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Abstract: In this paper, we aim to reveal the connection between the predictability and prediction
accuracy of stock closing price changes with different data frequencies. To find out whether data
frequency will affect its predictability, a new information-theoretic estimator Plz, which is derived
from the Lempel–Ziv entropy, is proposed here to quantify the predictability of five-minute and
daily price changes of the SSE 50 index from the Chinese stock market. Furthermore, the prediction
method EEMD-FFH we proposed previously was applied to evaluate whether financial data with
higher sampling frequency leads to higher prediction accuracy. It turns out that intraday five-minute
data are more predictable and also have higher prediction accuracy than daily data, suggesting that
the data frequency of stock returns affects its predictability and prediction accuracy, and that higher
frequency data have higher predictability and higher prediction accuracy. We also perform linear
regression for the two frequency data sets; the results show that predictability and prediction accuracy
are positive related.

Keywords: entropy rate; predictability; entropy difference; financial time series

1. Introduction

As the most essential task of financial market analysis, price analysis has been paid more
and more attention, even though the support for the strong version of the efficient market
hypothesis (EMH) [1–3] has decreased since the 1980s [4,5]. If the EMH is of some relevance to
reality, then a market would be very unpredictable due to the possibility for investors to digest any
new information instantly [6,7]. However, new evidence challenges the EMH with many empirical facts
from observations, e.g., the leptokurtosis and fat tail of the non-Gaussian distribution, especially the
fractal market hypothesis (FMH) [8,9]. In addition, Beben and Orlowski [10] and Di Matteo et al. [11–13]
found that emerging markets were likely to have a stronger degree of memory than developed markets,
suggesting that the emerging markets had a larger possibility of being predicted.

Traditionally, econometricians and econophysicists are more interested in predictability of price
changes in principle and in practice. The notion of predictability of the time series can be explained by
the memory effects of the past values. Using entropy to measure the degree of randomness and the
predictability of a series has been a topic for a long time; it goes back almost to the very beginning of
the development of communication and information theory.

In this paper, we propose a new information-theoretic predictability estimator Plz for financial time
series, which is derived from the Lempel–Ziv estimator [14–16]. The Plz quantifies the contributions of
the past values by reducing the uncertainty of the forthcoming values in time series. Then we use the
prediction method EEMD-FFH [17] to find some connections between the predictability and prediction
accuracy of financial time series.
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The paper is organized as follows. In the Methodology section, we introduce two predictability
estimators which measure the magnitude of predictability of time series, Dnorm [18] and Plz proposed
in this paper, and a prediction algorithm EEMD-FFH. In the Numerical Simulation section, we apply
these two estimators to the artificial simulation numerical analysis, the logistic map. The Financial
Time Series Analysis and Prediction section is the most important part in this paper, which draws two
important results. Finally, the Conclusion section is devoted to the summing-up and future studies.

2. Methodology

2.1. Entropy Rate

Entropy rate can be used to estimate the predictability of time series. It is a term derivative of the
entropy, which measures the uncertainty of a random process in theory of information. Let x = {xt} ,
t = 1, 2, · · · , T be a time series realization. The Shannon entropy [19] of a random variable at time t is
defined as:

H [xt] = − ∑
xt∈Θ

p (xt) log2 p (xt)

where p (xt) is the probability distribution of xt and Θ is sample space. Shannon also introduced
the entropy rate, which generalizes the notion of entropy. For a stochastic process X = {Xt} ,
t = 1, 2, · · · , T, the entropy rate is given by

H (X) = lim
T→∞

1
T

H (X1, X2, · · · , XT)

The right side can be interpreted as the average entropy of each random variable in the stochastic
process. If the process satisfies the stationarity condition, the entropy rate can also be expressed as a
conditional entropy rate

H (X) = lim
T→∞

H (XT |X1, X2, · · · , XT−1)

It denotes the uncertainty in a quantity at time T having observed the complete history up to that point.

2.2. Entropy Rate Estimation

Entropy rate estimation has been paid more and more attention over the last 10 years due to the
fact that the real entropy is known in very few isolated applications, one of the main reasons being
the crucial practical importance of information-theoretic techniques in neurosciences. Entropy rate
estimators can be classified into two categories [20]:

i. The “plug in” (also called maximum-likelihood) technique and its modifications. The main
principle of these methods is to compute the empirical frequencies of different patterns in the
data, and then calculate the entropy of the empirical distribution. Due to the cost of calculation
and limits on the data size, the “plug in” method cannot reveal the signal with long term time
dependency.

ii. Estimators based on data compression methods, such as Lempel–Ziv (LZ) [14–16] and context-tree
weighting (CTW) [21,22]. This kind of approach is used to speed up the convergence and improve
the performance in capturing long term time dependency.

In this study, we use two estimators which fall into the above two categories, entropy
difference [18] belonging to the “plug in” class, and the new estimator we propose Plz belonging
to the Lempel–Ziv class).

2.2.1. Dnorm Predictability Estimator

Consider a time series X = {xt} , t = 1, 2, · · · , T. The entropy rate at time t for a stationarity process
is defined as H [xt |x1, x2, · · · , xt−1 ]. We assume that the underlying system can be approximated by
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a p-order Markov process. Then the value of the current moment is only related to the previous p
moments. Hence, we can simplify the entropy rate:

H [xt |x1, x2, · · · , xt−1 ] = H
[
xt
∣∣xt−p, xt−p+1, · · · , xt−1

]
≡ H

[
xt

∣∣∣x(p)
t−1

]
= ∑

xt ,x
(p)
t−1∈Θ

p
(

xt, x(p)
t−1

)
log2

p
(

xt, x(p)
t−1

)
p
(

x(π)
t−1

)
After we consider the past values, the uncertainty of the time series will not increase; therefore,

H
[

xt

∣∣∣x(p)
t−1

]
≤ H [xt]. Now we can define the entropy difference (ED) as D, which is the difference

between the entropy and entropy rate and is non-negative.

D = H [xt]− H
[

xt

∣∣∣x(p)
t−1

]
The right side can be interpreted as the contributions of the past values to reduce the uncertainty

at time t. If the underlying process is a random walk, then D = 0. That is to say, the past values provide
no information for current time. 0 < D ≤ H [xt] indicates that the process has time autocorrelation;
thus, the past values can help to improve the predictability at time t. Due to the lower bound and
upper bound being certain of D: 0 < D ≤ H [xt], we can normalize it to interval [0, 1].

Dnorm =
H [xt]− H

[
xt

∣∣∣x(p)
t−1

]
H [xt]

= 1−
H
[

xt

∣∣∣x(p)
t−1

]
H [xt]

, 0 ≤ Dnorm ≤ 1

Dnorm measures the predictability of time series. When Dnorm tends to 0, the time series is unpredictable.
If Dnorm is approximately 1, H

[
xt

∣∣∣x(p)
t−1

]
≈ 1, the time series can be predicted completely at time t.

We proceeded with three numerical simulations to apply Dnorm to different time series respectively.
The data size is 10,000 points. The results are like those in Table 1. The first row is the entropy and
Dnorm of a deterministic time series 1, 1, . . . , 1. The simulation results are consistent with our intuitive
understanding, namely, the uncertainty is 0 or the predictability is 1. The results of repeated pattern
indicates that for a repeat pattern time series, the entropy is 1 up to the upper bound, and the underlying
time series can be predicted totally when past values were considered. For the pure random series, the
predictability equals to 0. That is, we cannot predict a pure random time series even we consider its
past values. The result is dependent on three factors: sample size, the efficiency of the estimator and
the quality of the random generator. Hence, it is easy to understand why the entropy is 0.9997 not
equal to 1.

Table 1. The entropy and Dnorm of three time series.

Time Series (N = 10,000) Entropy Dnorm

All 1: 1, 1, . . . , 1 0 1
Repeated pattern (0, 1): 0, 1, 0, 1,. . . , 0, 1 1 1

Generate random integer from 1, 2 0.9997 0

2.2.2. Plz Predictability Estimator

After Kolmogorov defined the complexity as the size of the minimum binary code that produces
this time series in 1965 [23], complexity has been widely used to estimate entropy rate. Jacob Ziv
and Abraham Lemple in 1977 designed a practical algorithm called Lempel–Ziv [16] to measure the
complexity in the Kolmogorov sense, which also can identify the randomness of a time series. On this
basis, there may entropy rate estimators were derived. One of them was created by Kontoyiannis in
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1998 [24] (it will denoted as Hlz in the better). Hlz was widely used, and proved to have good statistical
properties and better practical performance than other Lempel–Ziv estimators [24].

Consider a time series X = {xt} , t = 1, 2, · · · , T. The Hlz estimator is defined as:

Hlz =

(
1
T

T

∑
i=1

Li

)−1

log2T

where T is the size of the underlying time series and Li is the length of the shortest substring starting
from time i that does not appear as a contiguous substring in the prior values.

It has been proved that Hlz converges to the entropy rate with probability one as T approaches
infinity for a stationary ergodic Markov process.

We calculate the estimator Hlz values of some simulated time series, which were generated at
random from the alphabet {1, 2, 3, 4, 5, 6, 7, 8} with different data sizes T. The theoretical entropy

is equal to −
8
∑

i=1
(1/8) log2 (1/8) = 3. As shown in the left part of Figure 1, Hlz converges to this

theoretical value as data size T tends to infinity.
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Figure 1. We calculate the estimator values (Hlz on the left side and the right for Plz) for different data
volumes T = {500, 1000, . . . , 10,000}. The results indicate that Hlz converges to the theoretical entropy
3 and Plz converges to 0 as T grows.

In our study, we propose a new predictability estimator Plz, which is derived from the estimator
Hlz. Plz is defined as:

Plz = 1− Hlz/Ŝ

where Ŝ = log2S and S is the number of distinct states of the symbolized data. The estimator Hlz is
normalized into interval [0, 1]. We will introduce the detailed discretized method and its necessity in
Section 3.

2.3. EEMD-FFH Prediction Algorithm

In this paper we will use a particular method EEMD-FFH [17] to find out whether the predictability
of time series is related to the prediction accuracy of a particular algorithm.

The EEMD method is used to decompose a time series into a series of intrinsic mode functions
(IMFs) and one residue. It has been widely used in various industries [25,26], and was proposed
by Huang et al. [27]. Based on the EEMD model, there is a hybrid prediction model called
EEMD-FFH [17,28] that integrates MKNN (for predicting high frequency IMFs), ARIMA (for predicting
low frequency IMFs) and quadratic regression (for residue wave) models.

The operation steps of EEMD-FFH are as follows:
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Step 1. Decompose the time series X(t) via EEMD

X (t) =
n

∑
i=1

ci + rn.

Step 2. Use different models to predict IMFs of different frequencies

IMFi =⇒ Resulti

rn =⇒ Resultr

Step 3. Sum up the results to get the prediction value

X̂ =
n

∑
i=1

Resulti + Resultr

In the experimental section of this article, we use this algorithm to predict daily financial data and
five-minute high-frequency financial data.

3. Numerical Simulation

In this section, we consider a nonlinear system, the logistic map, to test the two predictability
estimators as mentioned above. Chaos in dynamical systems has been investigated over a long period
of time. With the advent of fast computers, the numerical investigations on chaos have increased
considerably over the last two decades, and by now, a lot is known about chaotic systems. One of
the simplest and most transparent system exhibiting order to chaos transition is the logistic map [29].
The logistic map is a discrete dynamical system defined by

xt+1 = pxt (1− xt)

with 0 ≤ xt ≤ 1. Thus, given an initial value (seed) x0, the series x is generated. Here the subscript t
plays the role of discrete time. The behavior of the series as a function of the parameter p is interesting.
A thorough investigation of logistic map has already been done [29]. Here, without going into detailed
discussion, we simply note that

• The logistic map has x = 0 and x = (p− 1)/p as fixed points. That is, if xi = 0 or xt = (p− 1)/p,
then xt+1 = xt.

• For p < 1, x = 0 is an attractive (stable) fixed point. That is, for any value of the seed x0 between
0 and 1, xt approaches 0 exponentially.

• For 1 ≤ p ≤ 3, x = (p− 1)/p is an attractive fixed point.
• For 3 < p < 3.56995, the logistic map shows interesting behavior such as repeated period

doubling, appearance of odd periods, etc.
• Most values of p beyond 3.56995 exhibit chaotic behavior.

Here, we set p = 3.7 and let the data length N = 105. The initial value of x0 is set to 0.5.
As only one equation is described in the logistic map, xt changes no information with other

variables. We added Gaussian white noises to the original time series xt with different strengths to
obtain a composite time series, yt = xt + λεt. εt is the Gaussian white noise (with zero mean and
unit variance). λ ≥ 0 is a parameter that tunes the strength of noise. xt is the real signal corrupted
by the external noise εt, and λ determines the signal–noise ratio. The larger the λ, the smaller the
signal–noise ratio.

We used k-means clustering to discretize the data with added Gaussian white noises into b distinct
clusters. b is a pre-defined parameter that determines the number of clusters. In Figure 2, we show the
values of Dnorm and Plz on different bins b = 5, 6, · · · , 14, with the noise strength parameter λ from
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0.01 to 0.1 with a step of 0.01. The result indicates that the predictability of the time series decreased
with increasing λ, as the signal–noise ratio became lower. Dnorm and Plz reach values close to 0.1 when
λ = 0.1, so it is hard to predict the composite time series when we add more Gaussian white noise into
it. Moreover, the predictability of a logistic map has no obvious relationship with the number of bins.
This result is consistent with [30], which found the choice of bins is largely irrelevant to the estimation
results. Here, the parameter b for the k-means clustering was 10. This experimental setup has been
proven to be very efficient at revealing the randomness of the original data [31].

From the above numerical simulations, we were able to conclude that the two estimators have
good performances in estimating the randomness or predictability of the system (the predictability
of the time series decreases with increasing λ), so we carried out the following real financial
data experiments.
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Figure 2. This figure shows that the change of predictability of the logistic map with increasing λ and
bin. Dnorm and Plz reach values close to 0.1 when λ = 0.1, so it is hard to predict the composite time
series when we add more Gaussian white noises into it. Moreover, the predictability of logistic map
has no obvious relationship with the number of bins, which we can see in the projection of the 3D
image. There is not much difference between the two estimators, eliminating the effect of different
statistics on the same systems.

4. Financial Time Series Analysis and Prediction

4.1. Data and Stock Selection

In order to assess whether the five-minute high-frequency financial data or daily financial data
has a larger possibility of being predicted, we estimated the entropy rate of close price of the stocks
that make up the SSE (Shanghai Securities Exchange) 50 index. This index is based on scientific
and objective methods to select the most representative 50 stocks with the large scale and good
liquidity in the Shanghai stock market, able to form sample stocks, so as to comprehensively reflect the
overall situation of a group of leading enterprises with the most market influence in Shanghai’s stock
market. The data have been found at URL http://www.10jqka.com.cn/ and were up to date as of
the 13 January 2019, going 10 years back. Only complete records, i.e., five-minute and daily data with
valid values for both 50 stocks, were admitted; invalid values were filtered out. In reality, non adjacent
data may become adjacent data because of this procedure, but the relatively small number of invalid
values compared to the valid values prevents a statistically significant impact [32]. The original close
data of SSE 50 stocks cannot reasonably be assumed as stationary, a property for a time series yet
essential for the validity of the forthcoming analysis. A classical solution to solve this problem is to

http://www.10jqka.com.cn/
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define some new variables which can be considered stationary or at least asymptotically stationary [33].
The usual transforms for raw time series X = {xt} , t = 1, 2, · · · , T are as follows:

Increment δxτ(t) := x(t + τ)− x(t)

Return rτ(t) := δxτ(t)/x(t)

Log− Return sτ(t) := ln[x(t + τ)]− ln[x(t)]

The choice of the variable does not affect the outcome of the present work; in fact, in the high-frequency
regime they are approximately identical or proportional to each other [33]. We will use the log-returns
in the forthcoming analysis. The usual quantity employed to characterize the fluctuation in financial
data is the so called volatility, here defined as

vol∆(t) :=
1
∆

∆

∑
i=1
|sτ(t + i)|

where the parameter ∆ refers to the chosen length of the time-window and τ (in our cases always
τ = 1 day&5 min) denotes the basic time scale. The average values of the whole 50 stocks log-returns
are ŝ1day(t) ' ±1× 10−4 and ŝ5min(t) ' ±1× 10−5, while the absolute log-returns, also interpretable
as estimates of the 5min and daily volatility, have mean values of vôl1day(t) ' vôl5min(t) ' 6× 10−4.
However, as is widely known, the strength of fluctuations in financial data is subject to long-term
correlated oscillations. Still, in concordance with other authors [33], we assume a sufficiently long
financial time series to be asymptotically stationary, i.e., leading to relevant results for the long-term
statistical properties of the analyzed data. The distributions of the Shannon entropy for daily data
and five-minute high-frequency are shown in Figure 3. µ and σ represent mean and standard
deviation respectively.
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Figure 3. Distribution of the entropy of the stocks that make up the SSE 50 index (the left one shows
log-returns of consecutive daily closing prices, while the right one shows log-returns of consecutive
5min closing prices). In every histogram, a normal distribution with the same mean and standard
deviation is plotted. Discrete cases of two distributions in the two box-plots are shown.

The results show that the entropy of 5 min closing prices is lower than that of daily closing
prices. This is not very surprising, since high entropy has been observed even for larger time
scales [34]. We considered 20 stocks, which included the five highest entropy stocks and the five
lowest entropy stocks of the daily data and the same choice for the five-minute high-frequency
financial data. In order to eliminate the influence of multi-scale on entropy calculation and stock
selection, we used a coarse-graining algorithm by amplification in different proportions (range from 0
to 20). Then we calculated the average value and the median value for the coarse-graining dataset
to choose high entropy stocks and low entropy stocks. The stocks selected by average value and
median value were totally identical. After removing overlapping stocks, we obtained 20 stocks, and the
detailed calculation results are shown in Table 2. These 20 stocks are considered in the experiments in
the next sections.
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Table 2. The selected stocks by calculating the average value and the median value for the coarse-
graining dataset.

Data Type Daily 5 min
Method Average Median Average Median

High entropy

GYFL601138 2.416 GYFL601138 2.507 HRYY600276 1.592 HRYY600276 1.772
ZXJT601066 2.385 ZXJT601066 2.346 HTZQ601236 1.454 HTZQ601236 1.611
ZGTB601601 2.193 ZGTB601601 2.261 ZSYH600036 1.452 ZSYH600036 1.598
XHBX601336 2.119 ZGGH601111 2.152 XYYH601166 1.417 GZMT600519 1.536
ZGGH601111 2.118 XHBX601336 2.148 GZMT600519 1.372 XYYH601166 1.436

Low entropy

HTZQ600837 1.310 ZGPA601318 1.380 ZGZC601766 0.661 ZGZT601390 0.666
ZGGL601888 1.299 HTZQ600837 1.343 ZGZT601390 0.660 WHHX600309 0.658
ZGPA601318 1.276 ZGGL601888 1.295 WHHX600309 0.605 ZGZC601766 0.647
HEZJ600690 1.260 HEZJ600690 1.215 SDHJ600547 0.579 SDHJ600547 0.542

SAGD600703 0.930 SAGD600703 0.979 ZGJZ601668 0.524 ZGJZ601668 0.478

To give the evidence that the raw time series are not random, we compared the entropy of the
raw time series with the entropy of randomly shuffled variants of the original data, which is also
called surrogate testing. With such a preprocessing, all potential correlations in the original time
series were destroyed; 100 shuffled time series for each raw time series (before the homogeneous
partitioning) were generated and their average entropy was measured. The distributions of shuffled
data are different to those in the original time series, and the average entropy is much larger, as can be
seen in Figure 4. This provides evidence that there are temporal dependencies in the data we analyzed,
and it makes sense for us to calculate their degrees of predictability.
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Figure 4. Distribution of the shuffled data entropy of the stocks that make up the SSE 50 index (the left
one shows log-returns of shuffled daily closing prices while the right one shows log-returns of shuffled
5min closing prices). In every histogram, a normal distribution with the same mean and standard
deviation is plotted. The entropy of surrogate time series is much larger than that of the raw data in
the middle box-plots.

4.2. Estimating the Predictability of Different Frequency Time Series Based on Dnorm and Plz

In this section, we use the 20 stocks already obtained in Table 2 to calculate the predictability
of daily data and five-minute high-frequency data respectively, based on Dnorm and Plz. The main
question asked in this paper is whether daily price changes are more or less predictable than intraday
(five-minute high-frequency) price changes. The reason why we use these two predictability estimators
is to make the experiment more credible, and the two estimators are not compared in this paper.

We divide those 20 stocks into four groups, every group including five stocks, as shown in
Figure 5, which we obtained in Section 4.1. Then for every part we calculate the predictability of
daily data and five-minute high-frequency data respectively, based on Dnorm and Plz. In Figure 6,
the left panels show the predictability of every group based on Dnorm, and the right panels show the
predictability of every part based on Plz.
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Figure 5. The 20 selected stocks we obtained in Section 4.1 are assigned to four groups to test whether daily
price changes are more or less predictable than intraday (five-minute high-frequency) price changes.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.15

0.20

0.25

0.30

D
no

rm

Group1

5Min
Daily

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

P l
z

Group1

5Min
Daily

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375

D
no

rm

Group2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

P l
z

Group2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38

D
no

rm

Group3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38

P l
z

Group3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Five selected stocks

0.20

0.25

0.30

0.35

0.40

D
no

rm

Group4

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Five selected stocks

0.25

0.30

0.35

0.40

P l
z

Group4

Figure 6. The predictability of daily data and five-minute high-frequency data respectively based on
predictability estimators Dnorm and Plz. Left panels show the results Dnorm for group1–4, respectively.
Right panels show the results Plz for group1–4, respectively.
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Surprisingly, for every stock of every group the predictability value of five-minute high-frequency
data is obviously much larger than daily data, which means that five-minute high-frequency price
changes are more predictable than daily price changes. The experimental results strongly suggest that
the predictability of time series is related to the frequency of the data itself. From this conclusion we
raise another question: whether the predictability of time series is related to the prediction accuracy of
a particular algorithm. In the next section we will focus on this question.

4.3. Comparing the Prediction Accuracies of Different Frequency Time Series Based on EEMD-FFH

In last section, the experimental results strongly suggest that five-minute high-frequency price
changes are more predictable than daily price changes. Then, is it possible that high frequency time
series, which are more predictable, have higher prediction accuracy? In this section, we detail another
experiment based on EEMD-FFH algorithm to explore this.

In order to assess the performance of EEMD-FFH for data at different frequencies, we use an
indicator, root mean squared error (RMSE).

RMSE =

√
1
n

n

∑
t=1

(xt − x̂t)
2

where xt represents the raw data; x̂t represents the prediction value; n is the number of prediction
points; smaller RMSE means higher accuracy.

Table 3 tabulates the average RMSE of five stocks in every group. The last 200 points for every
time series have been predicted and the set containing these 200 points was our testing set. For every
one of them we can see that the five-minute high-frequency financial data have higher prediction
accuracy than daily data. We also show RMSE of every group in Figure 7, where the obvious difference
is more intuitive.

Table 3. RMSE of the two different data frequencies based on the EEMD-MKNN algorithm.

Group Daily Data 5 min Data

1 0.0530 0.0063
2 0.0609 0.0073
3 0.0491 0.0047
4 0.0625 0.0056

To show the relationship between the predictability and prediction accuracy, we conducted
correlation analysis. We calculated the Pearson correlation coefficient and Spearman correlation
coefficient between the predictability and RMSE in different frequency, as shown in the following
Table 4. These results reveal that the connection between these two concepts exists, and they are
negatively correlated.

Table 4. Correlation coefficient between the predictability and RMSE.

Daily data 5 min data

Pearson Spearman Pearson Spearman
Plz −0.6081 −0.7018 −0.7022 −0.7649

Dnorm −0.6223 −0.6837 −0.7129 −0.7589

To explore the relationship further, we also performed linear regression for the two frequency
data sets (every set includes 20 stocks of 4 groups). In this linear regression model, the value of
predictability is an independent variable and the value of RMSE is the dependent variable. The scatter
plot and fitted lines are shown in Figure 8. Every regression line shows that the predictability and
RMSE are negatively correlated. RMSE is root mean squared error; high RMSE denotes low prediction
accuracy—that is to say the predictability and prediction accuracy are positively related.
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Figure 7. The boxplot of prediction error RMSE for the daily data and five-minute data based on the
EEMD-FFH algorithm. For every group we can see that the five-minute high-frequency financial data
have significantly higher prediction accuracy.
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Figure 8. The scatter plot and regression fitted lines of daily data (left panels) and five-minute
high-frequency data (right panels) respectively, based on predictability estimators Dnorm and Plz.
Every regression line shows that the predictability and RMSE are negatively correlated—that is to say
the predictability and prediction accuracy are positive related.

In statistics, the predictability of time series belongs to the category of time series analysis, which is
different from the prediction accuracy based on a forecasting method. In this experiment, our goal
was to see if the two were related. Surprisingly, the analysis results indicate that predictability fits
prediction accuracy perfectly, and we found that the five-minute high-frequency financial data have
higher predictability and prediction accuracy than daily data.
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5. Conclusions

In this paper, we introduced a new information-theoretic predictability estimator Plz for financial
time series, which was derived from the Lempel–Ziv estimator. The Plz quantifies the contributions of
the past values by reducing the uncertainty of the forthcoming values in the time series. We limited
ourselves to the stocks constituting SSE 50 index because they are primary components of the Chinese
market, to do an experiment to explore whether data’s frequency would effect its predictability.
The results strongly suggest that five-minute high-frequency price changes are more predictable than
daily price changes. Additionally, we used the prediction method EEMD-FFH to find some connections
between the predictability and prediction accuracy. Here, the empirical evidence suggests that there is
a strong positive relationship between these two concepts—this is, higher frequency data have higher
predictability and higher prediction accuracy.

Further studies should be performed to confirm whether these results are robust and valid for
other stock markets as well. Another important study is to find whether different prediction methods
will change the result that a strong positive relationship exists between predictability and prediction
accuracy for different frequency financial data.
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