of patterns
seen in it [56]. For instance, arrhythmia is a condition where there is additional irregularity in the
normal heart rate pattern. However, a normal cardiac system has better reflexes and adaptability to
a changing environment than an arrhythmic cardiac system, making it a more complex system [43].
Thus, an arrhythmic signal can be more irregular than a normal heart signal, despite coming from a
low complex system. In such cases, it becomes necessary to particularly extract complexity information
(not just irregularity) from the signal. For this, the signal must be examined across various temporal
and spatial scales, which is equivalent to exploring the structural complexity of the system.

ApEn and SampEn are signal irregularity measures and do not give any inherent information
about system complexity [16,56,57]. Multiscale sample entropy (MSE) was proposed in 2002 [19] to
quantify a system’s complexity-based information. Here, SampEn was estimated at multiple temporal
scales by using a coarse graining procedure of the original time series. Consequently, irregularity
measured at higher temporal scales has the potential to reveal complexity-based information. Signals
associated with cardiac pathologies such as atrial fibrillation showed higher values of ApEn and
SampEn, compared to those of healthy cardiac signals [19,43–45,58,59]. It must be noted that a healthy
cardiac system is much more complex in nature than the pathological ones. Thus, the higher values of
entropy for pathological signals do not reflect their system’s complexity, but the opposite.

MSE employs a coarse graining procedure, where as the scale factor increases, original data
length keeps reducing by the factor. Additionally, since SampEn has its own limitations in handling
short-term data, MSE works accurately only for relatively longer lengths of data. The original data
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length is required to be high enough so that even at the highest scale factor used in MSE, the resultant
coarse-grained signal (with reduced data length) is fit to be handled by SampEn. On the other hand,
researchers have also tried enabling MSE to analyze short-length signals. A few modifications to
MSE analysis such as modified MSE (MMSE), short-time MSE (sMSE) and refined generalized
MSE (RMSEσ2) demonstrated the use of MSE on short-term synthetic data [48,60,61]. Their use on
physiologic signals have not been explored yet.

Our proposed method of “entropy profiling” breaks all constraints and equips SampEn to handle
short-length heart rate data. Thus, we hypothesize that augmenting the multiscaling procedure with
“entropy profiling” will eliminate the former’s dependency on long-term data [20].

5.3. Formulation of Entropy Profiling

Geometric interpretations of entropy profiling [49]:

We use the cumulative histogram method (CHM) to generate a SampEn profile. The method uses
a data-driven approach of multiresolution binning for acquiring the potential set of all r values. This r
set is then used to build the entropy profile. The steps are listed and illustrated below.

Let a time series of length N be defined as {x(n) : 1 ≤ n ≤ N}. An example data of length N = 10
has been shown in Figure 4.

For a given value of the embedding dimension m:

1. Form (N −m) vectors of length m each, given by

{Xm
i : 1 ≤ i ≤ (N −m)}where

Xm
i = {x(i + k) : 0 ≤ k ≤ m− 1} (20)

2. Similarly, form (N −m) vectors of length (m + 1) each, given by{
Xm+1

i : 1 ≤ i ≤ (N −m)
}

where, Xm+1
i = {x(i + k) : 0 ≤ k ≤ m} (21)

The above two steps have been illustrated in the lower sub panels of Figure 4 for an m = 2.
3. Take each Xm

i vector of step 1 as a template vector and find its distance from every vector Xm
j ,

where the distance is given by

dm
ij = {max|Xm

i − Xm
j |: 1 ≤ j ≤ (N −m), j 6= i}, (22)

so for an i-th template vector, the distance vector for an embedding dimension m will be of the
following form

dm
i = dm

ij : 1 ≤ j ≤ (N −m), j 6= i (23)

similarly, for an embedding dimension m + 1, the distance vector can be obtained as

dm+1
i = dm+1

ij : 1 ≤ j ≤ (N −m), j 6= i (24)

This step has been illustrated in Figure 5.
4. Let D be the matrix containing all elements of dm and dm+1. Then, we define range as the set

of all unique elements of D, sorted in ascending order. Additionally, let nbin be the number of
elements in range (shown in Figure 6).
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5. From the distance vector dm
i , the cumulative distribution function cd f m

i is calculated as:

cd f m
i (q) = p(dm

i ≤ range(q)), for 1 ≤ q ≤ nbin (25)

where p is the probability.
6. Repeat step 5 for all dm

i :1 ≤ i ≤ (N −m) to calculate the entire cumulative distribution matrix
cd f m for the embedding dimension m as shown:

cd f m =


cd f m

1 (1) · · · cd f m
1 (nbin)

cd f m
2 (1) · · · cd f m

2 (nbin)
... · · ·

...
cd f m

N−m(1) . . . cd f m
N−m(nbin)

 (26)

(shown in left sub panel of Figure 7).
7. Similarly for embedding dimension m + 1 the cumulative distribution matrix cd f m+1can be

obtained by repeating step 4 for all dm+1
i .

cd f m+1 =


cd f m+1

1 (1) · · · cd f m+1
1 (nbin)

cd f m+1
2 (1) · · · cd f m+1

2 (nbin)
... · · ·

...
cd f m+1

N−m(1) . . . cd f m+1
N−m(nbin)

 (27)

(shown in right sub panel of Figure 7).
8. Now, for each column of cd f m and cd f m+1, we calculate the average of the probabilities, which is

represented as θm(q) and θm+1(q) respectively.

θm(q) =
1

N −m

N −m
∑

i = 1
(cd f m

iq ), 1 ≤ q ≤ nbin (28)

θm+1(q) =
1

N −m

N −m
∑

i = 1
(cd f m+1

iq ), 1 ≤ q ≤ nbin (29)

9. SampEn which is an approximation of the conditional probability of two segments matching
at a length m + 1 if they match at m, can be defined from θm and θm+1 as SampEn = ln θm

θm+1 .
In this case, we will have nbin number of SampEn values since θm and θm+1 are calculated over
1 ≤ q ≤ nbin (shown in Figure 8). This can be expressed as SampEn(q) = ln θm(q)

θm+1(q) , where
1 ≤ q ≤ nbin.

It must be noted here that each value of q is in fact a unique value of r. Thus, there will be nbin
number of unique r values used for entropy profiling. The algorithm automatically selects the value of
nbin, derived from the dynamics of the signal. Here, nbin is a data-driven value (covering all potential r
values for the given signal) and hence the best choice to generate a complete entropy profile. This is
unlike other methods where the choice of nbin is either random [10,62] or logically selected [63].

CHM performs SampEn profiling with the aid of simplified matrix operations and not looped
iterations as in traditional estimations. Moreover, the range and resolution of r are not selected
arbitrarily, but derived from the dynamics of the given data. It is to be noted that the r resolution used
here is not a single constant value. Based on the change of inter-vectors distances, the r value takes up
a multiresolution spread. This can be called a multiresolution binning scheme.
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vectors at embedding dimensions m and m + 1. Here, N = 10 and m = 2. (Figure adapted from [49]).
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5.4. New Measures of Irregularity from a SampEn Profile

Total sample entropy (TotalSampEn):

TotalSampEn is the summation of all values in the SampEn profile of a signal.

TotalSampEn =
nbin

∑
q=1

SampEn(q) (30)

The value is usually very high because of the summing effect. The high value of TotalSampEn can
be normalized by dividing it by the respective number of bins in each case. This gives rise to another
measure called the average sample entropy or AvgSampEn.

Average of sample entropy (AvgSampEn:)

AvgSampEn =
1

nbin

nbin

∑
q=1

SampEn(q) (31)

Extracting new measures from an entropy profile is not restricted to TotalSampEn and
AvgSampEn. Various other forms of information can be extracted from the complete entropy
profile [49,50,64,65].

6. Case Studies

The various statistics used for study in our results section include SampEn, FuzzyEn, normalized
FuzzyMEn, TotalSampEn and AvgSampEn that are represented as HS, HF, HNF, HTS and HAS
respectively in the upcoming tables and figures.

6.1. Age Based HRV Classification

Data used: HRV signals were obtained from the Fantasia module of the PhysioNet database [66].
The subject population included forty healthy adults belonging to two different age groups: (1) “young,”
21–34 years; and (2) “elderly,” 68–85 years. Both age groups contained twenty subjects each, having
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an equal number of men and women. HRV data was extracted from a 120 minutes recording of an
individual subject’s electrocardiogram (ECG), sampled at a frequency of 250Hz. An automated RR
interval detection algorithm was then used to obtain the HRV of subjects [67]. Each HRV signal is
selected from the beginning to lengths of 50, 100, 150, 200, 250 and 300 beats.

For the the “young” and “elderly” groups of HRV data, plots showing the mean and SD variation
of HS, HF, HTS and HAS are shown in Figure 9. In the figure, at each of the data lengths used,
the performance (statistical significance) of classification is indicated by p values. p value is the
probability of samples of one population being equal to or greater than samples of another population
and is obtained using Mann-Whitney U test. p can take values between 0 and 1. In this study, p < 0.05
is considered statistically significant.
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Figure 9. Mean and SD variations of HS, HF, HTS and HAS. Classification of the “elderly” and “young”
groups of healthy heart rate variability (HRV) data.

Table 1 summarizes the results of Figure 9, and lists another statistical estimate of performance
efficiency—the AUC (area under the ROC curve). AUC is the probability of a classifier to rank a
randomly chosen instance X higher than a randomly chosen instance Y. X and Y denote samples from
two independent populations. An AUC of 0.5 means the distribution of features is similar in the two
groups with, while an AUC of 1.0 indicates that the distribution of features in the two groups are
completely dissimilar.

Table 1 compares the performances of SampEn(HS), FuzzyEn(HF) and our entropy profile
measures TotalSampEn(HTS) and AvgSampEn(HAS) in classifying the age based HRV data. At all
data lengths, the p value for SampEn is either insignificant or inapplicable (due to an indefinite SampEn
value. This is an inherent problem that happens with some data due to SampEn’s formulation and
random r selection).

With FuzzyEn, significance in data classification begins only after a data length of 150. In the
case of our entropy profile-based TotalSampEn and AvgSampEn, data classification is statistically
significant at all data lengths. Where traditional estimation methods such as SampEn and FuzzyEn
fall back, TotalSampEn and AvgSampEn prove efficient.

AUC values of Table 1 also support our observations made so far. At the lower data lengths
(N < 200), data classification is done most efficiently by TotalSampEn. AvgSampEn and FuzzyEn
follow suit. However, SampEn is incapable of classifying the age based population at such low data
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lengths. At the higher data lengths, there is a small improvement in the case of SampEn. However,
compared to the other three measures at the same point, SampEn still falls behind. At the higher
data lengths, it is TotalSampEn that performs the best. AvgSampEn and FuzzyEn show almost similar
performances at this stage. It can be unambiguously seen that at both the lower and higher data
lengths, entropy profiling-based measures such as TotalSampEn and AvgSampEn are the ones that
offer superior data classification of the age based HRV groups.

Table 1. Classification of healthy “elderly” and healthy “young” HRV data at different data
lengths N [49].

N
HS HF HTS HAS

p Value AUC p Value AUC p Value AUC p Value AUC

50 NA NA NS 0.62 0.00051 0.82 0.0012 0.80

100 NA NA NS 0.68 0.00022 0.84 0.0106 0.74

150 NS 0.54 NS 0.64 0.00022 0.84 0.0179 0.72

200 NS 0.62 0.0315 0.70 0.00004 0.88 0.0077 0.75

250 NS 0.65 0.0193 0.72 0.00004 0.88 0.0084 0.75

300 NS 0.68 0.0098 0.74 0.00005 0.88 0.0207 0.72

6.2. Disease Based HRV Classification

HRV signals were obtained from the MIT-BIH module of the PhysioNet database [66]. The subject
population included 66 adults belonging to two groups: (1) “healthy” cardiac state and (2) “arrhythmic”
cardiac state. The healthy group contained 18 subjects, with 5 men, aged 26 to 45, and 13 women,
aged 20 to 50. The arrhythmic group had 48 subjects [68]: 25 men aged 32 to 89 years, and 22 women
aged 23 to 89 years. Each HRV signal is selected from the beginning to lengths of 50, 100, 150, 200,
250 and 300.

For the above signals, plots showing the mean and SD variation of HS, HF, HTS and HAS are
shown in Figure 10. In the figure, at each of the data lengths used, the performance (statistical
significance) of classification is indicated by p values. Table 2 summarizes the results of Figure 10 and
lists the respective AUC values as well.

Table 2 compares the performances of SampEn(HS), FuzzyEn(HF) and our entropy profile
measures TotalSampEn(HTS) and AvgSampEn(HAS) in classifying the healthy from diseased HRV
data.

Looking at the p values, here also SampEn has an insignificant or indefinite performance at all the
data lengths. With FuzzyEn, a significant data classification happens for N > 100. On the other hand,
at all data lengths TotalSampEn and AvgSampEn give significant performances classifying the data.

Looking at the AUC values, we see that there is again an improvement in SampEn performance as
N increases, though incomparable to the other measures. Irrespective of data length, it is the entropy
profile-based measures that display a consistently superior performance in classifying healthy from
arrhythmic HRV data.
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Figure 10. Mean and SD variations of HS, HF, HTS and HAS. Classification of the “healthy” and
“arrhythmic” groups of HRV data.

Table 2. Classification of “healthy” and “arrhythmic” HRV data at different data lengths N [49].

N
HS HF HTS HAS

p Value AUC p Value AUC p Value AUC p Value AUC

50 NA NA NS 0.61 1.88× 10−8 0.95 0.0001 0.81

100 NA NA NS 0.65 1.73× 10−8 0.95 0.0005 0.78

150 NS 0.60 0.0098 0.71 8.82× 10−9 0.96 0.0007 0.77

200 NS 0.61 0.0016 0.75 1.34× 10−8 0.96 0.0002 0.80

250 NS 0.65 0.0022 0.75 2.85× 10−8 0.95 0.0034 0.74

300 NS 0.66 0.0021 0.75 1.46× 10−8 0.96 0.0058 0.72

6.3. HRV Complexity Analysis

HRV data belonging to two groups namely (1) “healthy” cardiac state and (2) “atrial fibrillated
(AF)” cardiac state, were obtained from the MIT-BIH module of the PhysioNet database [66].
The healthy group contained 18 subjects: 5 men, aged 26 to 45, and 13 women, aged 20 to 50. The AF
group had 25 subjects [68], all with mostly paroxysmal atrial fibrillation. All signals have been
manually filtered for the removal of ectopic beats.

As mentioned in Section 5.2, the closest work that has tried HRV complexity analysis using
short-term signals has used normalized FuzzyMEn. We thereby compare the efficiency of entropy
profiling with that of multiscale SampEn and normalized FuzzyMEn.

For the data length N = 1000, we estimate the respective multiscaled versions of HS, HNF and
HTS using scales 1 to 20. Figure 11a proves that multiscaling on SampEn incorrectly places entropy of
healthy signals at a lower value than that of the diseased ones. Panels (b) and (c) of Figure 11 show that
multiscaling on HNF and HTS works in favor of a better complexity analysis since the entropy levels of
the more complex healthy signals are rightly placed higher to those of the less complex diseased ones.
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Figure 11. Multi scale entropy analysis of healthy and atrial fibrillation HRV data using (a) SampEn,
(b) normalized FuzzyMEn and (c) TotalSampEn. Here data length N = 1000 [20].

7. Discussion

Heart rate variability is a useful diagnostic indicator of physiology and pathology in the human
system. Several forms of information can be derived from a HRV signal for diagnostic and analytic
purposes. Simple statistical or geometrical methods to more complex nonlinear options are available
for extracting useful HRV information. The information retrieval becomes challenging as data length
decreases. For short recordings of HRV, getting accurate and reliable information is not easy. At the
same time, short-term HRV signals are preferred over long-term counterparts, since the short-term ones
are easier, less expensive and more patient-friendly to obtain and process. KS-entropy algorithms such
as ApEn and SampEn are the most popularly used in this regard. These methods assess irregularity or
complexity information from a given HRV signal, by detecting patterns and pattern matching in the
signal. A typical KS-entropy algorithm finds the conditional probability of signal segments to match
at a length m + 1 if they match at a length m, the original signal length being N and the threshold of
match being r.

Despite the good reputation of entropy methods to handle short-term HRV signals, they are
widely known to be affected by parametric dominance. This is especially true when it comes to
the tolerance parameter r. Entropy formulations require the selection of an appropriate value for
parameter r, given a signal of length N. The choice of r is generally made from a predefined set of
values, commonly used in HRV analysis. Several studies have reported a lack of logical clarity in
making such a choice in addition to cases where these choices fail. A wrong choice of r is capable of
generating completely wrong estimates of entropy, giving erroneous HRV information.

The most appropriate choice of r for a given signal depends purely on the nature of the signal,
e.g., the signal dynamics and signal length. It is said that r being too small or too large has biased
impacts on information retrieval. A high or low value of r is a very relative term, since we do not have
a method to decide the perfect r for a specific signal. Having said that, rather than randomly selecting
a single r and allowing entropy to give us partial information (can be biased or misleading), we believe
that it is an advancement to capture the entire domain of entropy, in response to variations in r.

Our novel idea of entropy profiling was introduced in the year 2016 [50] to facilitate the generation
of an entire profile of entropy based information, rather than a single-pointed one. The major impacts
created by our method are listed below:

1. Reduced parametric dependence:
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The idea of entropy profiling with respect to the parameter r makes entropy a function of just N
and m. r is completely eliminated from the list of input parameters that need the user’s discretion
to be chosen. This is in contrast to the traditional case where entropy is a function of N, m
and r. In short, entropy(N, m, r) now becomes entropy(N, m). Thus, parametric dependence of
traditional formulations is significantly reduced. The CHM algorithm used for r-based entropy
profiling is completely data driven. It automatically computes all potential r values for the given
data. This relieves the user from having to choose a logical or appropriate value for r to be used,
as in the case of traditional entropy estimation.

2. Short-term analysis and enhanced information retrieval:

An irresolute r choice has placed its share of limitations over the use of data length N. With the
available generalized mode of r-selection, entropy algorithms could be used only on data lengths
N ≥ 1000—this being approximately 15 min of HRV data, is surely considered short-term data.
However, the inability of these algorithms to work on N < 1000 (highly preferred for ease of
data acquisition) is majorly due to lameness in r-selection scheme, which can therefore surely
be rectified. By generating a complete set of r values and thereby all possible entropy estimates
specific to the given signal (of any N), CHM does not place any kind of restrictions on data length.
With a signal of any given N, CHM unconditionally tries and retrieves as much information from
it as possible. The novel approach of entropy profiling is superior to traditional estimations as:
(i) it eliminates the ambiguity that existed in choosing the right value of r for entropy estimations
and (ii) it enhances the quality and reliability of signal information retrieved, specially from a
short-length signal.

An entropy profile contains accurate and complete information about signal irregularity.
Different forms of the information can be derived from the generated profile and are called
secondary measures of irregularity information. The proficiency of secondary measures such as
TotalEntropy and AvgEntropy to classify physiological data has been demonstrated in this work.
Any such secondary statistics of analysis can be obtained from a given entropy profile to suit the
purpose of application.

In general, SampEn estimation is bound by data length limitations. The procedure cannot
accurately handle signals of length below 1000 samples. As a consequence, multiscale SampEn
analysis, that further constricts data length as part of its formulation, remains inapplicable on
short-length physiological signals. When augmented with entropy profiling, we see that the
process of multiscaling becomes equipped to handle even the short-length signals.

3. Computational efficiency:

Traditional SampEn, calculated at a single r value, takes an execution time of o(N2) [69]. As an
attempt to compare this with the execution time of the cumulative histogram method of SampEn
profiling, we design the following experiment. Consider the age-based HRV data set used in
this study. HRV signal of length 300 from each of the 40 subjects (20 elderly and 20 young) is
taken. On each signal, first the CHM is applied. Here, CHM will provide us (a) the data specific
range and resolution of r and (b) the complete SampEn profile of the signal. The time taken for
CHM execution/profile generation per signal is noted down and tabulated in columns 4 and 7 of
Table 3. Additionally, from the r range and resolution obtained, we get to know the number of
unique r values to be used for profile generation. This number is denoted as n and is tabulated in
columns 2 and 5 of Table 3.
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Table 3. Execution times of (1) the traditional approach and (2) CHM, to generate a complete SampEn
profile; HRV signals, N = 300, from elderly and young populations of subjects are used. n represents
the number of unique r values [49].

Healthy “Elderly” Healthy “Young”

Signal n
Execution Time (s)

n
Execution Time (s)

Traditional Approach CHM Traditional Approach CHM

1 127 1.08 0.08 280 2.53 0.10

2 143 1.17 0.09 352 3.14 0.11

3 127 1.10 0.08 137 1.24 0.09

4 323 2.75 0.12 340 3.01 0.12

5 31 0.29 0.07 275 2.41 0.10

6 78 0.74 0.08 314 2.76 0.12

7 91 0.77 0.09 508 4.44 0.16

8 119 1.15 0.08 209 1.91 0.08

9 356 3.23 0.12 135 1.11 0.08

10 144 1.23 0.08 197 1.72 0.09

11 460 4.10 0.14 201 1.84 0.09

12 265 2.36 0.10 384 3.37 0.13

13 62 0.63 0.07 123 1.08 0.09

14 133 1.18 0.09 96 1.12 0.08

15 64 0.61 0.08 407 3.53 0.12

16 186 1.65 0.09 251 2.32 0.11

17 99 0.87 0.08 321 2.89 0.12

18 267 2.24 0.10 415 3.71 0.12

19 396 3.49 0.12 559 5.26 0.16

20 97 0.78 0.08 424 3.75 0.12

Now, using n estimated from the above procedure, we try and generate SampEn profiles following
the traditional approach. In other words, SampEn estimation will be repeated n times, each time
with a unique r. The time taken for this execution is tabulated in columns 3 and 6 of Table 3.

It can be seen that the execution times involving CHM are much less compared to those involving
the traditional approach. This is true for both the elderly and young populations of HRV data.
For the elderly population, the mean± SD of execution times are 1.57± 1.08 s and 0.09± 0.02 s
respectively for traditional approach and CHM. In the young population—2.66± 1.16 s and
0.11± 0.02 s. The traditional way of generating a complete SampEn profile is far more
computationally expensive than the CHM.

To give a more comprehensible explanation, say we need to compute SampEn at “n” number
of r values, in order to produce a “complete” profile. The traditional approach will do this by
repeating a run of SampEn estimation n number of times, each time using a unique r. This implies
the total execution time will be o(N2n). Now, the higher the value of n, the greater the execution
time. CHM on the other hand, will do this by simultaneously generating SampEn corresponding
to all r values in a single run of the algorithm (as explained in Section 5.3). This is irrespective of
the value of n (small or large). The total execution time will therefore remain o(N2).



Entropy 2020, 22, 1396 24 of 28

CHM involves matrix operations and the concept of cumulative distribution to generate an
entropy profile. This makes the approach computationally more efficient than the traditional
approaches. We see that traditionally, looped operations have been used to compute entropy at
multiple r values, increasing computational load.

It is to be noted that the computational benefit demonstrated above may vary with the computing
platform used. Our results have been validated in MATLAB where the kernel loops are optimized
compared to traditional loops.

8. Conclusions

In KS-entropy methods, the ambiguity of r-selection has remained an unresolved issue for over
two decades now. The impact of the problem has greatly been felt when dealing with short-length
recordings of HRV signals to extract irregularity or complexity based information. By removing the
need for a manual r-selection process in entropy methods, this work has opened up new avenues
in short-length HRV analysis. The proposed novel approach of entropy profiling being accurate,
reliable and computationally efficient, demonstrates great potential for high-quality information
retrieval from HRV signals as short as one minute recordings. Additionally, the contribution of
entropy profiling to short-length HRV analysis indicates 5y3 possibility to incorporate real-time HRV
irregularity/complexity measurement in modern wearable devices, e.g., a wrist watch or mobile phone
with a built-in HRV analysis module. This will be of significant research potential in the domain of
smart health monitoring.

Future Research Directions

1. Data driven selection of embedding dimension m: Similarly to the case of r, embedding
dimension m is yet another parameter that limits entropy methods in the analysis of short-term
data. Though not as critical as r, m-selection also requires a certain extent of discretion when used
in entropy estimations. A perfectly appropriate m value can greatly help improve information
retrieval from short-length HRV signals. Since the right choice of m is as ambiguous as that of
r, we will need methods to help us choose the appropriate m. Thinking along the same lines as
dealing with r, it is best if we are able to completely eliminate the need to choose m from entropy
estimations. The prospect of eliminating embedding dimension (m) from entropy formulations
is the primary future target. Following an elaborate survey on the selection, use and impacts
of varying embedding dimension (m) on entropy, a geometrical explanation of the parameter’s
properties and behavior is obtainable. This helps formulate a relation between data and their
potential range of m values. Then the demand is for a data-driven algorithm capable of generating
these potential m values automatically. In this way, once the complete entropy profile is obtained
with respect to m, beneficial measures of regularity or complexity can be extracted from it.
The physiological relevance of m-selection in the context of HRV analysis can also be another
stream of research here.

2. Extending the method for any given physiological signal: A significant extension of our work
will be meant to make our methods compatible for use with any kind of physiological signal,
not just HRV. Now, an important aspect to be considered here is the frequency of the input signals.
For instance, some physiological signals, such as the PPG (photoplethysmographic) signals, are
low-frequency in nature, while ones such as EEG (electroencephalographic) signals are of more
high frequency components. It is essential to study how our entropy profiling method responds to
changes in input signal frequencies. Since the method is entirely dependent on signal dynamics,
a frequency-based study makes an indispensable future goal.

3. Cross entropy analysis on multi-variate signals: Looking for correlations in bi-variate or
multi-variate physiological time series is a research domain that has picked up speed in recent
years. Finding synchrony between two different physiological signals (coming from the same
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system) may reveal significant information about the underlying physiological system. For this
purpose, it has been a common practice to employ cross-entropy versions of approximate
and sample entropy. Implementing cross-entropy profiling instead of estimations could prove
beneficial here too. Using CHM and thereby entropy profiling to perform multi-variate signal
analysis will improve prospects of analysis on short-length multivariate signals. This could be an
important direction of future experiments and validation attempts.

4. Simulation trials using different models: HRV is a non-stationary process, with long-range and
short-range dependencies. Entropy profiling assumes stationarity in the signal, when evaluating
short segments of the data. However, if it is to be used on longer lengths of data, signal attributes
and assumptions may have to change. Signals may become more complex. To test the robustness
of the method, it will be significant to run simulations on complex auto-regressive models such as
ARFIMA (autoregressive fractionally integrated moving average) [70] and GARCH (generalized
autoregressive conditional heteroskedasticity) [27].

MATLAB codes generated as part of our study are available at https://github.com/
radhagayathri/Entropy-Codes. These can be used with proper citations included.
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