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Abstract: Interactive music uses wearable sensors (i.e., gestural interfaces—GIs) and biometric
datasets to reinvent traditional human–computer interaction and enhance music composition.
In recent years, machine learning (ML) has been important for the artform. This is because ML helps
process complex biometric datasets from GIs when predicting musical actions (termed performance
gestures). ML allows musicians to create novel interactions with digital media. Wekinator is a
popular ML software amongst artists, allowing users to train models through demonstration. It is
built on the Waikato Environment for Knowledge Analysis (WEKA) framework, which is used to
build supervised predictive models. Previous research has used biometric data from GIs to train
specific ML models. However, previous research does not inform optimum ML model choice,
within music, or compare model performance. Wekinator offers several ML models. Thus, we used
Wekinator and the Myo armband GI and study three performance gestures for piano practice to
solve this problem. Using these, we trained all models in Wekinator and investigated their accuracy,
how gesture representation affects model accuracy and if optimisation can arise. Results show
that neural networks are the strongest continuous classifiers, mapping behaviour differs amongst
continuous models, optimisation can occur and gesture representation disparately affects model
mapping behaviour; impacting music practice.

Keywords: interactive machine learning; Wekinator; Myo; HCI; performance gestures; interactive
music; gestural interfaces; gesture representation; optimisation; music composition

1. Introduction

The process of music composition can be considered interactive when using gestural interfaces
(GIs) to create novel instruments [1] (or build upon existing ones [2]) to necessitate musical creativity.
A GI is a device that measures bodily behaviours (gestures) to manipulate digital media. GIs capture
biometric data, such as inertial measurement units (IMUs). When using GIs, new methods of
human–computer interaction (HCI) can be realised within music composition.

Novel GIs have always induced creativity within interactive music history. This is evident when
observing the history of GIs within music, spanning from the theremin (1917) [3] to the analogue
synthesizer (1970s) [4], Michel Waisvisz’s GI ‘The Hands’ in 1984 [5] (a mobile GI allowing for musical
embodiment), which was produced one year after the establishment of the Musical Instrument Digital
Interface (MIDI) protocol, then Jon Rose’s newly created digital/MIDI violin bow (namely the K-bow,
1987) [6] and, lastly, Atau Tanaka et al.’s 1993 artistic group Sensorband [7], who took inspiration
from Waisvisz’s earlier work, investigating how a range of wearable sensors affected the digital
signal processing (DSP) of live sound/music. In recent times, brain–computer interfaces (BCIs) using
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electroencephalography have been used to broaden our understanding regarding the embodiment
of music composition [8]. However, BCIs are not ideal for music composition because they utilise
numerous electrodes fixed atop the head. As a result, their mobility is limited. In 2015, the release of
the Myo armband [9] provided an opportunity to use a mobile interface for better gestural control
within interactive music practice. The Myo facilitated access to two types of biometric data: IMU and
electromyographic (EMG). Although IMU data offered by the Myo (and similar interfaces) are not
novel, EMG data are very useful as they capture skeletal muscle activity, granting users the ability to
map muscular behaviour to digital media.

Past research using the Myo GI has used conditional statements to process biometric
information [10]. Although conditional statements can be used with interface data and music
composition, they are inefficient. This is because misclassification of musical gestures can occur if a
machine learning (ML) approach is not taken [10]. Using ML would therefore provide better accuracy
when stimulating music systems. Wekinator, an interactive ML software, makes this possible [11].
Wekinator is built on the WEKA (https://www.cs.waikato.ac.nz/ml/weka/) framework. It allows
real-time data to be used as a model input (from GIs) and contains a simple graphical user interface
(GUI) when building ML models. Previous literature has used Wekinator to classify instrument
articulations [12], map colour from sound within virtual reality [13] and duet with a GI using LEDs [14].
Moreover, there is a scarcity of literature investigating performance gesture classification in Wekinator
with a focused quantitative method; only a demonstrative method using qualitative evaluations [12].
Nevertheless, a small number of studies exist that feature quantitative aims, but without such aims
being the focus of those studies. Studies using Wekinator have also investigated how a hybrid of
subjective and quantitative evaluation [15] can be used with gestural datasets (besides EMG data) in
music practice.

Previous research has seldom explored model evaluation when using EMG data to train ML
models within Wekinator, although ML practice with rich gestural datasets in music is of high value;
literature in this field remarks, ‘. . . there is a need to create evaluation models to assess their suitability
for real world music performance situations’ [16]. In addition, literature in this topic rarely explores
the use of EMG data to classify highly nuanced physical actions in music (e.g., the classification of
each individual digit of the hands during piano performance), despite being able to do so, if current
post-processing (i.e., feature extraction) methods are used with GIs. Importantly, such literature does
not also assess the impact of model optimisation and if suggestions can be made when pairing gesture
type to model choice. Areas such as the number of model examples used, comparing performance
gesture representation during training, or how historic data can be utilised to make gestural predictions
in music, are not addressed. Having more insights into these topics would potentially inform us about
which gestures can be predicted, and the volume of data required to achieve high prediction accuracy.

Moreover, how we capture musical actions is an area of importance. Performance gesture
representation is important to study, prior to model training, because it can disparately affect artistic
outcomes. Literature in this field has investigated two types of performance gestures within ML
practice, prior to model training, when using EMG data and GIs (i.e., the Myo): static and dynamic
[17]. However, this is without objective evaluation. Therefore, the fact that we have a choice in how
we represent a gesture in music before model training is a problem because we do not know how they
will be represented by an algorithm—or any resulting artistic consequences. Our approach to gesture
representation is discussed further in Section 3.2.1.

Therefore, we provide a solution to the problem that ML models can be processed and created
differently within Wekinator when using performance gestures and the Myo GI. In addition, we address
that EMG data can be used to create unique gestures for music system interaction, in lieu of predefined
gestures (via the Myo Software Development Kit (SDK)) within music research [10,18]. We investigate
which ML models are the most reliable when predicting three particular music actions (for piano)
within interactive music, and how model accuracy can be improved under specific conditions.
If successful, this research enquiry will better inform the artistic community regarding the Myo
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GI (and similar interfaces) when selecting an efficient ML model within Wekinator to predict our
studied performance gestures. We investigated these points by using current post-processing methods
with gestural EMG/IMU data, optimising models, assessing model example lengths on accuracy,
using historic gesture data to make predictions and exploring how gesture representation choice affects
model prediction behaviour and accuracy.

Our results show that specific ML models are most efficient when selected based on performance
gesture representation and biometric data type. The results also show that model choice provides
disparate music outputs via differences in model signal behaviour and post-processing EMG data
models generally improves model accuracy, in comparison to such models which do not use
post-processing. We also see that model parameter optimisation can improve model accuracy, and
using historic data to run trained models provides very similar behaviours as when real-time data
are used. Lastly, we also observe model example lengths can affect model accuracy. The next
section of this paper outlines and critically assesses literature in the field of gesture recognition
with ML and music. Section 3 then discusses the GI that we used for this study (the Myo armband),
our planned performance gestures to evaluate ML practice, our approaches to gestural representation,
data acquisition, data processing, all ML models offered by Wekinator, the use of historic gesture data,
example length and model optimisation. This is followed by the study results (Section 4), a discussion
of the application of the three studied gestures within interactive music practice (Section 5) and
conclusions (Section 6).

2. Literature Review

Studies attempting to inform the user of which ML model is most apt to use when classifying
gestures in music, using a popular ML software such as Wekinator, and rich gestural datasets (i.e., EMG
data) are sparse; see Table 1 for a summary of key gesture recognition studies, in music, elucidating
this. Within the field of gesture classification, several studies have previously used optical datasets
and ML, using peripherals such as the Leap Motion and Kinect [19]. Other studies have used images
and videos to classify gestures [20]. Other studies in this area have compared ML algorithms using
the Kinect/optical peripherals [21] in order to find the most efficient model. Optical peripherals have
also recently been used in virtual reality, utilising ML for gesture prediction, in order to track user
hands [22]. However, optical datasets can be inefficient for gesture classification because their efficacy
may be affected by environmental conditions (i.e., differences in distance between gesture and camera,
fluctuations in scene lighting and occlusion) compared to other gestural datasets, such as EMG [23].

Table 1. A table outlining key information from studies in music gestural recognition, as discussed in
this section. The machine learning models used are: multilayer perceptron neural network (MPNN),
hierarchical hidden Markov models (HHMM), decision tree (DT), hidden Markovian model (HMM),
dynamic time warping (DTW) and recurrent neural network (RNN).

Study Targeted ML Models No. Gestures Used Type of Gestures Used

Tanaka et al. [17] MPNN and HHMM 4 All gestures user-designed in a workshop
Dalmazzo and Ramirez [24] DT and HMM 4 4 fingers (left hand, index to ring fingers)
Ruan et al. [25] MPNN 3 3 fingers (left hand - thumb, index, middle)
Di Donato et al. [26] MPNN and DTW 6 5 activation gestures and 1 modulating gesture (left arm)
Erdem et al. [27] RNN 6 6 gestures (exercises on guitar playing - both arms)
Dalmazzo and Ramírez [28] HHMM and DT 7 Violin bowing techniques

Literature within the scientific community has been integral when informing how we should use
complex EMG information from available GIs. In particular, Arief et al. [29] showed that the mean
absolute value (MAV) feature extraction method is one of the most efficient when working with EMG
data. The MAV is an integral of EMG data and estimates muscle amplitude via EMG signals [29,30];
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it is represented as follows, where Xk denotes kth model attribute input and N denotes attribute input
sample size:

MAV =
1
N

N

∑
k=1
|Xk| (1)

Research within prosthetic and rehabilitative studies have used gestural devices, measuring
EMG data, to control peripherals. A study by Phinyomark et al. [31] found that gestures could be
classified (via a support vector machine model) through the use of the Myo armband and EMG data.
Classification was done by using the MAV as one of the feature extraction methods, based on the
findings by Arief et al. [29]. Interestingly, the study found that EMG information could be used to
classify gestures with >72% accuracy.

Studies using EMG data to classify gestures within music have investigated how gestures can
be used to augment instrumental practice. A study by Ruan et al. [25] looked at how an ‘Air-Ukulele’
could be created via the use of ML to classify EMG information. The classification process used the
MAV function informed by the findings made by Arief et al. [29]. In this work, the authors used
a multilayer perceptron neural network (MPNN) to classify the thumb, index and middle fingers.
The authors noted a high accuracy score for the study, where they achieved a gesture classification
accuracy of 80.8%. The authors framed their experimental method by investigating which conditions
the MPNN performed most accurately. The authors also cited a 90% model training accuracy (TA);
i.e., a 30% TA improvement through optimisation.

In the last decade, there has been a seismic development in how music practitioners use
peripherals to develop their practice. This has been in part because of work done by Fiebrink [11] and
the development of an interactive machine learning (IML) system—Wekinator. The success behind
Wekinator, within artistic communities, is because of how it bridges complex logic (i.e., ML theory and
algorithms) with an improved accessibility of ML via an intuitive GUI, whereby the GUI allows users
to record examples, from any kind of network peripheral, into a specific ML model; the user can choose
between classification, continuous (i.e., regression) or dynamic time warping (DTW) models (more on
this in Section 3.4). IML differs from conventional ML practice for this reason; it connects an informed
understanding of ML implementation, programming languages and the real world application of ML.
Even though IML has improved the accessibility of applied ML within the artistic community, there is
still a lack of understanding as to which ML models are the best to use within a particular artistic
context. In this sense, there is not yet an informed framework—only experimental application.

Recent studies using Wekinator to investigate how IML can be used to drive sophisticated
interactive gestural systems, in music, have seldom used several ML models to do so [17,26]; instead,
they focus on the usability of a few models to drive such a system. This means that an ML model
is used to achieve a particular research aim but optimal model choice is uninformed. A 2017 study
by Dalmazzo and Ramirez [24] classified four fingers of the left hand (i.e., index to ring fingers) to
build an ’Air Violin’ via the use of two ML models: a decision tree J48 (DT) and a hidden Markovian
model (HMM). This study is particularly interesting because the authors compared which model was
better suitable for gesture classification. They concluded that both models were highly accurate for
their focus; citing a 91.4% accuracy for the highest DT finger classification accuracy and 95.1% for the
HMM. Most interestingly, the authors state that the DT model (in Wekinator) can be optimised through
fine-tuning the parameters of the algorithm.

Fiebrink [15] initially explored how gestural datasets (not using EMG data) in music practice can
be investigated through a blend of subjective and quantitative evaluation. In this study, Wekinator
users evaluated models via direct (human) evaluation and also objective evaluation, then subjectively
modified model parameters until they were satisfied with how the model was performing; however,
a specific model was not defined for use when classifying specific music gestures and model choice, or
optimisation, was not informed prior to the decision process. Interestingly, although the study did
attempt to evaluate how music practitioners could benefit from using IML with performance gestures,
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a methodology for gesture representation within the dataspace was not investigated. However, gesture
representation is challenging within IML practice because gesture representation methods are not
clearly defined. This is because there is no strict taxonomy between best IML and gesture performance
practice. However, noted studies have influenced gesture representation within contemporary IML
focuses, using the recognised mapping by demonstration principle [32] to arbitrarily allow a user to
define gesture representation by listening to sound examples; in this sense, the user maps their gestural
perception of predefined sound to stimulate music.

Modern literature in the field of IML has built upon gesture representation research. However,
such literature uses the mapping by demonstration principle [32] to provide a focused approach to
gesture representation within IML practice. A study by Tanaka et al. [17] narrowed the research
focus by asking workshop participants to use two ML methods to represent participant-designed
gestures, when using EMG data and GIs (i.e., the Myo); these ML methods were static and dynamic.
In the study by Tanaka et al. [17], participants were given a choice of how they wanted to represent a
gesture they had designed via training specific ML algorithms; one static method and three dynamic
methods. Gesture representation was defined via four different types of ML approaches; three were
based on using a neural network (NN), within Wekinator and one based on a hierarchical hidden
Markov model (HHMM) for music generation. The ML methods were chosen because of the different
artistic affordances they provided to the user when defining a gesture of their choice. The qualitative
results from the study [17] suggested that gesture representation model choice is wholly based on
subjectivity. Therefore, the fact that we have a choice in how we represent a gesture in music before
model training is a problem. This is because we do not empirically understand how they will be
represented by an algorithm through the gesture choice and artistic consequences that follow. Thus,
the study investigated the role that model type has in aiding artistic decision. However, the study did
not evaluate whether gesture type affects model accuracy, or algorithmic behaviour, when applied to
acoustic instruments or digital musical instruments (DMIs) (DMIs are “... devices in which gestural
control and sound production are physically decoupled but digitally connected according to a mapping
strategy.” [33]) practice. Our approach to gesture representation is discussed in Section 3.2.1.

Other recent studies have further investigated the role that gesture representation has in
sound-action mapping when using IML to build DMIs and sound-producing ’air’ guitars. A study
by Erdem et al. [27] investigating the development of an air guitar DMI (via ML methods) focused
on excitation (Excitation is a phase where there is energy transfer between a music performer and
a musical object. The excitation phase is preceded by a prefix (movement trajectory towards the
point of contact with the musical object) and followed by a suffix (movement away from the musical
object) [34]) actions when implementing sound-action mapping for the air guitar. The authors used
several excitation categories to investigate whether action-sound gesture coupling can be used to
create action-sound mapping for a novel DMI (air guitar) which does not rely on a physical controller
(i.e., a physical instrument), using EMG data from the Myo GI to do so. The study used a recurrent
neural network (RNN) model and trained it with data from semi-professional musicians/participants
to predict guitar gestures. The authors then created an RNN model by mapping EMG data to the root
mean square (RMS) of the instrument’s audio signal and producing a synthesised guitar sound (i.e., a
physical model). The results from the study did not include an evaluation of methods used. Ultimately,
the study illustrated how a focused approach to gesture representation and IML is necessary when
building a novel DMI.

Due to the fact that IML is in its infancy, it is currently unclear what the implications for model
choices are. Schedel and Fiebrink’s [12] study on cello bow gesture recognition highlights this
importance when they noted how optimisation was shown to be a factor when the performer, in
the study, tried to improve model accuracy in Wekinator. Similarly, preliminary investigations by
Ruan et al. [25] and Dalmazzo and Ramirez [24] show that model optimisation can be beneficial when
improving prediction accuracies for use in music. In terms of the impact of example length on model
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behaviour, the earlier noted study by Ruan et al. [25] mentioned that their MPNN classification model
could improve if more training data were introduced.

Vast literature within the field of IML looks at the real-time application of supervised learning
models. The use of historical data to make predictions, however, is rarely addressed despite having
offline advantages. Using historic data is no novel concept within wider ML practice [35–37].
Using historic data can benefit IML practice in music because capturing biometric datasets from
virtuosic musicians, for example, can be used to better inform and optimise ML models. This would
be especially useful when addressing the higher-level goals of IML and music research. A study by
Dalmazzo and Ramírez [28] used a HHMM to train a system to automatically detect violin bowing
gestures. The system was capable of predicting such musical actions with over 94% accuracy. However,
the aim of the study was to provide real-time training to violin students; in this sense, the application
of this study was pedagogically oriented.

3. Methodology

Our methodology follows the project pipeline in Figure 1. We use this pipeline to investigate how
three specific performance gestures, for piano practice, can be acquired from a GI (Myo armband),
processed, communicated to different ML models (in Wekinator) and used to create a sonic output.
Section 3.1 details the GI that we used to conduct our study, the data it transmits and issues surrounding
the use of the interface. Section 3.2 outlines three performance gestures we designed to test ML
model behaviour across all models (classifiers, continuous and DTW). This section also outlines our
investigation, observing if gesture representation choice affects model behaviour and accuracy. Section
3.3 then discusses data acquisition from the Myo GI used in this study and our approach to structuring
and processing the data. Lastly, Section 3.4 explains the ML approaches we apply to retrieved biometric
data, using real-time and historic data to do so, as well as our method behind optimising models and
observing if model example length affects model accuracy/behaviour.

Figure 1. Illustrative project pipeline of biometric data acquisition from the Myo gestural interface (GI),
data processing and machine learning (ML). The end of the pipeline displays digital signal processing
(DSP) and digital to analogue conversion (DAC) when creating musical output.

3.1. Gestural Interfaces and Biometric Data

GIs give us access to raw biometric data when building ML models with performance gestures.
We used the Myo armband GI for this study.



Entropy 2020, 22, 1384 7 of 42

3.1.1. Gestural Interface: The Myo Armband

The Myo armband GI provides access to raw IMUs and 8-channels of 8-bit EMG data. The Myo
transmits data via Bluetooth and communicates EMG data at 200 Hz and IMU data at 50 Hz [10].
The armband can be adjusted to the forearm circumference between 19 and 34 cm and weighs 93 g [28].
The Myo interface streams data to a USB Bluetooth receiver within a distance of <15 m [38]. Data are
retrieved from the Myo SDK developed by Thalmic Labs [18]. The Myo is a unique GI because it offers
access to raw EMG data; such an interface is difficult to obtain at consumer level.

3.1.2. Transmitted Data

The Myo provides two types of biometric data: IMU and EMG data. IMU data streamed from the
Myo are communicated via three orientation parameters: acceleration, gyroscope and quaternions.
Acceleration and gyroscope data parameters use 3 axes (X, Y, Z) to quantify orientation, whereas
quaternions use 4 (X, Y, Z, W). Quaternion units can be used to calculate Euler angles yaw, pitch and
roll (we used Myo Mapper (https://www.balandinodidonato.com/myomapper/) external software to
do this). EMG arm activity is measured from the Myo across 8 separate electrodes, as seen in Figure 2a.
We used only EMG and pitch data within this study. EMG data is returned with a range between −1
to 1 and pitch data is returned (from Myo Mapper) with a range between 0 to 1. We post-processed
these returned values as explained in Section 3.3.1.

(a) (b)

Figure 2. (a) The Myo GI, where all electromyographic (EMG) electrodes (8 channels) are shown. (b)
Standardised placement of the Myo GI when acquiring biometric information (inertial measurement
units (IMUs) and EMG).

3.1.3. Usage Issues of the Myo

Transmitted data from the Myo are prone to data validity issues. Namely, calibration and the
placement of the interface.

Calibration: Muscle activity within a Myo user’s arm is unique to the individual [39]. Therefore, users
must calibrate the Myo to ensure data reliability. Failing to calibrate the Myo before use will invalidate
acquired data as measurement is altered; for example, not providing a point of origin in space for IMU data.

Placement: Careful placement of the Myo must be observed and standardised. See Figure 2b. This is
because incorrect placement will skew all EMG results. A change in rotation of the Myo, between
future participants or users, will change the orientation of electrodes (measuring EMG data) and
therefore affect data or system validity. We placed the Myo in the same position for data acquisition,
model training and testing. This also allowed us to observe how gestural amplitude relates to the
returned ML model accuracies.

3.2. Planning Performance Gestures for Model Testing

We developed three performance gestures (performed by the first author) for augmenting piano
practice. Using the piano instrument would yield a primary focus for gesture prediction and interactive
music composition. All gestures used in this study can be considered extended techniques because

 https://www.balandinodidonato.com/myomapper/
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they use ML to stimulate additional instrument interactions; in other words, unconventional piano
performance methods. We use one Myo worn on the right arm to make the process of understanding
the results easier. We also used three different performance gestures (with different biometric datasets)
when training differing ML models. This is because the ML models offered in Wekinator compute
data in different ways; e.g., a performance gesture that navigates between two points in space on the y
axis—points y1 and y2—can be classed as a static or continuous gesture. On a data level, this would be
shown as floating-point values (continuous) or a single integer value (classifier). However, the two
states merged to one value can be reviewed as a suitable input for a DTW model. This is because the
DTW algorithm continuously predicts performance gestures per iteration and does not represent such
gestures as floating point values or classified states. Thus, deciding which metric/model to use is
problematic. The performance context within piano practice is therefore the key factor when pairing
model choice to training data. We isolated the performance context by providing a very strict focus on
three performance gestures, which are as follows:

1. Right arm positioned above head (gesture 1): This gesture requires the performer to extend
their right arm above the head, linearly. We used the Euler angle ’pitch’ (IMU) to measure
this gesture, yielding low data variation because of the linearity of the dataset. Due to this
linearity, the model input will position itself very closely to model output. This gesture is
therefore most suited to a continuous model. This gesture does not use EMG data; it is used
in this study to see if the same behaviour occurs between ML models trained with EMG and
IMU data. Musically, it is aimed to measure the dynamic movement of pianist’s arms, typically
performed theatrically during performance; if a simple raising of the arm demonstrates any
significance amongst model accuracy/behaviour, we can then elaborate on better complex
IMU-measured gestures. This gesture was inspired by piano practice, as seen in a piece of
music by Tanaka [40] called Suspensions, where the performer lifts the arm above the head to
shape sounds over time via DSP; demonstrating how theatrical piano gestures (which do not
traditionally produce sound) can become musical when applied to interactive music practice.
The performed strength (amplitude) of this gesture is relative to returned model accuracies.
We measure it via observing minimum and maximum values for Euler angle pitch and the data
distribution of each trained model (see Section 3.3.1 for more information on this process). A video
example of the performance of this gesture can be found at the following link: performance of
gesture 1 (https://www.dropbox.com/s/a250u5ga3sgvyxu/Gesture1.mov?dl=0)

2. Spread fingers and resting arm (gesture 2): This gesture is executed by: (a) extending all digits on
the right hand (b) putting the arm back to a relaxed position. Gesture position (b) was developed
to examine model prediction efficacy of position (a) when shifting between the two states. This
gesture navigates between two fixed states. Therefore, it was logical that a classifier model was
most suitable for this gesture. This gesture targets all 8 EMG electrodes on the Myo interface (see
Figure 2b). This gesture is inspired by the need of a pianist to access a number of musical intervals
(an interval is the distance in pitch between two different musical notes, measured by numerical
value and determined musical quality [41]) with one hand; when playing melodies, chords, scales
and arpeggios. In piano practice, the ability of the pianist to play large intervals is dependent
on an individual pianist’s hand span; defined by age, gender and ethnic differences amongst
pianists [42]. The average interval range available to pianists is from a second to a maximum of
a ninth or tenth [42]; the latter being harder to achieve. This gesture negates such differences
because the Myo GI measures EMG activity relative to the pianist and translates it in to a musical
outcome; a large desired interval (i.e., a 10th) can therefore be digitally mapped during interactive
music practice, if unable to be played. Through musical repertoire, this gesture was influenced
by the tenth musical interval (i.e., found in the right hand part, in bar 3, of Harry Ruby’s tenth
interval rag [43]), where the piece is composed around the difficult to perform (on average) tenth
interval. We measured the performed strength of this gesture via the minimum and maximum
MAV values returned across all 8 EMG electrodes of the Myo armband, as well as observing data

https://www.dropbox.com/s/a250u5ga3sgvyxu/Gesture1.mov?dl=0
https://www.dropbox.com/s/a250u5ga3sgvyxu/Gesture1.mov?dl=0
https://www.dropbox.com/s/a250u5ga3sgvyxu/Gesture1.mov?dl=0
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distribution; we used the MAV to measure performance strength because it is typically used with
EMG signals to estimate muscle amplitude [30] (refer to Section 3.3.1 for more information on this
method). A video example of the performance of this gesture can be found via the following link:
performance of gesture 2 (https://www.dropbox.com/s/mor7ccjyyhr13ry/Gesture2.mov?dl=0)

3. Scalic fingering (gesture 3): This gesture is performed by extending and isolating pressure on
each individual digit of the right hand, including: thumb (i); index finger (ii); middle finger (iii);
ring finger (iv); little finger (v). This gesture was created to understand and execute a nuanced
detailing of EMG data, as muscle behaviour for moving individual digits is much more finely
detailed than gestures activated by large and pronounced muscle groups (i.e., gesture 2) [25].
It was also chosen because literature on this topic does not use all five digits when examining
such a gesture, whereas the maximum number of digits used to train a ML system is four [24,44].
Musically, the use of all five digits is fundamentally important when playing piano music; through
scales, chords, arpeggios and melodies. We base this gesture on the first 5 notes (with fingering
pattern) found in the upper bass clef voicing, within the first bar of Hanon’s scale exercise (no.1 in
C), taken from his iconic piano exercise book The Virtuoso Pianist [45]; this is because fingers i–v
are used to achieve focused pitches/fingering. Albeit, even though this gesture focuses on a
single scale, it should be noted that scalic playing compromises wider piano playing.

This gesture aims to allow performers to create a piano DMI, through emulation of the Hanon
scale. Finger ML classification can be used, via this gesture, to replicate piano performance away
from the instrument; in other words, playing ’tabletop’ piano. The advantage of this approach
is an increased mobility of piano performance; however, it also means that this approach could
be further used to simulate piano performance and build novel DMIs (e.g., via interacting with
3D digital instruments). The mobile instrument approach has particular interest in the field
for this reason [24,25,27]. The identification of fine EMG detailing is done, for this gesture, via
post-processing and the application of a MAV function (discussed in Section 3.3.1). The DTW
model has been targeted for this gesture because each individual digit needs to be accounted for
as a single-fire, discrete, state. This gesture targets all 8 EMG electrodes on the Myo interface
(see Figure 2a) and uses the MAV function, across all electrodes, to estimate the performance
amplitude of this gesture (discussed in Section 3.3.1). A video example of the performance of this
gesture can be found via the following link: performance of gesture 3 (https://www.dropbox.
com/s/tg6wa7uap38y3c9/Gesture3.mov?dl=0)

3.2.1. Onset Vs. Static Gestures for Model Training in Wekinator

Using Wekinator, we observed two approaches to model training via gestural input: a ‘static’
approach and ‘onset’ approach. A static model here is defined as a model that has been trained using
gestural data that omits the onset of a gesture and instead uses the performance of the gesture in a
static state (see right of Figure 3). This causes data variation to be low and—as a result—improves
model accuracy. Perversely, an onset model includes the onset of a gesture, increasing data variation
and therefore decreasing accuracy (see left of Figure 3). Comparing static and onset model approaches
is important to consider in our approach to ML and music because, as a temporal art, timing via
gesture is important.

https://www.dropbox.com/s/mor7ccjyyhr13ry/Gesture2.mov?dl=0
https://www.dropbox.com/s/mor7ccjyyhr13ry/Gesture2.mov?dl=0
https://www.dropbox.com/s/tg6wa7uap38y3c9/Gesture3.mov?dl=0
https://www.dropbox.com/s/tg6wa7uap38y3c9/Gesture3.mov?dl=0
https://www.dropbox.com/s/tg6wa7uap38y3c9/Gesture3.mov?dl=0
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Figure 3. Onset model: the first 50 cs of gesture 3 (i) performed in an onset state, where gesture onset is
included. Static model: the first 50 cs of gesture 3 (i) performed in a static state, where gesture onset is
omitted. Cs = centiseconds.

3.3. Data Structuring and Acquisition

Data were structured from the Myo (placed on the right arm) through software developed by the
first author within the Max 8 application (Max 8 is a GUI programming environment primarily used
by artists and musicians. More information regarding Max 8 can be found here: www.cycling74.com).
The developed software channelled the Myo application programming interface, taken from the Myo
SDK, to Max 8 through the Myo for Max (https://www.julesfrancoise.com/myo) external. Two
pieces of software were developed in Max 8: an environment to retrieve, process, send Myo data
to Wekinator, receive Wekinator classifications and apply DSP (see Figure 4 for an example of this
environment), and a second environment was built to record gesture performance against Wekinator
classification behaviour (for offline analysis). Upon receipt of the Myo data within Max 8, data were
pre-processed, post-processed and saved as a .csv file for analysis offline. The first author performed
all gestures for data acquisition, model building and evaluation. We used one performer in order to
observe model behaviours and derive conclusions over three specific performance gestures; in later
work, we intend to invite more participants and begin to generalise such gestures amongst different
music performers.

www.cycling74.com
https://www.julesfrancoise.com/myo
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Figure 4. Software built by the first author (in Max 8) for routing biometric data parameters from
the right Myo (done via the displayed matrices) and sending it to Wekinator; returned onset/static
classification data from Wekinator can be seen below the matrices.

Acquisition: Data were acquired from the Myo SDK at 10 ms per entry. This acquisition frequency
was deemed ample in order to see significant data trends. Gestures 1 and 2 were recorded with 4
iterations over 16 s. Gesture 3 was recorded with 5 iterations in 20 s. Gesture 3 was recorded with a
longer length of time because the gesture is much more complex than gestures 1–2. We used a digital
metronome to synchronise the data acquisition software with gesture performance.

Pre-processing and structuring: Data were pre-processed following acquisition via unpacking and
structuring/labelling all Myo data (i.e., IMU and EMG) to an array (see Section 3.1.2 for a summary of
data types).

3.3.1. Data Post-Processing

Gesture 1 and gestures 2–3 use different datasets from the Myo. Therefore, both groups of gestures
use different data processing methods. Gesture 1 uses pitch Euler angle from the Myo and gestures
2–3 use EMG data.

Where gestures 2–3 are concerned, the EMG data acquired were post-processed via scaling the
data and applying a MAV function (the latter as discussed in Section 2). Each EMG parameter was
taken after acquisition, an absolute (ABS) function was applied (reducing the polarity of the EMG
signal) and the resulting range (0–1) was scaled between 0 and 100; this is expressed within Equation
(2), where x is each raw EMG parameter (with minimum and maximum boundaries as 0 and 1 duly), y
denotes the scaling variable (showing the minimum and maximum boundaries of said scaling function,
which are 0 and 100, respectively) and x′ is the scaled EMG parameter. As the minima of y and x are
equal to 0, Equation (3) simplifies Equation (2).

x′ = y min+
(y max−y min)(|x| − |x|min)

|x|max−|x|min
(2)
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x′ = 100|x| (3)

The data were scaled for ease of use with other applications than ML model training, such as
data visualisation and DSP mapping. After the ABS function was applied to each EMG parameter (in
our case, done via the scaling process), the mean reading was then calculated. This process was done
automatically following the scaling step. Equation (1) expresses this MAV function. This method of
feature extraction, in particular, is known as MAV and has been shown to be the most effective method
of feature extraction when working with time series EMG data provided by the Myo [29]. MAV is an
amplitude estimator of muscle activity from EMG data [30]. Using the MAV is also useful because it
stabilises and reduces the dimensionality of often complex and non-static EMG data [46]. We estimated
the performance amplitude of gestures 2–3 via using the MAV across all 8 EMG electrodes of the Myo
armband; done via reading minimum and maximum EMG MAV values to determine a range of applied
strength and by presenting data distribution behaviour through boxplots (see Appendix C, Tables A1–
A6 for such quantified EMG gestural amplitudes with all key model/gesture types used). This is
important to note because performed gestural strength is relative to model accuracies presented in
this study. Processed MAV EMG data were used to train models by first using an activation threshold
function, acting as a window. This window is applied by calculating the mean of the last 10 readings of
each Myo EMG parameter (i.e., electrodes 1–8) and using a threshold value for activation; sending the
values for training in Wekinator. We use an arbitrary threshold of ≥2 from experimentation. Thus, the
system can detect when a user is performing a gesture and resets all MAV calculations (across all
EMGs/IMUs) when nothing is performed. This allows models to listen to focused streams of the
datasets (i.e., only when gestures are being performed).

Gesture 1 uses orientation pitch data and not EMG. Therefore, we did not process gesture 1 data
via MAV. Instead, we acquire pitch Euler angle data from the Myo via Myo Mapper and scale the
returned dataset from range 0.0–1.0 to 0–100. We scale the returned data accordingly for clarity. This is
expressed within Equation (4), where x is the Euler pitch parameter (where the seen minimum and
maximum values are between 0 and 1 duly), y shows the scaling variable (whereby the minimum and
maximum values have limits between 0 and 100 respectively) and x′ denotes the scaled pitch output.
As the minima of y and x are equal to 0, Equation (5) simplifies Equation (4).

x′ = y min+
(y max−y min)(x− x min)

x max−x min
(4)

x′ = 100x (5)

It is important to note that the returned pitch dataset from Myo Mapper is bipolar (i.e., measuring
movement in two different directions) and the user is required to ’set origin’ (i.e., calibrate) within
the software before gestural performance. After doing this, the pitch is set to a value of 0.5 (a value
of 50 following our described post-processing stage), thus ensuring movement can be detected both
downwards and upwards from the point of origin. Lastly, we utilised the ’flip’ option within Myo
Mapper, applied to the pitch dataset. This allows an upwards gestural movement to take a raw value
closer to 1.0 rather than 0.0; this is also for clarity in the returned dataset. We measured the gestural
amplitude of gesture 1 via observing minimum and maximum model input values when using pitch
data, as well as observing data distribution (see Appendix C, Tables A1–A6 for quantified gestural
amplitude values across all core model/gesture types used).

3.4. Machine Learning within Wekinator

Wekinator is an interactive ML software that was created by Rebecca Fiebrink in 2009 [11].
It features an accessible GUI and is built on the WEKA framework (using Java). Wekinator provides
three ML model categories for input data: continuous models, classifiers and DTW. The next
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subsections explain these models in greater detail, followed by an overview of how these models can
be trained and optimised.

3.4.1. Ml Models in Wekinator

Continuous models: Continuous models in Wekinator include (i) linear regression (LR),
(ii) polynomial regression (PR) and (iii) neural network (NN). These can be considered regression
models. They are useful for modelling real-time model inputs versus model outputs over time. They
do not make categorical classifications, unlike classifier or DTW models offered in Wekinator. They are
useful in music practice because their model output type (regressive) can be used to continuously alter
an audio signal (via DSP) over time. However, each continuous model in Wekinator provides different
methods and behaviours to do this (see Appendix A for an explanation of how each continuous model
functions and their application to music).

Classifier models: Classification models in Wekinator include (i) k-nearest neighbour (k-NN),
(ii) AdaBoost.M1 (ABM1), (iii) DT, (iv) support vector machine (SVM), (v) naive Bayes (NB) and
(vi) decision stump (DS). These models are important to understand because their gestural predictions
affect interactive music practice. A weak classification model is not reliable or desirable to use within a
temporal art form, relying on immediacy. Therefore, how they arrive at those decisions is of interest.
Their output is categorical (e.g., classes 1–5) and they are useful in music practice for defining fixed
sequence points within a gesture. However, they do not apply a real-time mapping to audio signals,
unlike continuous models do. See Appendix B for details regarding how the classifier models offered
in Wekinator operate at an algorithmic level and how they apply to music practice.

Dynamic time warping: DTW is a model that looks to predict a pattern over a time series. It is best
used when attempting to predict a pattern, within an attribute, in spite of fluctuations in timing [47].
The algorithm aligns the trained model with fluctuations over the time series, hence the namesake.
This model is very useful in music practice because it attempts to predict a music gesture (using the
trained template) regardless of timing issues. Therefore, it compensates for subtle timing variances
in how a music performer actions a specific gesture; a common issue in music practice. The DTW
model output is a single-fire message every time the model predicts a gesture; useful in music when a
performer wants to trigger a fixed music event only when a gesture is performed.

3.4.2. Training Ml Models in Wekinator Using Real-Time Data

Following processing, training data were sent from Max 8 to each model input in Wekinator
through Open Sound Control (OSC) and User Datagram Protocol (UDP). We used UDP to send OSC
data packets to specific ports in Wekinator. All models were measured using performance gestures
1, 2 and 3 (detailed in Section 3.2). Each gesture was recorded at a frequency of 10 ms per example.
Gestures 1–2 were performed over a period of 16 s and gesture 3 was performed over a period of 20 s;
we designate 8 s per class for gestures 1–2 and 4 s per class for gesture 3. After training, models were
evaluated via Wekinator’s evaluation tool (accessible via the GUI) which computes cross-validation
(CV) with 10 folds and also returns a TA score. However, Wekinator provides no evaluation tool
for DTW models. Therefore, we devised our own evaluative method via recording the prediction
frequency of DTW model output in response to a running model input/performed gesture. WEKA
was also used to gather further evaluative metrics about model accuracy for consideration; Wekinator
is built on this framework, so we used the corresponding models in WEKA and run evaluations under
the same conditions (e.g., 10-fold CV).

3.4.3. Running Ml Models in Wekinator Using Historic Data

We recorded newly performed instances of gestures 1–3 (using conditions stated in Section 3.4.2)
to see if model accuracy was impacted when using historic gesture data. We imported such historical
gesture data into Max 8 and used an array to read the data. The array then communicated historic
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gesture data to Wekinator for respective models to make predictions (see Figure 1 for an illustration of
this pipeline).

3.4.4. Optimising Trained Ml Models in Wekinator

The optimisation process involves arbitrarily modifying model parameters in Wekinator
(manually) and observing model behaviour (see Table 2 for available models and their default
parameters and model parameters for optimisation via Tables A7–A9). Wekinator’s built-in model
evaluation tool will be used to evaluate models during this process.

Table 2. Available model types in Wekinator and their default settings.

Model Type Model Model Parameters and Their Default Settings Model Output Range/Type

Continuous (Soft Limits, NN 1 hidden layer. 1 node per hidden layer.
[0.0–1.0] (float)

meaning the maximum model LR
Linear inputs. No feature selection used.
Colinear inputs not removed.

output (0–1) can be exceeded.)
PR

Polynomial exponent = 2. No feature selection used.
Colinear inputs not removed.

Classifier

k-NN Number of neighbors (k) = 1.
[1–5] (integer)ABM1 Training rounds = 100. Base classifier = Decision tree.

DT Model not customisable.
SVM Kernel: linear. Complexity constant: 1.
NB Model not customisable.
DS Model not customisable.

DTW DTW

Matches computed continuously while running.
Downsample so examples have max length of: 10.
Continuous matches use a minimum length of: 5.
Match width: 5. Match hop size: 1.
Threshold for prediction set in GUI
at scale value of 6 (see Figure A1)

Single fire

3.4.5. Ml Model Example Length within Wekinator

Each gesture was assigned c.4000 data examples per class to train continuous and classifier models
at a speed of 10 ms per example. However, other example sizes (starting from c.500) were also used to
see if example size affects prediction accuracy. The DTW model has no GUI to show the user how many
examples have been recorded; we use c.300 samples (over 2 example instances) to train each model
across gestures 1–3. We also investigated other example sizes for the DTW model, using up to a total of
5 examples (where each example contains c.150 samples). See Table 2 for a detailed list of default model
parameters (as described in Wekinator) when training each model across all gestures. The Wekinator
model evaluation function was used for each model type over all gestures. However, Wekinator does
not include the same tools for evaluating DTW models. Therefore, independent tests for accuracy were
conducted for the DTW model (i.e., measuring model prediction behaviour over time).

4. Results

In this section, we report model prediction accuracies (for all model types) across performance
gestures 1–3 and conditions that may affect such accuracy. In Section 4.1, we report model evaluation
metrics (Wekinator/WEKA) and general observations returned when performing a static version of
gestures 1–3 (all model types). Then, Section 4.2 presents evaluative metrics and model behaviours
for onset models (where the gestural onset is included during training). Next, Section 4.3 reports
the accuracy of supervised models in Wekinator when classifying historic gestural data. Following
this, Section 4.4 reports the impact of model example length on model accuracy. After this, Section
4.5 presents observations on data post-processing/data type on model accuracy. Then, Section 4.6
reports observations when optimising parameters of all ML models in Wekinator (gestures 1–3).
Lastly, Section 4.7 discusses how new instances of the music gestures investigated in this study can be
classified via supervised learning (in Wekinator).
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4.1. Model Evaluations (Static Models)

In this section, we investigate the best and most accurate methods when performing gestures 1–3,
in real-time, statically and when training all respective static models. We discuss the onset models of
these gestures in Section 4.2 and compare them to static models observed in this section. All models in
this section use c.4000 examples per class (except the DTW model, which uses c.300 samples over 2
gesture examples).

4.1.1. Continuous Models

Across all three static gestures, the NN was consistently demonstrated to be the most accurate
model (see Table 3 for a full list of continuous model accuracies). Noticeably, gesture 1 reports the
highest static gesture type model accuracies of all the gestures trained. However, gesture 2 is the
highest static gesture type of the EMG gestures used. This is because gesture 2 is the least nuanced
gesture of the gestures using EMG data and data variation, within the training dataset, is empirically
lower than in gesture 3. We notice that the returned CV and TA accuracies are identical across all
gestures; this is because data variation is extremely low amongst all gestures because of the nature
of the gesture type (static). As a result, this may cause overfitting and a less effective generalisability
indication offered by the CV score.

Table 3. Accuracy of static gesture continuous models (gestures 1–3) after training (post-processed),
measured in root mean square error (RMSE), where 0 is optimal. Values in bold highlight the best
performing model for each gesture (i.e., neural network (NN)). In the table, training accuracy (TA) and
cross validation (CV) evaluation metrics are shown across all gestures. Gestural amplitude values,
found within training data for static continuous models (using c.4000 examples per class), can be found
in Table A1.

Gesture No. Model TA CV Class No. No. Class Examples

1 NN 0 0 0.0 4006
LR 0.01 0.01 1.0 4024
PR 0.01 0.01

2 NN 0 0 0.0 4021
LR 0.02 0.02 1.0 4016
PR 0.02 0.02

3 (i) NN 0 0 0.0 3911
LR 0.05 0.05 1.0 4116
PR 0.05 0.05

3 (ii) NN 0 0 0.0 3871
LR 0.03 0.03 1.0 4136
PR 0.03 0.03

3 (iii) NN 0 0 0.0 3997
LR 0.05 0.05 1.0 4017
PR 0.05 0.05

3 (iv) NN 0 0 0.0 3882
LR 0.04 0.04 1.0 4155
PR 0.04 0.04

3 (v) NN 0 0 0.0 3799
LR 0.03 0.03 1.0 4243
PR 0.03 0.03

It is also apparent that mapping behaviours are different between NN, LR and PR models.
Continuous model results demonstrate that NN and PR models apply curvature to the mapping of
input gesture data, whilst the LR model applies a mapping which is linear. When looking at the
continuous model output of gesture 1, via the right hand side of Figure 5 (static), it is clear that the LR
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model maps the input signal and movement of the gesture closely. However, the NN creates a bell
curve-like mapping and the mapping from the PR model is slightly more rounded and less linear than
the LR model. Interestingly, when comparing the mapping behaviour of continuous model outputs
for EMG gestures (i.e., gestures 2 and gesture 3), we still see the same behaviour. We see that the NN
retains the same curvature behaviour, the LR still applies a linear mapping and the PR applies more
mapping curvature to the input signal than the LR but less than the NN (e.g., see Figure 6).

Figure 5. Graph showing mapping behaviour of NN, linear regression (LR) and polynomial regression
(PR) onset models when performing gesture 1 (measured via Euler angle pitch and using c.4000
examples per class) over a period of 16 s.

Figure 6. A graph displaying continuous (static) model outputs and their activity during a performance
of gesture 3 (ii) over a period of 20 s.

Perceiving this difference between the NN, PR and LR models is important for interactive music
practice. This is because the rate of data increase will create a disparate musical output when applying
DSP to an audio signal (in musical terms, this is referred to as attack time—discussed more in Section 5).
The number of examples for continuous model input, across all three performance gestures, can be
seen in Table 3. Data regarding the strength/amplitude of gestural movement for static continuous
models (using c.4000 examples per class across gestures 1–3), during training, can be found in Table A1.
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4.1.2. Classifier Models

Looking at Table 4, we see classifier models used across gestures 1–3 perform optimally (CV/TA
of 100%) in most cases. This is surprising but may be indicative of overfitting, given the very low
variation present in the training dataset of static models. However, we can also observe that the DS
algorithm used with gesture 3 performs the poorest, compared to all other classifier models. The
DS is thought to be less accurate because it uses a single attribute to classify datasets; therefore, it
is considered a weak learner [48]. Gesture 3 uses five classes and eight inputs, therefore the single
attribute used by the DS (i.e., decision threshold) would be severely impacted; due to an increase in
data volume when making predictions using a number of classes >2.

Table 4. Accuracy of static gesture classifier models after training (post-processed), measured as a
percentage of correctly classified instances (where 100% is optimal). Evaluation metrics shown are
cross validation (CV) and training accuracy (TA). The root relative squared error (RRSE) for each
model is shown to elucidate how the model would perform using a simple predictor (where 0% is
optimal). Gestural amplitude values, found within training data for static classifier models (using
c.4000 examples per class), can be found in Table A3.

Gesture No. Model TA RRSE TA (%) CV RRSE CV (%) Class No. No. Class Examples

1 k-NN 100 0.0117 100 0.0236 1 4018
ABM1 100 0 100 0 2 4003
DT 100 0 100 0
NB 100 0 100 0
SVM 100 0 100 0
DS 100 0 100 0

2 k-NN 100 0.0011 100 0.0015 1 4042
ABM1 100 0 100 0 2 4009
DT 100 0 100 0
NB 100 0 100 0
SVM 100 0 100 0
DS 100 0 100 0

3 k-NN 100 0.002 100 0.0036 1 3939
ABM1 100 0 100 0 2 4033
DT 100 0 100 0 3 3990
NB 100 0 100 0 4 3997
SVM 100 0 100 0 5 4083
DS 40.5 86.5631 40.5 86.5631

Interestingly, we see that the k-NN consistently reports a higher root relative squared error (RRSE)
score (via both CV and TA) over all gestures and classification models, with the exception of the DS
model of gesture 3; meaning how well the model would perform using a simple predictor (average
of actual values). This elucidates that, on average, the k-NN model provides slightly less predictive
accuracy across all models used, regardless of the model’s optimal CV/TA scores, and the DS is
significantly less accurate. Within Table 4, the CV and TA scores are identical because of the low
variation present within the training datasets; as a result, the CV and TA processes derive the same
conclusions. Therefore, the generalisability indication that CV usually gives is questionable, here,
where static models are concerned.

We also see that particular models make correct classifications earlier (and later) than other
gestures during performance. In this sense, model classification is staggered according to stages within
the signal. With gesture 1, we see that the ABM1 and DT models are first to achieve a classification of 2
(when the arm is raised), followed by the k-NN and DS (unison), then the SVM, followed by the NB.
The inverse of this order is true when the signal returns to a classification of 1 (i.e., lowering the arm).

Gesture 2 sees the NB model predict class 2 (activation) of this gesture first, followed by the
ABM1 and DT (unison), then k-NN and DS models (unison) and, lastly, the SVM. The inverse of
this classification order is also somewhat true when the gesture returns to a classification of 1 (hand
resting); the difference is that the k-NN classifies the gesture (class 1) after the SVM, ABM1, DS and DT.
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Gesture 3 shows that the worst performing static classifier model, regarding correct classification
during performance, is the DS. This is promising as it shows that the accuracy metrics returned from
Wekinator and WEKA are indicative of real-world application performance. We see a very promising
performance of most models for this gesture. In terms of prediction speed via this static classifier
model, we see that (on average) the SVM is consistently first to make a correct classification and the
k-NN is consistently last; whereas, on average, ABM1 and DT models are ahead of the k-NN for
prediction speed, but before the SVM. The NB model is very erratic in stabilising a correct prediction.
The number of examples for static classifier model input, across all 3 performance gestures, can be
seen in Table 4. Details regarding the performed amplitude of static classifier models (using c.4000
examples per class over gestures 1–3) during training can be found in Table A3.

4.1.3. Dynamic Time Warping

DTW model output data taken for gesture 1 suggest that the model is effective in gestures with
low variation data (IMU). However, we also see promising DTW prediction results for gesture 2. Lastly,
gesture 3 shows promising DTW behaviour for prediction but is less stable than gesture 2 (also using an
EMG dataset); this is because gesture 3 is highly nuanced and uses all five digits of the hand to execute
it. Therefore, there is overlap between some muscle groups when classifying fingers—particularly
when differentiating fingers 3–4 and 4–5. Please refer to Table A5 to see the recorded values for gestural
strength when training static DTW models (using c.300 samples over two gesture examples) across
gestures 1–3.

One core weakness of using the DTW model is concerned with the GUI. When using the GUI
to record samples and train DTW models, users are unable to know how long training samples are.
This is because the metric does not appear in the GUI (unlike classifier and continuous models). The
GUI ‘threshold’ for the DTW model is also arbitrary; allowing the user to alter model prediction
sensitivity. However, a threshold sensitivity metric is unavailable via the GUI—therefore, we designed
a metric/scale to navigate this problem (see Figure A1).

4.2. Model Evaluations (Onset Models)

In this section, we investigate whether onset model types are as accurate as scores returned for
static model types, across all gestures. All models in this section also use c.4000 examples per class
(except the DTW model, which uses c.300 samples over two gesture examples).

4.2.1. Continuous Models

Results from the onset continuous models show a striking difference between onset and static
gesture type mapping behaviours. We identify two key observations: an NN shows to be the strongest
onset continuous model and there is a trade-off between model accuracy and the speed at which a
gesture is mapped.

Firstly, we see that an NN is the most accurate onset model for gestures 1–3 (across TA/CV
scores) where the LR/PR onset models always perform equally well. Secondly, we find that the onset
models always reach their peak amplitude (1.0) much faster, across all gestures, than their static model
counterpart. This is significant for music practice as it means a mapped music output will sound
audibly different when deciding whether to include, or omit, onset gestural data (more on this in
Section 5.3). Additionally, we see that including gestural onset with IMU models (i.e., gesture 1)
affects the mapped shape of all model outputs (NN,LR,PR); compare the continuous onset and static
mappings of gesture 1 in Figure 5. This is very interesting, as it will directly affect the music mapping
process (discussed in Section 5.3). However, we do not see the same mapping behaviour for EMG
gestures; this may be due to the higher level of noise within EMG datasets compared to IMU datasets.

When looking at the onset continuous model output of gesture 3 (ii), we see that the NN and
PR models attempt to map the gesture with some curvature to the input signal. However, we see
that the LR model is very erratic during mapping. This is interesting, as it represents a key difference
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between both the LR and NN/PR models when including gesture onset in the model training process.
It is also significant because the findings can affect the decision to include onset gestural data when
choosing continuous models for interactive music composition. Refer to Table A2 to see the gestural
strength values recorded within onset continuous model inputs (using c.4000 examples per class)
across gestures 1–3.

4.2.2. Classifier Models

Regarding model accuracies for gesture 1, we see that the KNN, ABM1, DT and DS models are
the strongest performers, where we note an accuracy of >99.6% for such models; however, we do also
see that (alike static classifier models) the k-NN returns a higher RRSE over all models, suggesting the
slight unreliability of the k-NN model above all models during prediction.

Gesture 2 shows that all models return an optimal score across CV and TA (100%) except the NB
model (99.42%). The lower CV score for the NB is further corroborated by an unusually high (thus
unreliable) RRSE score for the NB model (15.29%), followed by the k-NN (0.0021%).

Upon observation of gesture 3, we see all models except the NB and DS perform with high
accuracy; the k-NN, ABM1 and DT models report >99.42% accuracy (CV and TA) and the SVM reports
94.29% (CV) with 94.33% (TA). The RRSE score for the k-NN is higher above all models except for the
DS, the latter returning a high RRSE score of 86.50%; elucidating respective unreliability of the k-NN
and DS across all models.

Similar to continuous models, it is apparent that there is a compensation between model accuracy
and the speed at which the gesture is detected with onset classifier models. We see that gesture 1
follows a structured order of prediction speed between all models. When achieving a class 2 prediction
(i.e., raising the arm above the head), the k-NN, ABM1, DT and DS models are first to make a correct
classification, followed by the NB and SVM models. Interestingly, a clear pattern is formed when
returning to class 1 (i.e., lowering the arm), which is very similar to the pattern observed when
achieving a class 2 prediction. The worst onset model metric accuracies returned from Wekinator, for
gesture 1, were the SVM (CV=99.42%) and NB (CV=99.53%). This is very interesting, as we find that the
SVM and NB models consistently make predictions last, compared to all other onset classifier models.

Where Gesture 2 is concerned, the onset classifier models show a prediction in unison, except the
NB, which has a maximum delay of 400 ms when making a correct classification. This is particularly
interesting, as the NB model was reported to be the worst performer for gesture 2, with a CV score of
99.42%, thus corroborating the objective metric (returned from Wekinator) in practice.

When looking at a performance of gesture 3, we can see that the first (0–401 cs), second (401–801
cs) and fourth iteration (1201–1601 cs) of the gesture are detected earlier by an onset classifier model
(k-NN) in comparison to a static model (k-NN). However, we also observe that an onset model is less
accurate than a static model when looking at the returned accuracies of a static classifier model and
onset classifier model for gesture 3. In particular, we see that the NB and DS models are the worst
performing classifier models for gesture 3, regardless of whether the onset of the gesture is included or
not. Model accuracy metrics are further corroborated with gesture 3 when individual model prediction
behaviours are observed.

Therefore, we observe a speed of gesture detection vs. model accuracy trade off over all three
gestures, which include the onset of a gesture during training. See Table A4 for gestural amplitude
values within onset classifier model inputs (using c.4000 examples per class) across gestures 1–3.

4.2.3. Dynamic Time Warping Models

We note very interesting results when we compare static and onset models, across all gestures, for
the DTW algorithm. As a DTW model relies on the prediction of a gesture over time, it is especially
important to investigate whether onset detection plays a significant role in gesture prediction accuracy.

Results returned from using the gesture 2 DTW onset model show faster prediction times than
static models (i.e., where the onset is omitted during training). Similarly, when looking at Figure 7,
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we can see how the DTW onset model predicts each finger of gesture 3 earlier than a static model.
Therefore, this has clear implications on model type choice in the context of music performance and
composition (i.e., static or onset), due to the temporal nature of the artform. This finding can be used
to inform literature in the field of IML practice, within music, which states that DTW algorithms are
inadequate because they make a classification at the end of input [16].

However, we see contrary results for gestures using IMU data only (i.e., gesture 1). As the IMU
dataset for gesture 1 is linear and variation is low, we find that training a DTW onset does not work as
effectively as when using EMG data with onset models; in this sense, we find that using gesture 1 with
onset DTW models does not make a noticeable difference in prediction speed. Please see recorded
gestural strength values for onset DTW models (using c.300 samples across two gesture examples),
over gestures 1–3, within Table A6.

4.3. Running Supervised Models with Historical Gesture Data

In this section, we study if historical gesture data can be used to create successful predictions
with previously trained models (using onset and static versions with c.4000 examples per class) across
all gestures. To do this, we use new instances of gestures 1–3 as input data for trained models in
Wekinator and observe behaviour via offline analysis.

4.3.1. Continuous Models

Continuous models show interesting results where NN onset and static models are concerned,
when analysing the behaviour of historic data predictions.

Gesture 1 shows that the time for the onset model output to reach maximum amplitude (i.e., 1.0)
is faster than static model output. However, we also observe that the shape of the NN and PR onset
model output changes significantly to become much more rounded. This is significant because we
also see this for gesture 1 real-time data results. Thus, new instances of the gesture behave as we
previously observed and expected. We see the same behaviours when using two new static (fixed)
performances of gesture 1 (i.e., one recording at the location of class 1 and the other at class 2), as the
real-time continuous model performances.

Using historic data with gesture 2 shows the same mapping behaviours as when using real-time
data. It also shows that using historic data, including the onset of the gesture, affects the prediction of
static models. This is because the static model is not expecting the variation present within the gestural
onset. The PR model is adversely affected, but the NN and LR models behave as expected (i.e., as
when the onset is omitted). Conversely, we see that historic data omitting the onset of the gesture
(i.e., a ’static’ artificial performance) do not negatively affect the prediction accuracy of onset models
(trained with onset gestural data).

When an example of both an onset and static performance of gesture 3 (i) is introduced to a
continuous model trained with static and onset gesture types (i.e., models trained with either examples
of the onset of a gesture 3 (i) or without the onset of gesture 3 (i)), we see that the NN is most accurate
when a static performance of gesture (i) is used. In this sense, NN continuous models are less accurate
when mapping the performed onset of gesture 3 (i) only. This is because data variation is higher with
onset models. These findings are significant because it shows that NN continuous models are stronger
to use with artificial static gesture performances only, rather than onset performances of gestures using
post-processed EMG data. Furthermore, we also see that LR and PR onset and static models behave in
the same manner when mapping both the onset and static performance of gesture 3 (i), when using
historic data to do so.

4.3.2. Classifier Models

Where gesture 1 is concerned, we see that onset classifiers always make correct classifications
faster than static models. Moreover, we see that all gesture 1 onset models are more accurate compared
to static models when using historic data, where the NB static model under performed quite noticeably.
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We notice that previously trained gesture 1 onset/static models display these same behaviours, during
prediction, when using a static performance of gesture 1 (i.e., capturing data so gestural onset is
not included).

Looking at gesture 2, we observe that the SVM and k-NN onset models are unreliable when used
to predict a performance of gesture 2 (where the onset is included). This is very interesting as the SVM
is also the least reliable of classifier models, regarding prediction efficacy, when using real-time data
(see Section 4.1.2). However, all static classifier models are accurate. We also notice that some onset
classifiers (DT and ABM1) are 20 ms faster than static models to make a prediction; however, this is a
marginal difference. Moreover, we see no conclusive results when comparing onset and static models,
using an artificial static performance of gesture 2, to make a correct prediction.

Gesture 3 shows that all static models are more accurate than onset models. However, onset
models make a prediction slightly faster than static models. When using a static performance of
gesture 3 (artificially) we see that, overall, static and onset models predict equally well. This means
that future performances of gesture 3 can include or omit the onset of a gesture, and the trained models
(static/onset) will make reliable predictions.

Figure 7. A plot comparing the enumerated prediction frequency of both DTW static and onset models
when predicting the performance of gesture 3 over 20 s, using all five digits (i–v) of the right hand.
A prediction frequency of ’1’, when each digit is used to perform (over onset and static approaches),
is optimal and shows a correct prediction instance by a DTW model.

4.3.3. Dynamic Time Warping Models

Gesture 1 shows that the DTW onset model is much faster than the DTW static model to make
a prediction. However, it is worth noting that both models used different sensitivities, via the DTW
GUI, in order to elicit a correct prediction according to the behaviour of the model(s); the onset model
used a DTW setting of 10 and static DTW model used 10.5 (see our scale via Figure A1). We cannot
successfully test an artificial performance of gesture 2 with DTW models using historic data; they
cannot operate when a gestural onset is not included, as the algorithm needs to see a clear pattern over
time with higher variation in the dataset. However, this is not the case during Section 4.1.3, as we train
a static DTW model and then perform gestures 1–3 with the onset included.

Regarding gesture 2, we also notice that the DTW onset model is faster than the static to make a
prediction (when gesture onset is included).

Concerning gesture 3, onset DTW models predict an onset performance with higher accuracy
than static DTW models. This is interesting, as real-time onset performances of gesture 3 are also
predicted with better efficacy when using onset DTW models (see Figure 7). However, we also find that
static DTW models predict gesture 3 (inclusive of the onset of the gesture) 10 ms faster than the onset
DTW model. This is surprising, because Figure 7 shows that real-time gesture 3 data are predicted
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earlier by an onset DTW model. This may be explained in relation to the ‘threshold’ GUI used by a
DTW model, whereby the threshold allows the user to set prediction sensitivity. As mentioned with
gesture 2, we also cannot test a static performance with this DTW model. Therefore, it is likely that the
DTW threshold was set to be more sensitive for the static DTW model than the onset DTW model (see
Figure A1 to see the threshold used by the Wekinator GUI for DTW models).

When testing static gesture data with both static/onset DTW models, it became obvious that static
gestural data are not at all suited for DTW models. This is because the algorithm detects movement
in the data over time; if there is no movement—i.e., a static gesture is used—then the DTW model is
wholly ineffective. This is important because it allows us to be aware that static behaviours, in music,
are not suitable when using DTW models with historic performance gesture data.

4.4. Number of Model Examples vs. Model Accuracy

In this section, we ask if the number of model examples used per class, across gestures 1–3, affects
model accuracy (returned via the Wekinator evaluation tool). We do this for both static and onset
model types.

4.4.1. Continuous Models

Concerning gesture 1, we see that a greater number of examples (c.4000 per class) improve
onset continuous models. Regarding gesture 2, we see that a greater number of examples (c.4000 per
class) reduce LR/PR static models accuracy, but the NN model is unaffected. Interestingly, however,
the accuracy of onset models is unaffected as more examples are introduced to gesture 2. Where
continuous models are concerned for gesture 3 (both static and onset model types), we see that the LR
and PR models become less accurate between c.500 examples per class and c.4000 examples per class.
Interestingly, however, the NN retains an optimum measured accuracy.

4.4.2. Classifier Models

Regarding gesture 1, we note that a greater number of examples (from c.500–4000 per class)
improve onset classifier models accuracy (see Figure 8), but static models remain unaffected. Gesture 2
shows that a greater number of examples also improve onset classifier models, but static models remain
as accurate. Regarding gesture 3, static classifiers show that the NB model becomes less accurate
and the DS increases in accuracy, as more examples are introduced. This is interesting because such
accuracy scores are in response to an increase in variation within the dataset. Moreover, all onset
classifier models uniformly decrease in accuracy as more examples are introduced to gesture 3.

Figure 8. Bar plots showing cross validation (CV) accuracies returned from Wekinator when assessing
how increasing number of examples per class (c.500–4000) affects all gesture 1 onset classifier models.
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4.4.3. Dynamic Time Warping Models

Lastly, we observe that the DTW model is less accurate when given more examples, across all
gestures, using a maximum of 5 examples to test this. This may be due to increasing the variance
within the model dataset and increasing the noise level when adding more examples to the model.
However, we note that static DTW models are the best performing version of the DTW model when
fewer examples are given, compared to the onset DTW model with the same number of examples.
Interestingly, we also see that a greater number of examples (i.e., 5) affect prediction speed across
both static and onset DTW models; in this sense, prediction speed is faster when fewer examples are
used. Lastly, we also note that the threshold via the Wekinator GUI, when using the DTW model
(see Appendix D, Figure A1), is integral in affecting prediction accuracy, regardless of the number
of examples used; it must be idiomatically optimised, as we observe that the threshold needs to be
set much higher when a greater number of examples are introduced to the model. These findings
corroborate literature in the field, which states that DTW models are operable when given fewer
examples to make a template [16].

4.5. Impact of Data Type and Post-Processing on Model Accuracy

In this section, we investigate whether data post-processing improves model accuracy, juxtaposed
to not using post-processing methods with gestures in music. We do this by reporting all model
accuracies, before post-processing is applied vs. after post-processing is applied, to all static and onset
gestures (c.500–4000 samples per class). We also observe whether data type used (IMU) affects model
accuracy. We find that using Euler pitch data with gesture 1 (compared to using y-axis acceleration
data [49]) does not improve static continuous model accuracy when using c.500 examples per class
(i.e., 0.0 and 1.0). However, using Euler pitch data does improve static continuous model accuracy by
99% (TA and CV), when using c.4000 examples per class, for LR and PR models. Albeit, the NN does
not improve. Onset continuous model accuracy improves by 14.28% (CV) across LR and PR models,
when using c.500 examples per class, but the NN remains unaffected. When using c.4000 examples
per class, however, the NN accuracy increases by 16.66% (CV and TA) and LR/PR models increase
by 22.22% (CV and TA). Static classifier models do not improve when using c.500–4000 examples per
class, except the DT model, which improves by 0.19% (CV - employing 500 samples per class). Most
onset classifier models see a reduction in model accuracy when using between c.500–4000 examples
per class; only SVM and DS models improve between a range of 0.01% and 0.68% (CV). DTW model
accuracy prediction is greatly improved (using pitch data) across all sample sizes and gesture types.

Regarding gesture 2, static classifiers show the best improvement when applying post-processing
to the model dataset, using c.500–4000 samples per class (see Table 5); we see SVM and DS models
consistently improve their accuracies more than other static classifier models. Onset classifiers also
show an improvement overall when using post-processing, albeit less than static models. However,
the NB becomes worse when applying a post-processing stage to the EMG dataset when using only
c.500 samples per class; the NB model improves when using c.4000 samples per class. Similar to static
classifier models, we also see the SVM and DS models improve the most when using onset classifier
models and c.4000 samples per class. Continuous models show that every model improves by >89.65%
(TA and CV) when post-processing is applied, where continuous static models improve more than
onset models. However, the NN improves the most in all experimental cases; i.e., when using both
onset and static models and c.500–4000 samples per class. DTW model prediction is also more efficient
when using a post-processing stage with gesture 2 across all sample sizes and gesture types.

Regarding gesture 3, we also see that all onset and static classifiers improve in accuracy, when
using post-processing with c.500-4000 samples per class. In particular, we see SVM and NB onset
classifier models improve by >40% (TA and CV) and static SVM and NB models improve by >50.48%
(TA and CV). All continuous onset models also improve when using c.500–4000 samples per class, with
an increase in model accuracy of >41.66% (TA and CV); however, static continuous models increase by
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>81.48% (TA and CV). Lastly, the DTW model is also far more accurate when using post-processing
treatment with gesture 3 across all sample sizes and gesture types.

Table 5. Gesture 2 static classifier models and cross validation (CV) and training accuracy (TA)
scores when post-processing is applied (across c.500–4000 examples per class), where percentage
increase scores illustrate the improvement of CV/TA after post-processing (vs. before). Values in bold
highlight the highest percentage increases of CV/TA scores when post-processing is applied and their
attributed models.

Model TA (%) CV (%) Examples per Class % Increase in TA before Post-processing % Increase in CV before Post-processing

KNN 100 100

500

0 0
ABM1 100 100 0.2 0.29
DT 100 100 0.2 0.29
SVM 100 100 1.67 1.97
NB 100 100 0 0
DS 100 100 1.47 1.47

KNN 100 100

4000

0 0.1
ABM1 100 100 0 0.01
DT 100 100 0.02 0.1
SVM 100 100 1.85 1.89
NB 100 100 0.39 0.39
DS 100 100 3.27 3.27

4.6. Optimising Supervised Learning Models for Gestures 1–3 in Wekinator

In this section, we ask whether all models in this study can be optimised across gestures 1–3.
We do this via changing model parameters, manually, through gestures 1–3 and collecting model
accuracy scores (via Wekinator GUI), as well as observing model behaviours offline (see Appendix E,
Tables A7–A9, for a list of model parameters used to optimise all models. Moreover, see Table 2 for
default model parameters).

We find that gesture 1 SVM onset classifiers, using both 500 and 4000 samples per class, can
be optimised across all kernels (linear, polynomial and radial basis function (RBF)). This is done via
increasing the complexity constant (1–1000), exponents (2–10) and gamma values (0.01–1000) across
all SVM onset kernels. However, we do see that DTW models can also be optimised. Where DTW
onset models are concerned, we see a difference between real-time prediction (via model parameter
matches computed continuously) and offline prediction (i.e., via parameter matches computed when
running stops). For real-time prediction, we see that when using the model parameter ‘downsample so
examples have max length of’ 10 and ‘continuous matches use a minimum length of’ 5, then reducing
match width size from the default value of 5 to 1, the time taken for a correct prediction to occur
becomes much faster. We also see that model performance improves when parameter ’downsample
by constant rate’ is used and a match width is reduced from 5 to 1. For offline prediction, we see that
the model can be optimised when ’downsample by constant rate’ of 5 and ’continuous matches use a
minimum length of’ 5 is used, paired with a lower match width (i.e., 1). We also see the same behaviour
when a ’continuous matches use a min length equal to the shortest example’ model parameter is used
with a lower match width size (again, 1). Regarding DTW static models for gesture 1, we see optimum
performance for real-time prediction when ’downsample by constant rate’ of 10 and ’continuous
matches use a minimum length of’ 5 is used. For offline prediction, best results are when ’downsample
so examples have max length of’ 20 and ’continuous matches use a minimum length of’ 10 are used.

Concerning optimisation for gesture 2, we see that SVM onset classifier can also be optimised
using 500–4000 samples per class, across all kernels. Like gesture 1, this is done via increasing
the complexity constant (1–1000), exponents (2–10) and gamma values (0.01–1000) for each kernel.
However, there is one crucial finding; when we do not use lower order terms for the SVM onset model
using a polynomial kernel, we cannot optimise the model. Instead, using lower order terms adversely
affects the SVM model. We also find that DTW models can be optimised. Regarding DTW onset
models, for real-time prediction, we see that higher ’downsample so examples have max length of’
values, paired with higher ’continuous matches use a minimum length of’ values, make DTW onset
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models more accurate. We note that in particular, the onset of the gesture is detected faster. For offline
models, we see that the DTW onset model is most accurate when ’downsample so examples have max
length of’ parameter is used with higher values (≥50), ’downsample by constant rate’ parameter is also
used with higher values (≥50) and ’don’t downsample’ parameter is used—but always paired with
’continuous matches use a min length equal to the shortest example’. However, DTW static models
can also be optimised. We find for real-time prediction that a lower ’downsample by constant rate’
value, paired with a lower ’continuous matches use a minimum length of’ value, provide the best
performance. This improves when a lower match width is used. For offline prediction, the best setting
is when we use the ’don’t downsample’ parameter alongside a value of 5 for the ’continuous matches
use a minimum length of’ parameter.

Gesture 3 shows that ABM1 and SVM onset classifier models can be optimised (between
c.500–4000 examples per class), as well as DTW onset/static models. We see the same results taken for
gesture 2 in this respect (see Figure 9); this is not surprising, as both gestures use EMG data (with the
same post-processing treatment) to train all models. Additionally, we find that DTW onset real-time
models perform best when ’downsample so examples have max length of’ is set at 10 and when
’continuous matches use a minimum length of’ is set at 5; each being a low value. We also see that
reducing the match width default value from 5 to 1 further increases accuracy. Offline prediction is
best for the DTW onset model when ’downsample so examples have max length of’ value 20 is used,
with ’continuous matches use a minimum length of’ value 10, is also used. We further see that DTW
static models provide the same results as the onset model, as above.

Figure 9. A plot of comparison showing gesture 3 support vector machine (SVM) onset classifier
model accuracy (via CV) when using 20,014 examples, and a polynomial kernel, to optimise the model
through using both lower order terms and not using lower order terms. Exponent value of the kernel
complexity constant =1000.

4.7. Reflections on Model Choice When Classifying Performance Gestures 1–3 in Wekinator

In this section, we reflect on results found between Sections 4.1–4.6 and discuss how our findings
could be used to classify new instances of piano performance gestures used in this study (using
EMG/IMU data and the same study conditions). This research focus is important because it is a
desirable aim within the field of IML and music [12]. In this investigation, we find consistent results
for model accuracies (across all gestures used and performance gesture types: static and onset) and
mapping behaviours; we see this when looking at how our trained models process and respond to
real-time and historical gestural data. Thus, we take these findings to suggest that IML practitioners
can build their own instance of the performance gestures used in this study (based on piano practice)
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and determine model accuracy/behaviour, when sonically representing such gestures via three types
of algorithms: classifier, continuous and DTW. It is important to note that the gesture–algorithm
relationship is vital because pairing gesture characteristics with algorithm characteristics (e.g., model
output type) can alter creative expression [17]. Therefore, we suggest that new instances of the three
gestures used in this study may be built for interactive music (piano) practice (using the same methods
cited in this research) via the following process:

1. Pre-process, post-process and select the best data type for the chosen performance gesture from
this study; using a MAV function for a gesture reliant on EMG information and Euler pitch data
for a gesture measuring a linear upwards vector (i.e., elevation); refer to Sections 3.3 and 3.3.1
regarding this process.

2. Inform chosen gesture type by addressing this question: is the perceived onset (attack time) of the
gesture vital to the particular music process and aims? Answering ’yes’ will direct the practitioner
to record your chosen gesture in Wekinator, including the onset of your gesture. Answering ’no’
will direct the practitioner to record the gesture statically, without the onset; refer to Section 3.2.1
for a description of both gesture types.

3. Establishing chosen gesture type then informs model choice. We suggest that there are two model
types to choose from: prediction via generating a fixed music event or live music event. A fixed
music event will require a classifier model, whereas a live music event will require a continuous
or DTW model. However, the choice between a continuous and DTW model, for a live event,
will have an important consequence; choosing only a continuous model for a live music event
will provide the user an additional layer of musical information regarding the disparate mapping
behaviour of each algorithm (i.e., NN, LR and PR—see Section 4.1.1 for mapping behaviour. The
direct implication of this concept on music is discussed in Section 5).

4. Next, the practitioner should choose their particular algorithm within the model type chosen
(refer to Section 4 to inform this decision through observing model accuracy).

5. Record the chosen gesture (from this study) using the Wekinator GUI. Refer to Section 4.4 when
deciding on number of examples for best practice regarding the chosen model(s) type.

6. Next, optimise the model(s) (refer to Section 4.6 for information regarding the optimisation of
classifier and DTW models).

7. Train model(s) and then run Wekinator for the composition process.

5. Interactive Music Composition

5.1. Model Output: Interactive Music Composition

In this study, we observed how different ML models (in Wekinator) behave when predicting
performance gestures (based on a focused musical context for each gesture—see Section 3.2) and
their subsequent potential to inform interactive music practice. In particular, we investigated how
several ML models can disparately affect IML processes (in the studied contexts) due to their different,
underlying, algorithmic behaviours. In this sense, if ML application becomes increasingly integral to
future interactive music practice, it is vital to understand how ML models offered through popular
IML softwares (i.e., Wekinator) can be used accordingly—here through augmenting piano practice.
Moreover, we offer a discussion of how the studied model outputs, derived from the observed gestures,
could be used within interactive piano music practice, as follows:

5.1.1. Continuous Models

In the context of this study, we have seen how continuous models are useful for stimulating
music parameters in real-time, during gestural performance, due to their nature. Each model has
also been shown to process model output mapping (mapping is an integral part of interactive music
composition and computer music. It means to use a transformed parameter to control or affect another
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parameter [50]. Here, a model output to affect a DSP process (e.g., delay time, reverb, etc) of an
audio signal) disparately. Observing this behaviour is significant, as interactive music is composed
through the multi-parametric manipulation of DSP to sonic material [51]. Therefore, the mapped
output (shape) from each individual model output will provide a corresponding individual and unique
music output. This can be demonstrated, for example, when establishing a 1:1 relationship between
a continuous model output (NN, LR and PR) and a sine wave; where each model output will affect
sonic output, disparately. An NN would smoothen the movement between each frequency cycle and
both the LR/PR would make the behaviour more turbulent. However, it should be noted that some
DSP events welcome turbulent movement within data (i.e., granular synthesis) and others a more
rounded (smoother) movement (i.e., delay lines), due to their respective music aesthetic. Thus, these
observations can be applied to interactive music piano practice when augmenting music material;
e.g., playing a chord and lifting the arm (i.e., gesture 1) to create such a mapping, using the different
mapping behaviours offered by the NN, LR and PR. An aural example of the consequence of model
mapping behaviour, within interactive piano music practice, is shown in Section 5.3.

5.1.2. Classifier Models

Classifier models can be used to successfully differentiate stages of gesture performance (i.e.,
through using multiple classes/labels). This is useful because a single performance gesture can activate
several predetermined algorithms, at different stages of gesture performance, via a particular classifier
model; useful within interactive music composition practice because it allows the composer to activate
a fixed media (predefined) music output and allow the composer greater control over the process. This
can be applied to piano practice when we look at gesture 2 in our study; resting and then extending the
fingers, thus navigating between classes 1 and 2. However, the sonic output could be further detailed
and processed by a method of convolution. This is done via using other datasets to stimulate the sonic
signal during performance, once the algorithm (for each integer class) has been activated.

5.1.3. Dynamic Time Warping Models

Like the classifier models, we see that DTW models can trigger a predetermined DSP algorithm.
However, they cannot control parameters of the running algorithm after activation; this is because
DTW models do not offer multiple classes. In this sense, a DTW model provides less layers of depth
when representing a single gesture than a classifier model. Due to the fact that DTW models offer
one-shot events, with no native parametric control available for DSP, they are suitable for music
composition within a fixed DSP system/sonic environment. However, we have also seen how DTW
models process gestural data faster than static models, suggesting that interactive piano music practice
can be augmented when matching music material (aesthetics) to prediction speed. An example of
using the DTW model within interactive music practice is when performing gesture 3 and augmenting
the playability of traditional piano practice (via the ’tabletop’ piano, discussed in Section 5.2) through
assigning a single note—or DSP process—to each finger. A DTW model is convenient in this context
because it is inaccurate for a note to continuously ’fire’, when emulating how a traditional piano scale
is played.

5.2. Ml Findings to Facilitate Novel Dmis: Gesture 3 as a Tabletop Piano

Gesture 3 was created in this study to use current techniques of best practice when processing
EMG data and outline optimal ML methods when beginning to classify performance gestures within
interactive piano practice. However, another aim was to facilitate the creation of novel DMIs. Using
modern GIs to design DMIs is no novel concept in the field. However, the technology which drives
them provides novel interactive opportunities. Modern DMIs rely on ML because of the complexity of
biometric data (i.e., EMG) retrieved from the GIs which drive them [17,25,27]. Thus, if ML is an integral
part in designing the modern DMI, then ML algorithms must be evaluated and considered for best
practice when doing so; it can also stimulate a framework to inform future DMI design via ML models.
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Current literature has modelled DMIs on real instruments to focus on their pedagogical application [24],
but seldom with compositional objectives. However, other literature designing DMIs have shown
that understanding how we interact with acoustic instruments can better inform DMI action-sound
mapping strategies [27]. We use our findings and introduce gesture 3 to facilitate traditional piano
practice on the ’tabletop’. A video performance of our piano DMI, through using a static DTW model
to perform gesture 3, can be seen here: finger classification from DTW (static) model during gesture 3
performance (https://www.dropbox.com/s/mexmyrhdk10az27/DTWStaticGesture3.mov?dl=0).

5.3. Ml Model Mapping Behaviour as a Creative Application within Music

This study has elucidated that an understanding of algorithm mapping behaviour is of
fundamental importance to interactive music practice, which is not possible to understand without
looking at how ML algorithms process data at a quantifiable level. This is objectively evident when
looking at how different continuous (regression) models in Wekinator disparately process a single
performance gesture (compare how onset and static models map gesture 1 within Figure 5 and
Figure 6 for static models mapping gesture 3(ii)). However, we also observe another key difference
regarding mapping between onset and static continuous models for music. The rate at which the
model output reaches its maximum value (i.e., 1.0) is disparate between continuous models trained
with onset or static gesture types. This relationship is referred to as attack (attack time is defined
as the time taken for an audio signal to reach full amplitude [52].) time within music practice. This
relationship is most obvious when we see how a continuous model processes onset and static models
of gesture 3 (ii). Looking at Figure 10, we can see how the continuous onset model output takes
23 cs (230 ms) to reach model output peak (i.e., 1.00) and how a static model output takes 92 cs
(920 ms). Therefore, the static model takes 69 cs (690 ms) longer to reach its peak compared to the
onset model, meaning that the onset model is more than half a second faster than the static model at
mapping the model output, when trained with the inclusion of gestural onset data. This is important
to note in music practice because it allows us to take advantage of this behaviour, creatively. You
can hear an example of this discussion when we sonify (sonification is the process of representing
data aurally, whereby the sound produced reflects the objective properties within the input data [53])
the model output of both a static NN model and an onset NN model with granular synthesis: onset
performance (https://www.dropbox.com/s/sk1387t89mf3f8q/NN_Onset_Granular.aif?dl=0) and
static performance (https://www.dropbox.com/s/cggthrj3annx247/NN_Static_Granular.aif?dl=0).

Figure 10. Two plots showing onset and static continuous model output of the NN, LR and PR models
when performing gesture 3 (ii) over time (measured in centiseconds(cs)).

5.4. Using Historic Gesture Data within Music Practice

In this study, we investigated how using historic gestural data (of the three gestures studied)
allows ML models (in Wekinator) to make very similar predictions as when using real-time gestural

https://www.dropbox.com/s/mexmyrhdk10az27/DTWStaticGesture3.mov?dl=0
https://www.dropbox.com/s/mexmyrhdk10az27/DTWStaticGesture3.mov?dl=0
https://www.dropbox.com/s/mexmyrhdk10az27/DTWStaticGesture3.mov?dl=0
https://www.dropbox.com/s/sk1387t89mf3f8q/NN_Onset_Granular.aif?dl=0
https://www.dropbox.com/s/sk1387t89mf3f8q/NN_Onset_Granular.aif?dl=0
https://www.dropbox.com/s/sk1387t89mf3f8q/NN_Onset_Granular.aif?dl=0
https://www.dropbox.com/s/cggthrj3annx247/NN_Static_Granular.aif?dl=0
https://www.dropbox.com/s/cggthrj3annx247/NN_Static_Granular.aif?dl=0
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data. This is useful because literature has seldom explored how historic gesture data can be used within
IML and interactive music practice, instead focusing on real-time applications [17,27]. Whilst the
implementation of real-time systems may be obvious for IML and music practice, offline systems may
be beneficial because they enable us to access external gestural information via the Internet. This
is useful for the Internet of Musical Things (IoMusT) applications (based on the paradigm of the
Internet of Things, the IoMusT refers to wireless networks of smart technologies which communicate
and allow for inter-connectivity amongst the practical output of composers, musicians and people
working within musical domains [54]) because recorded gestural information can be delivered to train
supervised models. In this sense, desirable performance gesture information (captured by GIs) can be
recorded (e.g., from virtuosic musicians) and used for training; a learner musician can then use the ML
system to benchmark their playing against the trained model.

6. Conclusions and Future Work

In this study, we have shown that three focused performance gestures (for piano practice) can be
used to provide unique composition opportunities within interactive music, by providing evidence
for best model prediction accuracy (via type), differences in onset signal times and continuous model
mapping behaviours. This is done via using a novel GI (Myo armband), a single performer, biometric
datasets (EMG data) and evaluating all available ML models in Wekinator. When such findings are
applied to interactive music practice, through the context of the study (gestures for augmenting piano
performance), this provides evidence for unique musical devices; as heard/seen during Sections 5.2
and 5.3). Regarding gesture representation, we can see that static models are more accurate than onset
models across all the gestures—and model types—studied. However, it is also noticeable that there is
an accuracy–prediction speed trade off. This is because onset models have been found to be generally
faster than static models when making predictions, across all model types and gestures; albeit less
accurate than static models. Therefore, we see that there are clear musical implications for how users
represent our studied gestures when omitting or adding gestural onset (as discussed in Section 4.7).

When investigating model metrics, classifier models elucidated that all models except the k-NN
and DS demonstrated promising performance for static gestures. However, the ABM1 and DT were
the most commonly accurate classifiers across all onset gestures. We also see that the NN is the best
performing continuous model (for both onset/static models) across all gestures. Additionally, we find
that mapping behaviour of continuous models can be altered via specific model conditions. This is
elucidated twice: when the disparate mapping behaviour of onset and static continuous models are
compared (e.g., Figure 5) and when the signal attack time of all onset models is faster than in static
models (i.e., predicting earlier), where this mapping behaviour is the same when using historical data
with trained continuous models. Thus, these findings have the potential to affect interactive music
practice, concerning the studied gestures, because they are aurally perceivable (see Section 5.3).

Additionally, we have seen how it is possible to optimise onset classifier (SVM and ABM1) and
DTW models, across gestures 1–3, through modifying model parameters. Moreover, we observe
that model example length can be studied to improve accuracy for classifier and continuous models;
where more examples improve onset continuous and classifier models only, for our studied gestures.
We have also investigated how historic data perform (regarding gestures 1–3) when introduced to
previously supervised, trained, models; mimicking the behaviours and results seen for real-time
models. Moreover, we also find evidence that current post-processing methods greatly improve
the performance of the studied EMG performance gestures for use in interactive music composition
practice. However, we also see that using a low variation, single vector, IMU data type (pitch) is
suitable for good model performance and gestures which rely on IMU information (gesture 1, in
this study). Furthermore, our results allow us to create suggestions for interactive music (piano)
practitioners, when using our studied gestures, to create aesthetically interesting and efficient models.

Finally, we take our findings and apply them to build a novel case for interactive music practice,
where we use gesture 3 to create a unique DMI—a tabletop piano. This DMI informs other work using
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ML and EMG interfaces in the field because we evaluate which models affect the playability of the
DMI and similar DMIs. We also use current findings in best practice when processing EMG data to
create highly nuanced gestures (i.e., all digits of the right hand within gesture 3) to drive a complex
tabletop piano DMI. Such thinking could therefore affect how the ML process is considered (especially
gesture representation) in the wider field when designing novel DMIs with EMG data.

Future work seeks to study gestures for interactive music practice with other instruments/musical
material and compare supervised model behaviours; then, a wider framework for IML within
interactive music practice may develop. In turn, this would allow us to query if unsupervised
learning can be implemented when addressing the research problems investigated in this study. We
also seek to establish a threshold for data variation before models can no longer be optimised. Also,
we would like to investigate the automation of the model optimisation process. This study used a
single performer during model training and testing in order to build a proof-of-concept and basis
for wider investigation. Thus, in future work, we would like to investigate how our results can be
informed by using multiple music performers to train models and how/if the studied gestures can be
used in different music contexts. To add to this, we would also like to investigate the classification
(in Wekinator) of more gestures within piano practice, in order to provide more musical contexts for
their use. Furthermore, we are interested in using our findings to see if a library for gesture prediction
can be built for music performance and the classification of new gestures. Additionally, we intend to
use our findings regarding continuous model mappings (DSP) within different music performance
situations (using our studied gestures 1–3) and by various music performers, in order to assess their
wider suitability in music practice. We also seek to investigate how the Myo/EMG data can be used as
part of a multimodal sensory system to capture performance gestures within Wekinator and if model
performance is affected.
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Appendix A

Linear Regression: LR is a model that makes a prediction when observing the relationship between
an independent (x) and dependent variable (y). It expresses the model prediction class as a linear
combination of model attributes. It is especially useful when model attributes and class/outcome
are numerical. It uses the least square method, derived from all model input data points, to find a
line of best fit when modelling the relationship between the independent variable and dependent
variable [55]. It is useful in interactive music practice because linear relationships between model input
and output can create strict action–sound relationships; in this sense, they provide a reliable signal
mapping when applying DSP to an audio signal. An LR approach can be expressed as follows, where
x1 represents the model input, b0 represents the y-intercept, b1 indicates the constant and y indicates
the predicted value:
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y = b0 + b1x1 (A1)

Polynomial Regression: A PR model is built upon the foundations of a linear regression model
(finding a line of best fit linearly). However, a polynomial builds upon this by creating a line of best
fit polynomially (using several terms to do so). This is done by increasing the exponent of the model
input x1. This model is useful in interactive music practice because it provides a less strict action-sound
mapping (in comparison to the LR model). Due to the fact there are more terms, it gives the performer
the option to use a ’smoother’ and non-linear way of mapping model inputs when applying PR model
output to audio signals. A PR approach can be expressed as follows, where x1 represents the model
input, b0 represents the y-intercept, b1 and b2 indicate the constant and y indicates the predicted value:

y = b0 + b1x1 + b2x2
1 (A2)

Neural Network: The NN in Wekinator is an MPNN [56]. This model is based on a backpropogation
framework to classify instances and is composed of a network of low-level processing elements,
which work together to produce an accurate and complex output [57]. The NN model is composed
of three core elements: an input layer (e.g., inputs from GIs in Wekinator), a hidden layer and an
output layer. The backpropogation algorithm performs learning on a multilayer feed-forward NN [57].
At model training, it iteratively uses backpropogation to adjust the weights of the hidden layer(s),
in order for the model to become more accurate. Model parameters, such as number of nodes per
hidden layers, or number of hidden layers used, can be adjusted in Wekinator (see Table A8 for more
information on NN parameters). An NN is useful in interactive music practice because the model
gives a stabilised/smoothened model output value (in comparison to LR and PR models), due to the
fact that the model uses a sigmoid activation function (mapping input values between 0 and 1) at the
model output layer.

Appendix B

k-Nearest neighbour: The k-NN model is a classification algorithm which makes predictions based on
the proximity of new model input data to the assigned value of k [58]. If k = 1, then the algorithm will
look for the closest data point to the input feature (i.e., its nearest neighbour) and make a respective
classification. However, if k = 100, then the model will regard the 100 closest points to the input
feature and make a respective classification; both approaches will disparately affect the classification
outcome. Therefore, the model uses the value of k to assign a class to new data, based on the proximity
of new data to the labelled data in the trained dataset.

AdaBoost.M1: The ABM1 algorithm is a popular boosting algorithm that takes weak
classifiers/learners and improves their performance. This is done in Wekinator via choosing
a base classifier: a DT or a DS (see Table A7 for more information). Initially, the ABM1 model assigns a
weight to all features/attributes introduced to the model (all weights are defined by 1/n attributes).
The weight is then iteratively redefined based on errors made on the training data by the base classifier
chosen [59].

Decision Tree (J48): The DT is a model based on the C4.5 algorithm used to generate DTs [60]. The
DT graphically represents the classification process. Due to this, it is very useful for discovering
the significance of certain attributes within datasets. In Wekinator, the DT is a univariate tree [61]
that uses model attributes as tree internal nodes. It makes classifications by following a procedure:
constructing the tree, calculating information gain and pruning. On construction, each model attribute
is assessed in terms of its information gain and then pruned. Pruning a tree allows the user to discard
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any irrelevant information, within the dataset (attributes), when making classifications [61].

Support Vector Machine: The SVM model assesses observations, from model attributes, and their
distance to a defined linear class margin; this is referred to as a maximum margin hyperplane [55]. This
hyperplane aims to create a margin which achieves the best separation between classes and does not
move closer to each class than it has to [55]. The observations that are closest to the margin are called
support vectors. This classification method seeks to accommodate for low bias and high variance in
the model. It also ensures that the model is not sensitive to outliers when new data are introduced to
the (trained) model. However, the SVM model can also perform a non-linear classification (via the
kernel chosen for the model, see Table A7 for all kernels available).

Naive Bayes: The NB algorithm is a classification model that ignores syntax and treats attribute
observations as independent of the class [62]. It calculates the probability of observations belonging to
a class by an attribute observation vector. This can be described as follows, where P denotes probability,
Xi is an attribute observation vector (at ith iteration) and C is a class label [62]:

P(X|C) = ∏ n
i=1P(Xi|C) (A3)

Decision Stump: A DS model is a single-layer DT that uses a single level to split an attribute from the
root of the tree [63].
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Appendix C

Table A1. A table of post-processed model input values for static continuous models (using c.4000
examples per class), showing signal amplitude in relation to all performed gestures and respective
model input types (i.e., pitch and EMG). All model inputs return a data range between 0 and 100. The
minimum (min.) and maximum (max.) values for each parameter indicate gesture amplitude range.
Boxplots showing the data distribution of each model input can be seen to the right of the table (model
inputs are normalised within 0.0–1.0)

.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

1 Euler pitch 49 72.92

2 EMG1 2 6

EMG2 2 13

EMG3 2 26

EMG4 2 34

EMG5 2 14

EMG6 2 26

EMG7 6 25

EMG8 2 4

3 (i) EMG1 2 5

EMG2 2 13

EMG3 2 32

EMG4 2 42

EMG5 2 23

EMG6 2 25

EMG7 2 37

EMG8 2 16



Entropy 2020, 22, 1384 34 of 42

Table A1. Cont.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

3 (ii) EMG1 2 5

EMG2 2 10

EMG3 4 32

EMG4 2 23

EMG5 2 12

EMG6 2 24

EMG7 2 41

EMG8 2 28

3 (iii) EMG1 2 6

EMG2 2 10

EMG3 2 13

EMG4 2 14

EMG5 2 13

EMG6 2 21

EMG7 2 36

EMG8 2 36

3 (iv) EMG1 2 7

EMG2 2 19

EMG3 2 37

EMG4 2 33

EMG5 2 29

EMG6 2 24

EMG7 2 30

EMG8 2 27

3 (v) EMG1 2 6

EMG2 2 18

EMG3 2 35

EMG4 2 28

EMG5 2 23

EMG6 2 18

EMG7 2 27

EMG8 2 14
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Table A2. A table of post-processed model input values for onset continuous models (using c.4000
examples per class), showing signal amplitude in relation to all performed gestures and respective
model input types (i.e., pitch and EMG). All model inputs return a data range between 0 and 100. The
minimum (min.) and maximum (max.) values for each parameter indicate gesture amplitude range.
Boxplots showing the data distribution of each model input can be seen to the right of the table (model
inputs are normalised within 0.0–1.0)

.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

1 Euler pitch 48.88 72.05

2 EMG1 2 6

EMG2 2 11

EMG3 2 27

EMG4 2 34

EMG5 2 13

EMG6 2 16

EMG7 6 17

EMG8 4 12

3 (i) EMG1 1 8

EMG2 2 11

EMG3 2 32

EMG4 2 46

EMG5 2 26

EMG6 2 27

EMG7 2 38

EMG8 2 33

3 (ii) EMG1 1 10

EMG2 2 6

EMG3 2 22

EMG4 2 30

EMG5 2 25

EMG6 2 19

EMG7 2 35

EMG8 2 39

3 (iii) EMG1 1 11

EMG2 2 5

EMG3 2 7

EMG4 2 18

EMG5 2 22

EMG6 2 17

EMG7 2 31

EMG8 2 42
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Table A2. Cont.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

3 (iv) EMG1 1 9

EMG2 2 13

EMG3 2 35

EMG4 2 38

EMG5 2 27

EMG6 2 24

EMG7 2 28

EMG8 2 30

3 (v) EMG1 1 7

EMG2 2 14

EMG3 2 34

EMG4 2 38

EMG5 2 24

EMG6 2 20

EMG7 2 23

EMG8 2 20

Table A3. A table of post-processed model input values for static classifier models (using c.4000
examples per class), showing signal amplitude in relation to all performed gestures and respective
model input types (i.e., pitch and EMG). All model inputs return a data range between 0 and 100. The
minimum (min.) and maximum (max.) values for each parameter indicate gesture amplitude range.
Boxplots showing the data distribution of each model input can be seen to the right of the table (model
inputs are normalised within 0.0–1.0)

.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

1 Euler pitch 48.78 69.96

2 EMG1 2 6

EMG2 2 12

EMG3 2 31

EMG4 2 37

EMG5 2 14

EMG6 2 19

EMG7 3 24

EMG8 2 9

3 EMG1 2 10

EMG2 2 13

EMG3 5 36

EMG4 13 40

EMG5 12 30

EMG6 10 26

EMG7 15 33

EMG8 11 38
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Table A4. A table of post-processed model input values for onset classifier models (using c.4000
examples per class), showing signal amplitude in relation to all performed gestures and respective
model input types (i.e., pitch and EMG). All model inputs return a data range between 0 and 100. The
minimum (min.) and maximum (max.) values for each parameter indicate gesture amplitude range.
Boxplots showing the data distribution of each model input can be seen to the right of the table (model
inputs are normalised within 0.0–1.0)

.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

1 Euler pitch 47.92 70.81

2 EMG1 2 6

EMG2 2 13

EMG3 2 29

EMG4 2 34

EMG5 2 11

EMG6 2 22

EMG7 2 26

EMG8 2 11

3 EMG1 2 14

EMG2 2 17

EMG3 2 37

EMG4 2 41

EMG5 2 36

EMG6 2 28

EMG7 2 32

EMG8 2 42

Table A5. A table of post-processed model input values for static DTW models (using c.300 samples
per gesture over two examples), showing signal amplitude in relation to all performed gestures and
respective model input types (i.e., pitch and EMG). All model inputs return a data range between 0 and
100. The minimum (min.) and maximum (max.) values for each parameter indicate gesture amplitude
range. Boxplots showing the data distribution of each model input can be seen to the right of the table
(model inputs are normalised within 0.0-1.0)

.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

1 Euler pitch 69.83 70.20

2 EMG1 5 6

EMG2 11 13

EMG3 25 28

EMG4 30 35

EMG5 12 14

EMG6 14 16

EMG7 18 23

EMG8 8 11

3 EMG1 2 7

EMG2 2 21

EMG3 4 42

EMG4 2 40

EMG5 2 31

EMG6 2 27

EMG7 2 50

EMG8 2 38
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Table A6. A table of post-processed model input values for onset DTW models (using c.300 samples
per gesture over two examples), showing signal amplitude in relation to all performed gestures and
respective model input types (i.e., pitch and EMG). All model inputs return a data range between 0 and
100. The minimum (min.) and maximum (max.) values for each parameter indicate gesture amplitude
range. Boxplots showing the data distribution of each model input can be seen to the right of the table
(model inputs are normalised within 0.0–1.0)

.

Gesture No. Trained Model Input Parameter Min. Value Max. Value Input Data Distribution

1 Euler pitch 49.59 69.71

2 EMG1 2 8

EMG2 2 19

EMG3 2 37

EMG4 2 37

EMG5 2 14

EMG6 2 20

EMG7 2 30

EMG8 2 16

3 EMG1 2 12

EMG2 2 23

EMG3 2 36

EMG4 2 41

EMG5 2 33

EMG6 2 33

EMG7 2 41

EMG8 2 35

Appendix D

Figure A1. A scale we designate for the DTW model GUI in Wekinator, where each point in the scale is
accessible by clicking the horizontal line, incrementally, with a mouse. The scale ranges from 1 to 11
accordingly (via Windows 10 operating system). The blue line shown on the scale is point 6.

Appendix E

Table A7. Available classifier models for model optimisation and their parameters in Wekinator.

Model Type Model Available Customisable Parameters for Each Classifier Model

Classifier KNN Number of neighbours (k).

ABM1
2 base classifiers: decision tree and decision stump.
Number of training rounds customisable for each base classifier.

SVM

3 kernels to choose: linear, polynomial and radial basis function (RBF).
Choice to use lower-order terms for polynomial kernel. Complexity constant modifiable for all kernels.
Exponent of chosen complexity constant modifiable
for polynomial kernel. Gamma of chosen complexity constant modifiable for RBF kernel.
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Table A8. Available continuous models for model optimisation and their parameters in Wekinator.

Model Type Model Available Customisable Parameters for Each Continuous Model

Continuous NN
Number of hidden layers customisable (maximum 3).
Number of nodes per hidden layer, for number of hidden layers chosen, also customisable.

LR
Three feature selection choices: no feature selection; M5 feature selection and greedy feature selection.
The user can choose whether colinear inputs are removed—or not removed—for each feature selection.

PR
Three feature selection choices: no feature selection, M5 feature selection and greedy feature selection.
The user can choose whether colinear inputs are removed—or not removed—for each feature selection.
The user can also choose the polynomial exponent (positive integer) number for each feature selection chosen.

Table A9. Available parameters for DTW model optimisation in Wekinator.

Model Matches Computed: Downsample: Continuous Matches Use: Other Parameters:

DTW
Continuously while running So examples have max length of A minimum length of Match width

Only once running stops By constant rate A min length equal to the shortest example Match hop sizeDon’t downsample
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