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Abstract: In some applications, it is important to compare the stochastic properties of two multivariate
time series that have unequal dimensions. A new method is proposed to compare the spread of spectral
information in two multivariate stationary processes with different dimensions. To measure discrepancies,
a frequency specific spectral ratio (FS-ratio) statistic is proposed and its asymptotic properties are derived.
The FS-ratio is blind to the dimension of the stationary process and captures the proportion of spectral
power in various frequency bands. Here we develop a technique to automatically identify frequency
bands that carry significant spectral power. We apply our method to track changes in the complexity
of a 32-channel local field potential (LFP) signal from a rat following an experimentally induced stroke.
At every epoch (a distinct time segment from the duration of the experiment), the nonstationary LFP
signal is decomposed into stationary and nonstationary latent sources and the complexity is analyzed
through these latent stationary sources and their dimensions that can change across epochs. The analysis
indicates that spectral information in the Beta frequency band (12–30 Hertz) demonstrated the greatest
change in structure and complexity due to the stroke.
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1. Introduction

Numerous applications require comparing two multivariate time series of unequal dimensions.
Neuroscience experiments result in a stationary or nonstationary multivariate signal from different epochs
(distinct non-overlapping successive time segments of the duration of the experiment). A popular approach
to modeling such data decomposes the observed signal at every epoch into useful latent sources that
can be stationary or nonstationary. These latent sources are lower dimensional time series obtained by
linear transforms of the components of the observed multivariate series and they aim to capture important
statistical properties of the observed series. At these epochs, dimension reduction techniques such as principal
component analysis (PCA), factor modeling, independent component analysis (ICA), stationary subspace
analysis (SSA) are often applied to extract useful lower-dimensional latent sources. Artificially setting the
dimension of these latent sources to be the same across the epochs results in loss of important information
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since these changes could be indicative of useful brain processes such as learning (Fiecas and Ombao [1]).
Indeed brain processes evolve across the entire recording period (Fiecas and Ombao [1], Ombao et al. [2])
leading to changes in the dimension of the latent sources across epochs. Moreover, the evolution of the
dimension can itself serve as a feature in understanding how the brain function evolves during an experiment.
As another example in neuroscience, the aim in functional connectivity is to model dependence between
different brain regions at various epochs in an experiment; Cribben et al. [3], Cribben et al. [4], Cribben and
Yu [5], Zhu and Cribben [6]. To mitigate the problem of high-dimensionality arising due to signal from
densely voxelated cortical surface, parcellation leads to disjoint regions of interest (ROI) of the brain and
signal summaries are obtained in each of these regions. Dependence measures between these ROIs are then
computed using their respective signal summaries. In the above pursuit of region-wise comparison of the
brain, it is natural to encounter the problem of comparing multivariate processes, say from two different
regions that have unequal dimensions. In Wang et al. [7] the problem of modeling effective connectivity in
high-dimensional cortical surface signal is pursued wherein a factor analysis is carried out on each ROI
and vector autoregressive (VAR) models are used to jointly model the latent factors. Here again, one can
potentially end up with unequal number of optimal latent factors from different ROIs thereby making the
comparisons challenging.

The application that motivates our methodology is the analysis of local field potentials (LFP) in an
experiment that simulates ischemic stroke in humans (Data source: Stroke experiment conducted in the lab
of co-author (Ron Frostig) at his Neurobiology lab; http://frostiglab.bio.uci.edu/Home.html). The dataset
comprises of 600 epochs worth of LFP recordings (each epoch is 1 s long) from 32 microelectrodes implanted
in a rat’s cortex. Figure 1 below depicts the rat’s cortex and the locations of the 32 sensors implanted on
the cortical surface from which the LFP signal is recorded. This 32-dimensional signal is our observed time
series. A stroke is induced midway through the experiment (epoch 300) by clamping the medial cerebral
artery. The goal is to develop a method that tracks changes in the complexity of signals following the
stroke. From the observed LFP signal, useful lower-dimensional sources are extracted at each epoch and
we shall characterize complexity in LFP through these useful latent sources and their varying dimensions
across epochs.
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the lab of co-author (Ron Frostig) at his Neurobiology lab; http://frostiglab.bio.uci.edu/Home.html).
The dataset comprises of 600 epochs worth of LFP recordings (each epoch is 1 second long) from 32
microelectrodes implanted in a rat’s cortex. Figure 1 below depicts the rat’s cortex and the locations
of the 32 sensors implanted on the cortical surface from which the LFP signal is recorded. This
32-dimensional signal is our observed time series. A stroke is induced midway through the experiment
(epoch 300) by clamping the medial cerebral artery. The goal is to develop a method that tracks
changes in the complexity of signals following the stroke. From the observed LFP signal, useful
lower-dimensional sources are extracted at each epoch and we shall characterize complexity in LFP
through these useful latent sources and their varying dimensions across epochs.

Figure 1. Visual representation of the 32 microelectrodes on the rat’s cortex from which the local field
potential (LFP) signal is recorded. The distance between microelectrodes is 0.65mm and the total
distance between microelectrode 1 and microelectrode 8 is 3.9mm.

Motivated by such applications, we propose a new method to compare spectral information in
different multivariate stationary processes of varying dimensions. More specifically, the aim is to
capture the amount of spectral information in various frequency bands in different stationary processes
of unequal dimensions. There are already many methods and models that discuss evolution of spectral
information but the key contribution of this paper is in modeling evolution of the spectrum while
allowing dimension to also evolve over time. We introduce a frequency-specific spectral ratio, which

Figure 1. (A) Visual representation of the 32 microelectrodes on the rat’s cortex from which the local field
potential (LFP) signal is recorded. (B) The distance between microelectrodes is 0.65 mm and the total
distance between microelectrode 1 and microelectrode 8 is 3.9 mm.
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Motivated by such applications, we propose a new method to compare spectral information in
different multivariate stationary processes of varying dimensions. More specifically, the aim is to capture
the amount of spectral information in various frequency bands in different stationary processes of unequal
dimensions. There are already many methods and models that discuss evolution of spectral information
but the key contribution of this paper is in modeling evolution of the spectrum while allowing dimension
to also evolve over time. We introduce a frequency-specific spectral ratio, which we call the FS-ratio,
statistic that measures the proportion of spectral power in various frequency bands. FS-ratio can be used to
(i). identify frequency bands where there is significant discrepancies between pre and post stroke epochs,
(ii). identify frequency bands that account for most variation within pre (and post) stroke epochs and
(iii). identify the frequency bands that are consistent (vs inconsistent) across all the 600 epochs. One of the
key features of this statistic is that it is blind to the dimension of the multivariate stationary process and
can be used to compare successive epochs with possibly different dimensions in the stationary sources.
Thus, the proposed FS-ratio is very useful in (a). discriminating between the pre and post stroke onset
and (b). tracking changes over the entire course of the experiment while allowing for varying dimensions.
In Section 2 we develop our FS-ratio statistic and derive its asymptotic properties. We return to the LFP
dataset in Section 3 and discuss the usefulness of the proposed ratio statistic in discriminating between pre
and post stroke onset. Section 4 concludes. Finally, we evaluate the performance of the proposed FS-ratio
statistic through several simulation examples and the results are provided in Appendix A.

2. Methodology

In this section, we first describe our FS-ratio statistic and the method to analyze the evolution
of spectral information in stationary processes with varying dimensions. Using the FS-Ratio statistic,
a technique to locate the frequency bands carrying significant spectral power is discussed in Section 2.1.1.
The theoretical properties of the proposed statistic along with the required assumptions are discussed in
Section 2.1.2.

2.1. The FS-Ratio Statistic

Let Xt be a d1-variate time series and Yt be a d2-variate time series where d1 6= d2 and t = 1, 2, . . . , T.
The spectral matrices of the two zero-mean multivariate stationary series are given by fX(ω) ∈ Cd1×d1 and
fY(ω) ∈ Cd2×d2 for ω ∈ (−π, π). Here (−π, π) represents the normalized frequency range used to take
care of aliases in the frequency components outside this range. This range (−π, π) is sometimes referred
to as angular frequency scale with frequency 2π being called the Nyquist or folding frequency. With the
discrete Fourier transforms of Xt and Yt expressed as JX,T(ω) = 1√

2πT
Xte−itω and JY,T(ω) = 1√

2πT
Yte−itω ,

respectively, the periodogram matrices IX,T(ω) ∈ Cd1×d1 and IY,T(ω) ∈ Cd2×d2 of the two series are
obtained by

IX,T(ω) = JX,T(ω)JX,T(ω)∗ and IY,T(ω) = JY,T(ω)JY,T(ω)∗, (1)

where JX,T(ω)∗ denotes the conjugate transpose. The estimated spectral matrices, for ω ∈ (−π, π),
are given by

f̂X(ω) =
1
T

b T
2 c

∑
j=−b T

2 c+1

Kh(ω−ωj) IX,T(ωj) and f̂Y(ω) =
1
T

b T
2 c

∑
j=−b T

2 c+1

Kh(ω−ωj) IY,T(ωj), (2)

where ωj =
2π
T j and Kh(·) = 1

h K( ·h ) where K(·) is a nonnegative symmetric kernel function and h denotes
the bandwidth. Assumptions on the kernel and bandwidth to ensure uniform consistency in ω ∈ (−π, π)

of the estimated spectral matrices are listed in Section 2.1.2.
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The aim of this work is to compare the two spectral matrices fX(ω) and fY(ω) over a specific
frequency range (a, b) for some 0 < a < b < π. The challenge here, however, is that the dimensions of
the processes Xt and Yt are unequal and hence their spectral matrices have varying dimensions. We thus
focus on the spread or distribution of spectral power in each of these stationary processes across different
frequency ranges. More precisely, for the d1-variate series Xt we define the frequency-specific spectral
(FS-ratio) parameter as

RX,a,b =
rX,a,b

rX,0,π
=

∫ b
a ||vec( fX(ω))||22dω∫ π
0 ||vec( fX(ω))||22dω

(3)

for some frequency band (a, b) ⊂ (0, π) where vec(·) denotes vectorization of a matrix into a single column
vector and || · ||22 is the squared Euclidean norm. Observe that RX,a,b ∈ (0, 1) can be viewed as a measure
that captures the proportion of spectral power found in the frequency range (a, b). Similarly using the
spectral matrix fY(ω), RY,a,b ∈ (0, 1) can be defined for the d2-variate series Yt. Comparisons can now
be made between the parameters RX,a,b and RY,a,b to understand the amount of spectral power in the
frequency range (a, b) for the two multivariate series with unequal dimensions.

The data analogue of the FS-ratio parameter in (3) is then given by the FS-ratio statistic:

R̂X,a,b =
r̂X,a,b

r̂X,0,π
=

∫ b
a ||vec( f̂X(ω))||22dω
∫ π

0 ||vec( f̂X(ω))||22dω
(4)

for some 0 < a < b < π. Similarly, the data analogue R̂Y,a,b can be obtained for the d2-variate series Yt.
The asymptotic properties of the quantities r̂X,a,b and R̂X,a,b are discussed in Section 2.1.2. In neuroscience
applications such as the one in Section 3, pre-defined frequency bands such as Theta, Alpha, Beta and
Gamma are often used to understand the distribution of spectral power across these frequency bands.
As opposed to using pre specified frequency bands, in Section 2.1.1 below we provide a data-driven
technique to locate the various frequency ranges (a, b) that carry significant spectral power.

2.1.1. Finding Frequency Bands of Interest

In this section we describe our technique that uses the FS-Ratio statistic to find the frequency bands
of interest. More precisely, we aim to locate the intervals (a, b) used in (3) and (4) wherein the multivariate
time series has significant proportions of spectral power.

Let Xt be a d1-variate zero-mean second order stationary time series with its d1 × d1 spectral matrix
given by fX(ω). With the FS-Ratio parameter defined in (3), we consider the scan parameter

λX,a = 1− RX,0,a−∆

RX,0,a
= 1−

∫ a−∆
0 ||vec( fX(ω))||22dω∫ a

0 ||vec( fX(ω))||22dω
(5)

for a small ∆ > 0 and 0 < a < π. For the data analogue of the parameter above we consider a discretized
sequence of frequency points 0 < a1 < a2 < . . . < aQ < π and evaluate the scan statistic as

λ̂X,aj = 1−
R̂X,0,aj

R̂X,0,aj+1

(6)

for j = 1, 2, . . . , Q− 1. A plot of the scan statistic λ̂X,aj across the various frequency points aj will indicate
the frequency ranges over which the spectral matrix of Xt has significant proportions of spectral power.
Typically, one notices upward bumps in these plots over frequency ranges that carry significant spectral
power; see Example 1 below and the top panel of Figure 2. Similarly for the d2-variate series Yt one can
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define λY,a, find the estimated version λ̂Y,aj and obtain the plot of it across the various frequency points aj.
Comparisons can then be made between the series Xt and Yt using these plots. The choice for ∆ in (5) and
number of points Q in (6) depends on the application under consideration. Certain applications demand
attention to spectral power in very small frequency ranges and certain others might not. A multiscale
approach can also be used where one obtains plots of the scan statistic λ̂X,aj across frequency points aj
for a sequence of ∆ values. Visual inspection of these plots will help detect frequency ranges wherein
the upward bumps are consistent across most values of ∆. If we let the interval (0, 0.5) correspond to
the interval (0, π), our simulation study and real data analysis indicate a choice of ∆ = 0.01 and Q = 49
as reasonable.
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We next provide a simple illustration of the scan statistic λX,a through the following simulation
example and show how it is useful in detecting important frequency ranges. The simulation scheme
in this illustration is designed to mimic the real data situation in Section 3. There the entire duration
of the neuroscience experiment is divided into non-overlapping successive time segments (a total of
N epochs). The multivariate stationary processes of interest in these N epochs tend to have different
dimensions and we attempt to mimic that scenario.
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2

(7)
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i,t ∈ R3 and its components are

given by v0,t+k−1 + v1,t+k−1 for k = 1, 2, 3 and v0,t follows a AR(2) with (−0.8,−0.7) and v1,t follows

a AR(2) with (0.25,−0.75). The components of V(2)
i,t ∈ R2 are given by v2,t+k−1 for k = 1, 2 and v2,t

follows a AR(2) with (1.25,−0.75).
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point aj we evaluate the average of the scan statistic λ̂X,aj over epochs 1-299 and the average of the
scan statistic over epochs 300-600. More precisely at each frequency point aj and at each epoch, we
obtain λ̂X,aj and compute averages of these quantities over the respective epochs. In the top panel of

Figure 2 we plot this average scan statistic. For epochs 1-299, V(1)
i,t from (7) is a combination of two

AR(2) processes with spectral density peaks at roughly 0.22 and 0.33. The top left plot in Figure 2
witnesses the scan statistic exhibiting bumps around those frequencies. Similarly for epochs 300-600,
V(2)

i,t from (7) is generated from an AR(2) process with peak at roughly 0.12. The top right plot in Figure
2 witnesses the scan statistic exhibiting a bump around that frequency.

In the bottom panel of Figure 2 we plot averages of the statistic R̂X,0,aj for j = 1, 2, . . . , Q− 1.
We observe that this statistic is not as capable as the scan statistic λX,aj in bringing out the frequency
ranges of significant spectral proportions.

Figure 2. Example 2.1 Top: Plot of average scan statistic λX,aj for epochs i < 300 (left) and i ≥ 300
(right) at a discretized sequence of frequency points 0 < a1 = 0.01 < a2 = 0.02 < . . . < a49 = 0.49 < 0.5
(∆ = 0.01). Here (0, 0.5) corresponds to the interval (0, π). Bottom: Plot of the average of the statistic
R̂X,0,aj at the same frequency points.

Figure 2. Example 1 (Top) Plot of average scan statistic λ̂X,aj for epochs i < 300 (left) and i ≥ 300 (right) at
a discretized sequence of frequency points 0 < a1 = 0.01 < a2 = 0.02 < . . . < a49 = 0.49 < 0.5 (∆ = 0.01).
Here (0, 0.5) corresponds to the interval (0, π). (Bottom) Plot of the average of the statistic R̂X,0,aj at the
same frequency points.

We next provide a simple illustration of the scan statistic λ̂X,a through the following simulation
example and show how it is useful in detecting important frequency ranges. The simulation scheme in
this illustration is designed to mimic the real data situation in Section 3. There the entire duration of the
neuroscience experiment is divided into non-overlapping successive time segments (a total of N epochs).
The multivariate stationary processes of interest in these N epochs tend to have different dimensions and
we attempt to mimic that scenario.

Example 1. We consider N stationary processes, X1,t, X2,t, . . . , XN,t, with the series Xi,t given by

Xi,t =

{
V(1)

i,t if i < N
2

V(2)
i,t if i ≥ N

2

(7)

where i = 1, 2, . . . , N = 600 epochs, t = 1, 2, . . . , T = 1000. Here V(1)
i,t ∈ R3 and its components are given

by v0,t+k−1 + v1,t+k−1 for k = 1, 2, 3 and v0,t follows a AR(2) with (−0.8,−0.7) and v1,t follows a AR(2) with
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(0.25,−0.75). The components of V(2)
i,t ∈ R2 are given by v2,t+k−1 for k = 1, 2 and v2,t follows a AR(2) with

(1.25,−0.75).

We consider a discretized set of frequency points {a1, a2, . . . , aQ} of the interval (0, π). At each point
aj we evaluate the average of the scan statistic λ̂X,aj over epochs 1-299 and the average of the scan statistic

over epochs 300–600. More precisely at each frequency point aj and at each epoch, we obtain λ̂X,aj and
compute averages of these quantities over the respective epochs. In the top panel of Figure 2 we plot
this average scan statistic. For epochs 1–299, V(1)

i,t from (7) is a combination of two AR(2) processes with
spectral density peaks at roughly 0.22 and 0.33. The top left plot in Figure 2 witnesses the scan statistic
exhibiting bumps around those frequencies. Similarly for epochs 300–600, V(2)

i,t from (7) is generated from
an AR(2) process with peak at roughly 0.12. The top right plot in Figure 2 witnesses the scan statistic
exhibiting a bump around that frequency.

In the bottom panel of Figure 2 we plot averages of the statistic R̂X,0,aj for j = 1, 2, . . . , Q − 1.

We observe that this statistic is not as capable as the scan statistic λ̂X,aj in bringing out the frequency ranges
of significant spectral proportions.

2.1.2. Theoretical Properties of the FS-Ratio Statistic

In this section we list the required assumptions and discuss the asymptotic properties of the statistics
r̂X,a,b and FS-ratio R̂X,a,b.

Assumption 1. Let Zt = (Xt, Yt)
′
, t ∈ Z be a (d1 + d2)-variate zero-mean second-order stationary time series.

For any k > 0, the kth order cumulants of Zt satisfy

∑
u1,u2,...,uk−1∈Z

[ 1 + |uj|2 ] cb1,b2,...,bk
(u1, u2, ..., uk−1) < ∞

for j = 1, 2, ..., k− 1 and b1, b2, ..., bk = 1, 2, ..., d = d1 + d2 where cb1,b2,...,bk
(u1, u2, ..., uk−1) is the kth order

joint cumulant of Zb1,u1 , ..., Zbk−1,uk−1
, Zbk ,0 as defined in Brillinger [8].

Please note that the kth order cumulant is given by cb1,b2,...,bk
(u1, u2, ..., uk−1) =

cum{Zb1,u1 , ..., Zbk−1,uk−1
, Zbk ,0} where Zbr ,us refers to component br of the vector Zus with us being

the time point; see Theorem 2.3.2 of Brillinger [8]. For example when k = 2, the 2nd order cumulant
cum{Zb1,u1 , Zb2,u2} = cov(Zb1,u1 , Zb2,u2) is the covariance between those two random variables.

Assumption 2. (a). The kernel function K(·) is bounded, symmetric, nonnegative and Lipschitz-continuous with
compact support [−π, π] and ∫ π

−π
K(ω)dω = 1.

where K(ω) has a continuous Fourier transform k(u) such that
∫

k2(u)du < ∞ and
∫

k4(u)du < ∞.

(b). The bandwidth h is such that h9/2T → 0 and h2T → ∞ as T → ∞.

Remark 1. Assumptions 1 and 2 above are the same as in Eichler [9] where the first requires existence of all
order moments of Yt and the second ensures consistency of the estimated spectral matrix. It must be noted that



Entropy 2020, 22, 1375 7 of 24

the assumptions on the kernel and bandwidth are primarily for establishing asymptotic result in (13) and can be
weakened for Theorem 1.

Theorem 1. Suppose that Assumptions 1,2 are satisfied. Then as T → ∞,

(a). r̂X,a,b
P−→
∫ b

a

d1

∑
r,s=1

fX,rs(ω) fX,rs(ω) dω, (8)

where fX(ω) =
(

fX,rs

)
r,s=1,2,...,d1

is the d1 × d1 spectral matrix of Xt and P−→ denotes convergence in probability.

Furthermore, let Π(a,b) = (0, π) \ (a, b) for some 0 < a < b < π. If rX,a,b > 0 and rX,Π(a,b)
> 0,

(b). R̂X,a,b
P−→
(

1 +
rX,Π(a,b)

rX,a,b

)−1
(9)

where rX,Π(a,b)
=
∫

Π(a,b)
fX(ω)2dω.

Proof. See Appendix B for details of the proof.

Please note that in finite sample situations explored using simulation examples in Appendix A and the real
data application in Section 3, we use the block bootstrap technique of Politis and Romano [10] for resampling
from a stationary process. This is done to obtain sample quantiles of the FS-ratio statistic R̂X,a,b.

Remark 2. In a special case wherein the dimensions of the two processes are the same (d1 = d2), we wish to test for
the equality of spectral matrices of same dimensions over an interval 0 < a < b < π. Let us assume d1 = d2 and
d = d1 + d2 and define the d× d spectral matrix of Zt = (Xt, Yt)

′
as

fZ(ω) =

[
fZ,11(ω) fZ,12(ω)

fZ,21(ω) fZ,22(ω)

]
(10)

where the d1× d1 matrix fZ,12(ω) is the cross-spectral matrix of the processes Xt and Yt and fZ,11(ω) and fZ,22(ω)

are the spectral matrices of Xt and Yt respectively. We consider testing

H0 : fX(ω) = fY(ω) ∀ ω ∈ (a, b) (11)

where 0 < a < b < π. The test statistic is

D̂X,Y =
∫ b

a
||vec( f̂X(ω)− f̂Y(ω))||22dω. (12)

The L2 norm above in (12) on the spectral matrices is similar to the statistics considered in Eichler [9] and Dette
and Paparoditis [11] wherein the problem of testing equality of spectral matrices is discussed. Suppose that Assumptions
1,2 are satisfied, an application of Theorem 3.5 of Eichler [9] yields, under H0,

2πT
√

h D̂X,Y −
µXY√

h
D−→ N(0, σ2

XY) (13)

where
µXY = AK

∫ π

−π
1ω∈(a,b)

( 2

∑
p1,p2=1

(
− 1 + 2δp1 p2

)
tr( fZ,p1 p2(ω))2

)
dω (14)

and
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σ2
XY = BK

∫ π

−π
1ω∈(a,b)

( 2

∑
p1,p2,p3,p4=1

( −1 + 2δp1 p2 ) ( −1 + 2δp3 p4 )tr( f ij
Z,p1 p3

(ω)( f ij
Z,p2 p4

(ω))T )2
)

dω. (15)

where D−→ denotes convergence in distribution,

AK =
∫ π

−π
K2(v)dv, BK = 4

∫ b+π

a−π

( ∫ π

−π
K(u)K(u + v)du

)2
dv

and δrs = I(r = s) is the Kronecker delta and tr(·) denotes the trace of a matrix.

Remark 3. In the neuroscience application in Section 3, the entire duration of the experiment is divided into
non-overlapping successive time segments (a total of N epochs). Each epoch results in a multivariate stationary
process of interest with the dimensions of these processes varying across epochs. Letting X1,t, X2,t, . . . , XN,t be the
N stationary processes at these epochs, one can obtain the FS-ratio statistics R̂Xi ,a,b, for i = 1, 2, . . . , N, and view
this is a series with time index being the epoch index i. Applying change point detection to this series to formally
test for the significance of change points would require use of a divergence measure that measures distance between
R̂Xi ,a,b and R̂Xj ,a,b when i 6= j. Different norms can be used to construct this divergence measure and this would
serve as the test statistic. Large sample distributions of this statistic would provide critical values necessary for the
test. One of the issues here would be in dealing with differing errors in estimating the FS-ratio statistics when the
dimensions of the two series are very different and this needs further investigation.

3. Analysis of Complexity of Rat Local Field Potentials in a Stroke Experiment

In this section, we investigate the ability of the FS-ratio statistic to identify changes in the spectral
properties of the local field potential (LFP) of a rat (Local field potential data on the experimental rat
comes from the stroke experiment conducted at Frostig laboratory at University of California Irvine:
http://frostiglab.bio.uci.edu/Home.html). The aim is to identify changes in complexity and structure
of the multivariate cortex signal over the course of the experiment. It is also of interest to understand
the differential roles of frequency bands and determine the specific bands that demonstrate the most
significant changes that occurred due to the stroke.

At 32 locations on the rat’s cortex, microelectrodes are inserted: 4 layers in the cortex, at 300 µm,
700 µm, 1100 µm and 1500 µm and 8 microelectodes lined up in each of the 4 layers. We look at the
field potential specific to the 32 locations recorded for a total duration of 10 min. This 10 min duration is
divided into N = 600 epochs (distinct successive non-overlapping time segments of the duration of the
experiment) with each epoch comprising of 1 s worth of data. The sampling rate here is 1000 Hz resulting
in T = 1000 observations per epoch. Midway through the recording period (after epoch 300) a stroke is
artificially induced by clamping the medial cerebral artery that supplied blood to the recorded area.

As a first step in our analysis, we applied a component-wise univariate test of second-order stationarity
(Dwivedi and Subba Rao [12]) of the LFP signal at each epoch. In Figure 3, we present the p-values from a
test of second-order stationarity carried out on each of the p = 32 microelectrodes at each epoch. We notice
that these individual microelectrodes are more stationary after the stroke than before.

Next, we model the observed 32-dimensional signal as a multivariate nonstationary time series using
the stationary subspace analysis (SSA) setup. We assume the observed p = 32 dimensional LFP signal Si,t
is linearly generated by stationary and nonstationary sources in the cortex. More precisely we have,

Si,t = AiXi,t + εi,t, i = 1, 2, . . . , N = 600, (16)

where Xi,t ∈ Rdi is latent stationary source, Ai is a p× di unknown demixing matrix, εi,t are the nonstationary
sources. This setup of starting with an observed nonstationary time series and, after some transformation,

http://frostiglab.bio.uci.edu/Home.html
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getting to a lower dimensional stationary time series has interesting applications in neuroscience.
For instance, EEG signals measuring brain activity appear often as a multivariate nonstationary time
series; see Ombao et al. [13], Srinivasan [14], Nunez and Srinivasan [15], von Bünau et al. [16], Wu et al. [17],
Gao et al. [18], Euán et al. [19] for examples. Kaplan et al. [20] regard the nonstationarity as background
activity in the brain signal and removing this nonstationarity was seen to improve prediction accuracy
in neuroscience experiments; von Bünau et al. [21] and von Bünau et al. [16]. Thus, the aim of SSA is to
separate the stationary from the nonstationary sources within each epoch and focus attention on the
stationary sources. From a stroke neuroscientist’s perspective, the stationary sources within a short epoch
of 1 s are considered to be the “stable” components of the signal since they are consistent within that short
interval. The word consistent here refers to the statistical properties of the signal remaining the same
within an epoch. Of course the transient components (nonstationary components) may also be of interest
in other applications.
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Figure 3. p-values from the test of second-order stationarity on each of the p = 32 LFP microelectrodes
(y-axis) for all 600 epochs (x-axis).

The next goal in the data analysis is to estimate the epoch-evolving dimension di and the latent
stationary time series Xi,t ∈ Rdi where di < p. In Figure 4, we apply SSA and plot the estimates of the
stationary subspace dimension di across N = 600 epochs using the method in Sundararajan et al. [22].

The evolutionary dimension di of the latent stationary sources were presented in Figure 4. The plot
indicates increase in the number of stationary sources in post-stroke epochs (after epoch 300) and this
agrees with the results in Figure 3 wherein more epochs after the stroke witness stationary behavior in
the individual LFP components. It is indeed interesting that immediately post-occlusion (or immediately
after stroke onset), the LFPs are highly synchronized: the plots of the observed LFP Si,t and the estimated
squared coherence between the 32 components (Figure 5) suggest that different electrodes look very similar
and there is high coherence in between the entire network of electrodes at various frequency bands. Please
note that for the observed 32 dimensional signal Si,t in epoch i, the squared coherence between two
components Sp,i,t and Sq,i,t, for p 6= q, at frequency ω is given by

Cp,q(ω) =
| fS,pq(ω)|2

fS,pp(ω) fS,qq(ω)
(17)
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where fS,pq(ω) denotes the cross-spectrum between those two components and fS,pp(ω) and fS,qq(ω)

are the univariate spectra of the components series Sp,i,t and Sq,i,t respectively. This observation of high
coherence across electrodes immediately post-occlusion was confirmed by the neuroscientists and also
reported in Ellen Wann’s PhD dissertation (Wann [23]). Next, we investigate further into the lead-lag
cross-dependence between microelectrodes. We pre-whitened the observed time series to make the lag-0
covariance matrix identity. More precisely, one considers Σ−1/2

i Si,t where Σ−1/2
i is the inverse square root

of the lag-0 covariance matrix V(Si,t). We observe, in Figure 5, the significant drop in the magnitude
of squared coherence after pre-whitening indicating that the dependence among the 32 components is
predominantly due to a contemporaneous (i.e., lag-0) dependence. One can also notice, from the right plot
in Figure 5, a drop in the coherence in the gamma frequency band after the stroke.
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Figure 4. Plot of estimated stationary subspace dimensions d̂i for the i = 1, 2, . . . , N = 600 epochs in the
stroke experiment. Please note that for each epoch i there is a single estimated dimension d̂i that is plotted.

We then estimated the latent stationary sources Xi,t for the i = 1, 2, . . . , N = 600 epochs using the
DSSA method in Sundararajan and Pourahmadi [24]. In order to overcome identifiability issues in the
model in (16), SSA and PCA methods for time series assume an identity lag-0 covariance matrix for Xi,t
and resort to a pre-whitening technique to achieve this. Figure 6 plots the average squared coherence in
the non pre-whitened and pre-whitened stationary sources across different frequency bands. Similar to the
coherence pattern in the observed LFP in Figure 5, the left plot in Figure 6 witnesses an increase in the
coherence after the occurrence of the stroke. This indicates the importance of the stationary components
in explaining the high degree of synchronicity. Also, the right plot in Figure 6 indicates a substantial
drop in the magnitude of coherence in the stationary sources. The pre-whitened stationary sources have
lower coherence than the coherence of the stationary sources based on the non pre-whitened. As noted,
previous findings have already indicated an increased coherence post stroke onset. Our analysis provided
an additional insight that the increase in the coherence post-stroke is due only to contemporaneous
(or lag-0) dependence. This indicates perfect temporal synchrony in a sense that there is no lead-lag
cross-dependence between the electrodes. This was suggested by visual inspection of the LFP traces and
hypothesized by neuroscientists though never formally confirmed until now with our analysis.
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magnitude of squared coherence after pre-whitening indicating that the dependence among the 32
components is predominantly due to a contemporaneous (i.e., lag-0) dependence. One can also notice,
from the right plot in Figure 5, a drop in the coherence in the gamma frequency band after the stroke.

Figure 5. (Left) average squared coherence among the 32 components of the observed LFP signal
across 600 epochs. The averages are computed across the specified frequency bands. (Right) average
squared coherence among the 32 components of the pre-whitened LFP signal across 600 epochs.

We then estimated the latent stationary sources Xi,t for the i = 1, 2, . . . , N = 600 epochs using the
DSSA method in Sundararajan and Pourahmadi [24]. In order to overcome identifiability issues in
the model in (16), SSA and PCA methods for time series assume an identity lag-0 covariance matrix
for Xi,t and resort to a pre-whitening technique to achieve this. Figure 6 plots the average squared
coherence in the non pre-whitened and pre-whitened stationary sources across different frequency
bands. Similar to the coherence pattern in the observed LFP in Figure 5, the left plot in Figure 6
witnesses an increase in the coherence after the occurrence of the stroke. This indicates the importance
of the stationary components in explaining the high degree of synchronicity. Also, the right plot in
Figure 6 indicates a substantial drop in the magnitude of coherence in the stationary sources. The
pre-whitened stationary sources have lower coherence than the coherence of the stationary sources
based on the non pre-whitened. As noted, previous findings have already indicated an increased
coherence post stroke onset. Our analysis provided an additional insight that the increase in the
coherence post-stroke is due only to contemporaneous (or lag-0) dependence. This indicates perfect
temporal synchrony in a sense that there is no lead-lag cross-dependence between the electrodes. This
was suggested by visual inspection of the LFP traces and hypothesized by neuroscientists though
never formally confirmed until now with our analysis.

Figure 5. (Left) average squared coherence among the 32 components of the observed LFP signal across
600 epochs. The averages are computed across the specified frequency bands. (Right) average squared
coherence among the 32 components of the pre-whitened LFP signal across 600 epochs.
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Figure 6. (Left) average squared coherence in the estimated stationary sources across 600 epochs. The
averages are computed across the specified frequency bands. (Right) average squared coherence in the
pre-whitened stationary sources across 600 epochs.

Next, the FS-ratio statistic was evaluated on these estimated stationary sources at each of the
600 epochs at various frequency bands. Figure 7 plots the estimated FS-ratio statistic R̂Xi ,a,b, i =

1, 2, . . . , N = 600, for the known frequency bands: theta (4-8 Hertz), alpha (8-12 Hertz), beta (12-30
Hertz) and gamma (30-50 Hertz). At each epoch i, we obtained a 95% confidence interval for the
FS-ratio statistic using the block bootstrap technique of Politis and Romano [10]. To select the block
length, we follow the procedure in Politis and White [25], Patton et al. [26]. Please note that this
procedure is for the univariate case and hence we apply it to each component of the multivariate
process Yi,t and obtain the block length as the average over all components. The confidence intervals
are the blue shaded regions in Figures 7, 8.

The FS-ratio statistic is seen to have differences in the pre and post stroke epochs in the Theta,
Alpha, and Beta bands but not in the Gamma band. It can also be seen that the biggest difference in
FS-ratio between pre and post stroke is in the Beta band wherein there is a decrease in the amount
of spectral information after the stroke. Figure 8 also presents the FS-ratio statistic on other specified
frequency bands wherein one notices differences between the pre and post stroke epochs.

Tables 1 and 2 contain numerical summaries of the FS-ratio statistic for the pre and post stroke
epochs at various frequency bands. We notice that the Beta band is where there is maximum difference
observed between the pre and post stroke epochs. The Gamma band is consistent throughout the
experiment’s 600 epochs. Within the pre stroke epochs (and also within the post-stroke epochs), the
most variation in FS-ratio is observed in the Beta band.

Figure 6. (Left) average squared coherence in the estimated stationary sources across 600 epochs.
The averages are computed across the specified frequency bands. (Right) average squared coherence
in the pre-whitened stationary sources across 600 epochs.

Next, the FS-ratio statistic was evaluated on these estimated stationary sources at each of
the 600 epochs at various frequency bands. Figure 7 plots the estimated FS-ratio statistic R̂Xi ,a,b,
i = 1, 2, . . . , N = 600, for the known frequency bands: theta (4–8 Hertz), alpha (8–12 Hertz),
beta (12–30 Hertz) and gamma (30–50 Hertz). At each epoch i, we obtained a 95% confidence interval for
the FS-ratio statistic using the block bootstrap technique of Politis and Romano [10]. To select the block
length, we follow the procedure in Politis and White [25], Patton et al. [26]. Please note that this procedure
is for the univariate case and hence we apply it to each component of the multivariate process Xi,t and
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obtain the block length as the average over all components. The confidence intervals are the blue shaded
regions in Figures 7 and 8.
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Figure 7. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for various frequency bands. The
blue shaded region corresponds to a 95% confidence interval.

Figure 8. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for specified frequency ranges
(a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to the interval (0, π). The blue shaded region
corresponds to a 95% confidence interval.

Table 1. Numerical summaries of FS-ratio statistic R̂Xi ,a,b for pre stroke epochs i = 1, 2, . . . , 300.

Frequency Band Mean Median SD Lower Upper
CI CI

Theta (4–8 Hz) 0.079 0.079 0.004 0.061 0.081

Alpha (8–12 Hz) 0.076 0.077 0.0035 0.059 0.078

Beta (12–30 Hz) 0.332 0.332 0.0129 0.267 0.341

Gamma (30–50 Hz) 0.144 0.144 0.006 0.141 0.191

Figure 7. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for various frequency bands. The blue
shaded region corresponds to a 95% confidence interval.
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Figure 8. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for specified frequency ranges
(a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to the interval (0, π). The blue shaded region
corresponds to a 95% confidence interval.

Table 1. Numerical summaries of FS-ratio statistic R̂Xi ,a,b for pre stroke epochs i = 1, 2, . . . , 300.

Frequency Band Mean Median SD Lower Upper
CI CI

Theta (4–8 Hz) 0.079 0.079 0.004 0.061 0.081

Alpha (8–12 Hz) 0.076 0.077 0.0035 0.059 0.078

Beta (12–30 Hz) 0.332 0.332 0.0129 0.267 0.341

Gamma (30–50 Hz) 0.144 0.144 0.006 0.141 0.191

Figure 8. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for specified frequency ranges (a, b).
Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to the interval (0, π). The blue shaded region corresponds to
a 95% confidence interval.

The FS-ratio statistic is seen to have differences in the pre and post stroke epochs in the Theta, Alpha,
and Beta bands but not in the Gamma band. It can also be seen that the biggest difference in FS-ratio
between pre and post stroke is in the Beta band wherein there is a decrease in the amount of spectral
information after the stroke. Figure 8 also presents the FS-ratio statistic on other specified frequency bands
wherein one notices differences between the pre and post stroke epochs.

Tables 1 and 2 contain numerical summaries of the FS-ratio statistic for the pre and post stroke epochs
at various frequency bands. We notice that the Beta band is where there is maximum difference observed
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between the pre and post stroke epochs. The Gamma band is consistent throughout the experiment’s
600 epochs. Within the pre stroke epochs (and also within the post-stroke epochs), the most variation in
FS-ratio is observed in the Beta band.

Table 1. Numerical summaries of FS-ratio statistic R̂Xi ,a,b for pre stroke epochs i = 1, 2, . . . , 300.

Frequency Band Mean Median SD Lower Upper
CI CI

Theta (4–8 Hz) 0.079 0.079 0.004 0.061 0.081

Alpha (8–12 Hz) 0.076 0.077 0.0035 0.059 0.078

Beta (12–30 Hz) 0.332 0.332 0.0129 0.267 0.341

Gamma (30–50 Hz) 0.144 0.144 0.006 0.141 0.191

Table 2. Numerical summaries of FS-ratio statistic R̂Xi ,a,b for post stroke epochs i = 301, 302, . . . , 600.

Frequency Band Mean Median SD Lower Upper
CI CI

Theta (4–8 Hz) 0.062 0.062 0.004 0.0422 0.0669

Alpha (8–12 Hz) 0.060 0.061 0.004 0.041 0.064

Beta (12–30 Hz) 0.283 0.285 0.018 0.202 0.292

Gamma (30–50 Hz) 0.146 0.146 0.006 0.135 0.187

Discussion

The p-values presented in Figure 3 represent a test of second-order stationarity carried out on each
of the p = 32 microelectrodes at each epoch. We noticed that immediately after stroke the individual
microelectrodes behaved in a more stationary manner and this was visibly different from what was
observed before the stroke. Based on this analysis, it might be plausible that the LFP signal, under normal
circumstances, exhibits nonstationary behavior and immediately post stroke the signal behaves in a
more stationary manner thereby showing that the brain’s typical functions are affected. The plots of the
observed LFP Si,t and the estimated squared coherence between the 32 components (Figure 5) indicate
high cross-electrode coherence at various frequency bands immediately post stroke. This observation was
also confirmed by the neuroscientists and also reported in Ellen Wann’s PhD dissertation (Wann [23]).

In Fontaine et al. [27], a univariate LFP microelectrode-wise change point analysis was performed
on the same dataset. In their work, for various frequency bands, changes in the non-linear spectral
dependence of the LFP signal is modeled using parametric copulas. They detected change-points for a
fixed microelectrode and fixed frequency band. One can notice the detection of numerous change points in
the Delta, Theta, Alpha, Beta and Gamma bands for individual microelectrodes 1, 9 and 17. The detected
change points include several epochs with very few of them being close to the time of the occlusion
(or induced stroke) which was epoch i = 300.

In contrast, the advantages of our method are as follows: (i). The method treats the observed LFP
signal as a multivariate nonstationary time series. Using (16), we model this observed multivariate signal
as a mixture of stationary and nonstationary components. Figure 4 presents the dimension of stationary
subspace (dimension of Xi,t) across the 600 epochs and this is seen to be a useful feature in understanding
changes in the cortical signal after the occurrence of the induced stroke (epoch 300). In other words,
an increase in the dimension di after the stroke points to a more stationary behavior of the LFP signal after
the stroke. (ii). The FS-ratio statistic, with the ability to compare two multivariate processes with unequal
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dimensions, is applied on the estimated processes Xi,t for each of the 600 epochs and frequency band
specific numerical summaries are presented. The Beta frequency band is seen to be display the greatest
changes within the pre stroke and post stroke epochs and also between the pre stroke and post stroke
epochs. Also, from Figures 7 and 8, it is very easy to spot a change point at epoch 300 when the stroke
was induced.

4. Concluding Remarks

In this work, we proposed a new frequency-specific spectral ratio statistic FS-ratio that is demonstrated
to be useful in comparing spectral information in two multivariate stationary processes of different
dimensions. The method is motivated by applications in neuroscience wherein brain signal is recorded
across several epochs and the widely used tactic is to assume the observed signal be linearly generated by
latent sources of interest in lower dimensions. Applying PCA/ICA/SSA and other dimension reduction
methods to the observed signal in different epochs in the experiment results in different estimates of the
dimensions of latent sources. In these situations, the FS-ratio is seen to be useful because (i). It captures
the proportion of spectral power in various frequency bands by means of a L2-norm on the spectral
matrices and (ii). It is blind to the dimension of the stationary process as it only looks at the proportion
of spectral power at frequency bands. Under mild assumptions, the asymptotic properties of FS-ratio
statistic are derived. We also provide a data-driven technique to locate the frequency bands that carry
significant proportions of spectral power. In the application of our method to the LFP dataset, we witness
the ability of our method in (i). identifying frequency bands where the pre and post stroke epochs are
different, (ii). identifying frequency bands that accounts for most discrepancies within pre (and post)
stroke epochs, (iii). identifying the frequency bands that are consistent across all the 600 epochs of the
experiment and (iv). understanding the importance of contemporaneous dependence, both in the observed
LFP and the stationary sources, across the 600 epochs and this indicated perfect synchrony (no lead-lag
cross-dependence) among microelectrodes immediately after the stroke.

Topological data analysis (TDA) methods for characterizing complexity and detecting phase
transitions exist in the literature; M. Piangerelli [28], Rucco et al. [29], Wang et al. [30]. Topological features
from the observed series are extracted using techniques such as persistent entropy, persistence diagrams
and Betti numbers and this can be viewed as another approach to identify changes in the multivariate
time series due to events such as epilepsy and seizure.
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of California Irvine: http://frostiglab.bio.uci.edu/Home.html) and the LFP data came from this experiment.
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agreed to the published version of the manuscript.
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Appendix A. Simulation Study

In this section, we illustrate the performance of the FS-ratio statistic in capturing spread of spectral
information using simulated examples. We consider four simulation schemes and report the key summaries
of the FS-ratio statistic across repetitions of each of the four schemes. In addition, 95% bootstrap confidence
limits for the FS-ratio statistic are computed from B = 500 bootstrap replications. Here we use the block
bootstrap procedure of Politis and White [25], Patton et al. [26]. For an estimate of the spectral matrix
defined in (2), the Bartlett-Priestley kernel with bandwidth h = T−0.3 and the Daniell kernel, see Example
10.4.1 in Brockwell and Davis [31] with m =

√
T were implemented. Similar results were obtained for the

two kernel choices and only the results from the latter are presented.

http://frostiglab.bio.uci.edu/Home.html
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The simulation schemes presented below are designed to mimic the real data situation in Section 3.
There, the entire duration of the neuroscience experiment is divided into non-overlapping successive
time segments (N epochs). Then from these N epochs, lower dimensional stationary sources of varying
dimensions were extracted. Similarly, in our simulations below we shall simulate N stationary processes
with varying dimensions and investigate the evolution of the FS-ratio statistic. We now present 4 simulation
schemes to assess the behavior of our FS-ratio statistic. Scheme 1 simulates N multivariate stationary
VAR(2) processes, Xi,t where i = 1, 2, . . . , N = 500, with dimensions randomly chosen from {2, 3, . . . , 30}
and the error vectors are component-wise i.i.d N(0, 1). The phase parameter θ of the AR components are
allowed to vary across epochs i.e two different choices, θ1 and θ2, are included with θ1 = 4π

25 for epochs
i < N/2 and θ2 = 4π

5 for epochs i ≥ N/2. This causes a shift in the frequency bands of interest as we
move across the epochs. Scheme 2 is similar to Scheme 1 but an interaction between the dimension and
frequency is included. More precisely, lower dimensional signals simulated in epochs i < N/2 have
a peak at frequency θ1 = 4π

25 , and the higher dimensional signals simulated in epochs i ≥ N/2 have a
peak at frequency θ2 = 4π

5 . Scheme 3 is also similar to Scheme 1 but the error vectors are allowed to
have contemporaneous dependence. The N multivariate processes in Scheme 4 are first simulated as
in Scheme 1 but are then pre-multiplied with a half-orthogonal matrix. This is in line with the model
assumption (16) made in Section 3.

Scheme 1: We simulate N stationary process X1,t, X2,t, . . . , XN,t, for t = 1, 2, . . . , T, where the ith
process includes a di-variate process Xi,t = (X1,i,t, X2,i,t, . . . , Xdi ,i,t)

′
where each Xk,i,t, k = 1, 2, . . . , di,

are independently generated univariate stationary AR(2) process given by

Xk,i,t = φi,1Xk,i,t−1 + φi,2Xk,i,t−2 + εk,i,t

φi,1 = 2ξi cos(θi), φi,2 = −ξ2
i , εk,i,t are i.i.d N(0, 1) and k = 1, 2, . . . , di, i = 1, 2, . . . , N = 500, t = 1, 2, . . . ,

T = 1000. The dimension di for Xi,t is randomly chosen from {2, 3, . . . , 30}. Here ξi ∼ U(0.8, 0.98) and θi
is given by

θi =

{
cos( 4π

25 ) if i < N
2

cos( 4π
5 ) if i ≥ N

2

Scheme 2: We follow Scheme 1 in generating N process X1,t, X2,t, . . . , XN,t, for t = 1, 2, . . . , T = 1000 and
i = 1, 2, . . . , N = 500. Unlike Scheme 1, the dimension di for Xi,t is chosen such that

di =

{
d1,i if i < N

2
d2,i if i ≥ N

2

where d1,i is simulated from discrete uniform distribution over {1, 2, . . . , 14} and d2,i is simulated from
discrete uniform distribution over {15, 16, . . . , 30}. Observe that in Scheme 2 there is an interaction between
the dimension and frequency. The lower dimensional signals simulated in epochs i < N/2 has a peak at
frequency 4π

25 , and the higher dimensional signals simulated in epochs i ≥ N/2 has a peak at frequency 4π
5 .

Scheme 3: Similar to Scheme 1, the di-variate process in the ith epoch Xi,t = (X1,i,t, X2,i,t, . . . , Xdi ,i,t)
′

are
where each Xk,i,t are independently generated univariate stationary AR(2) process given by

Xk,i,t = φi,1Xk,i,t−1 + φi,2Xk,i,t−2 + εk,i,t

φi,1 = 2ξi cos(θi), φi,2 = −ξ2
i . The di × di variance matrix of the Gaussian noise εi,t is given by
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V(εi,t) =




1 ρ ρ2 . . . ρpi−1

ρ 1 ρ . . . ρpi−2

...
ρpi−1 ρpi−2 ρpi−3 . . . 1




ρ = 0.4 and k = 1, 2, . . . , di, i = 1, 2, . . . , N = 500, t = 1, 2, . . . , T = 1000. The dimension di for Xi,t is
randomly chosen from {2, 3, . . . , 30}. Here again, ξi ∼ U(0.8, 0.98) and θi is given by

θi =

{
cos( 4π

25 ) if i < N
2

cos( 4π
5 ) if i ≥ N

2

Scheme 4: Here we let ∑N
i=1 di = 30 and follow Scheme 1 in generating the N process X1,t, X2,t, . . . , XN,T ,

for t = 1, 2, . . . , T = 1000 and i = 1, 2, . . . , N = 500. Then we obtain Mi,t = AiXt where Ai =

1(i< N
2 ) Idi A1 + 1(i≥ N

2 ) Idi A2 and A1 and A2 are two 30× 30 randomly generated orthogonal matrices and

Idi is the di × d matrix containing the first di rows of the identity matrix I30. We consider Mi,t ∈ Rdi and
study the spread of spectral properties across the N = 500 epochs.

Tables A1 and A2 contain the numerical summaries of the FS-ratio statistic over 100 replications
of Scheme 1. Please note that the phase parameter θi for i < N/2 in Scheme 1 is at 4π/25 on a (0, π)

scale or equivalently at 0.0796 on a (0, 0.5) scale. We see from Table A1 that almost all of the spectral
information is contained in the first two chosen frequency ranges around this peak. Similarly for i ≥ N/2,
the phase parameter is at 4π/5 on a (0, π) scale or equivalently at 0.3981 on a (0, 0.5) scale. Figure A1
plots a histogram density of the FS-ratio statistic from the 100 replications and similar histogram densities
for Schemes 2, 3 and 4 can be found in Figures A2–A4. From Table A2 we notice that the last two chosen
frequency ranges have all of the spectral information.
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Figure A1. Scheme 1: Histogram density of the FS-ratio statistic for different frequency ranges
(a, b) ⊂ (0, 0.5).

Tables A3 and A4 include numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 2. Similar to Scheme 1, the phase parameter θi for i < N/2 is at 0.0796 on a (0, 0.5)
scale for i < N/2 and at 0.3981 on a (0, 0.5) scale for i ≥ N/2. The results from Table A3 indicate most
of the spectral information are present in the first two chosen frequency ranges. Similarly for i ≥ N/2,
Table A4 shows that the last two chosen frequency ranges have all of the spectral information.

Table A3. Scheme 2, epochs 1-249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5407 0.5349 0.0286 0.5041 0.6360

(0.08,0.16) 0.4423 0.4482 0.0284 0.3475 0.4778

(0.16,0.24) 0.0002 0.0003 0.0002 0.0006 0.0022

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0

Table A4. Scheme 2, epochs 250-500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0002 0.0001 0.0005 0.0016

(0.32,0.40) 0.4605 0.4616 0.0108 0.3862 0.4938

(0.40,0.48) 0.5194 0.5186 0.0096 0.4800 0.5863

Figure A1. Scheme 1: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).
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Table A1. Scheme 1, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5342 0.5391 0.0221 0.4984 0.6253

(0.08,0.16) 0.4486 0.4544 0.0227 0.3566 0.4831

(0.16,0.24) 0.0002 0.0002 0.0001 0.0005 0.0019

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0

Table A2. Scheme 1, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0

(0.24,0.32) 0.0003 0.0002 0.0002 0.0005 0.0017

(0.32,0.40) 0.4561 0.4595 0.0181 0.3786 0.4903

(0.40,0.48) 0.5205 0.5210 0.0169 0.4759 0.5826

Tables A3 and A4 include numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 2. Similar to Scheme 1, the phase parameter θi for i < N/2 is at 0.0796 on a (0, 0.5) scale
for i < N/2 and at 0.3981 on a (0, 0.5) scale for i ≥ N/2. The results from Table A3 indicate most of the
spectral information are present in the first two chosen frequency ranges. Similarly for i ≥ N/2, Table A4
shows that the last two chosen frequency ranges have all of the spectral information.

Table A3. Scheme 2, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5407 0.5349 0.0286 0.5041 0.6360

(0.08,0.16) 0.4423 0.4482 0.0284 0.3475 0.4778

(0.16,0.24) 0.0002 0.0003 0.0002 0.0006 0.0022

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0
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Table A4. Scheme 2, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0002 0.0001 0.0005 0.0016

(0.32,0.40) 0.4605 0.4616 0.0108 0.3862 0.4938

(0.40,0.48) 0.5194 0.5186 0.0096 0.4800 0.5863Entropy 2020, 1, 0 18 of 25

Figure A2. Scheme 2: Histogram density of the FS-ratio statistic for different frequency ranges
(a, b) ⊂ (0, 0.5).

Tables A5 and A6 contain the numerical summaries of the FS-ratio statistic over 100 replications
of the model in Scheme 3. As in Scheme 1, the phase parameter θi for i < N/2 is at 0.0796 on a (0, 0.5)
scale for i < N/2 and at 0.3981 on a (0, 0.5) scale for i ≥ N/2. As in Scheme 1, results from Table
A5 indicate most of the spectral information are present in the first two chosen frequency ranges.
Similarly for i ≥ N/2, Table A6 shows that the last two chosen frequency ranges have all of the spectral
information.

Table A5. Scheme 3, epochs 1-249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5371 0.5327 0.0238 0.4977 0.6284

(0.08,0.16) 0.4459 0.4504 0.0239 0.3549 0.4843

(0.16,0.24) 0.0002 0.0002 0.0001 0.0005 0.0020

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0

Table A6. Scheme 3, epochs 250-500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0003 0.0002 0.0005 0.0018

(0.32,0.40) 0.4531 0.4566 0.0196 0.3758 0.4907

(0.40,0.48) 0.5252 0.5225 0.0172 0.4810 0.5948

Figure A2. Scheme 2: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).

Tables A5 and A6 contain the numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 3. As in Scheme 1, the phase parameter θi for i < N/2 is at 0.0796 on a (0, 0.5) scale for
i < N/2 and at 0.3981 on a (0, 0.5) scale for i ≥ N/2. As in Scheme 1, results from Table A5 indicate most
of the spectral information are present in the first two chosen frequency ranges. Similarly for i ≥ N/2,
Table A6 shows that the last two chosen frequency ranges have all of the spectral information.

Table A5. Scheme 3, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5371 0.5327 0.0238 0.4977 0.6284

(0.08,0.16) 0.4459 0.4504 0.0239 0.3549 0.4843

(0.16,0.24) 0.0002 0.0002 0.0001 0.0005 0.0020

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0
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Table A6. Scheme 3, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0003 0.0002 0.0005 0.0018

(0.32,0.40) 0.4531 0.4566 0.0196 0.3758 0.4907

(0.40,0.48) 0.5252 0.5225 0.0172 0.4810 0.5948
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Figure A3. Scheme 3: Histogram density of the FS-ratio statistic for different frequency ranges
(a, b) ⊂ (0, 0.5).

Tables A7 and A8 contain the numerical summaries of the FS-ratio statistic over 100 replications
of the model in Scheme 4. Here we look at Mi,t = AiXi,t which is a mixture of the components of Xi,t
generated as in Scheme 1. Please note that the peak of the spectral densities of the components of Mi,t
is still at the phase parameter θi defined in Scheme 1. Hence, the results from Table A7, A8 are similar
to the results from Scheme 1.

Table A7. Scheme 4, epochs 1-249: Numerical summaries of FS-ratio statistic R̂Mi,t ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5342 0.5321 0.0155 0.4871 0.5955

(0.08,0.16) 0.4489 0.4510 0.0159 0.3872 0.4949

(0.16,0.24) 0.0002 0.0002 0.0001 0.0003 0.0011

(0.24,0.32) 0.0001 0.0001 0 0 0.0001

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0

Table A8. Scheme 4, epochs 250-500: Numerical summaries of FS-ratio statistic R̂Mi,t ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0003 0.0001 0.0003 0.0011

(0.32,0.40) 0.4553 0.4570 0.0130 0.4021 0.4987

(0.40,0.48) 0.5234 0.5219 0.0119 0.4782 0.5738

Figure A3. Scheme 3: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).

Tables A7 and A8 contain the numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 4. Here we look at Mi,t = AiXi,t which is a mixture of the components of Xi,t generated
as in Scheme 1. Please note that the peak of the spectral densities of the components of Mi,t is still at the
phase parameter θi defined in Scheme 1. Hence, the results from Tables A7 and A8 are similar to the results
from Scheme 1.

Table A7. Scheme 4, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Mi,t ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5342 0.5321 0.0155 0.4871 0.5955

(0.08,0.16) 0.4489 0.4510 0.0159 0.3872 0.4949

(0.16,0.24) 0.0002 0.0002 0.0001 0.0003 0.0011

(0.24,0.32) 0.0001 0.0001 0 0 0.0001

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0
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Table A8. Scheme 4, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Mi,t ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0003 0.0001 0.0003 0.0011

(0.32,0.40) 0.4553 0.4570 0.0130 0.4021 0.4987

(0.40,0.48) 0.5234 0.5219 0.0119 0.4782 0.5738
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Figure A4. Scheme 4: Histogram density of the FS-ratio statistic for different frequency ranges
(a, b) ⊂ (0, 0.5).

Appendix B. Proofs

Here we present the proofs of the theoretical results in Section 2.1.2.

Proof of Theorem 1 (a). Recall that for some 0 < a < b < π,

r̂X,a,b =
∫ b

a
vec( f̂X(ω))2

2dω =
∫ b

a

1
T

bT/2c
∑

j=−bT/2c
Kh(ω−ωj)vec(IX,T(ωj))

2 dω

=
∫ b

a

1
T2

bT/2c
∑

j1,j2=−bT/2c
Kh(ω−ωj1)Kh(ω−ωj2)

di

∑
r,s=1

IX,T,rs(ωj1)IX,T,rs(ωj2) dω.

We first consider the expected value of this quantity.

E(r̂X,a,b) =
∫ b

a

1
T2

bT/2c
∑

j1,j2=−bT/2c
Kh(ω−ωj1)Kh(ω−ωj2)

di

∑
r,s=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

dω

=
∫ b

a

1
T2

bT/2c
∑

j1,j2=−bT/2c
Kh(ω−ωj1)Kh(ω−ωj2)

di

∑
r,s=1

fX,rs(ωj1) fX,rs(ωj2) dω + o(1).

It can be seen that as T → ∞, h→ 0 and Th→ ∞ the above quantity converges to

∫ b

a

di

∑
r,s=1

( ∫ π

−π
K(v)dv

)2
fX,rs(ω) fX,rs(ω) dω =

∫ b

a

di

∑
r,s=1

fX,rs(ω) fX,rs(ω) dω.

Figure A4. Scheme 4: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).

Appendix B. Proofs

Here we present the proofs of the theoretical results in Section 2.1.2.

Proof of Theorem 1 (a). Recall that for some 0 < a < b < π,

r̂X,a,b =
∫ b

a
||vec( f̂X(ω))||22dω =

∫ b

a
|| 1

T

bT/2c
∑

j=−bT/2c
Kh(ω−ωj)vec(IX,T(ωj))||2 dω

=
∫ b

a

1
T2

bT/2c
∑

j1,j2=−bT/2c
Kh(ω−ωj1)Kh(ω−ωj2)

di

∑
r,s=1

IX,T,rs(ωj1)IX,T,rs(ωj2) dω.

We first consider the expected value of this quantity.

E(r̂X,a,b) =
∫ b

a

1
T2

bT/2c
∑

j1,j2=−bT/2c
Kh(ω−ωj1)Kh(ω−ωj2)

di

∑
r,s=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

dω

=
∫ b

a

1
T2

bT/2c
∑

j1,j2=−bT/2c
Kh(ω−ωj1)Kh(ω−ωj2)

di

∑
r,s=1

fX,rs(ωj1) fX,rs(ωj2) dω + o(1).
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It can be seen that as T → ∞, h→ 0 and Th→ ∞ the above quantity converges to

∫ b

a

di

∑
r,s=1

( ∫ π

−π
K(v)dv

)2
fX,rs(ω) fX,rs(ω) dω =

∫ b

a

di

∑
r,s=1

fX,rs(ω) fX,rs(ω) dω.

Next, for the variance we have V(r̂X,a,b) = A1 − A2, where

A1 =
∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω−ωj1)Kh(ω−ωj2)Kh(λ−ωj3)Kh(λ−ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ and

A2 =
∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω−ωj1)Kh(ω−ωj2)Kh(λ−ωj3)Kh(λ−ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ.

For the difference in the expectations between A1 and A2 we discuss the relevant cases and their
convergence to 0. Firstly, it can be seen that for the following three cases the difference in the expectations
is asymptotically 0: (a). ωj1 6= ωj2 6= ωj3 6= ωj4 , (b). ωj1 = ωj2 6= ωj3 6= ωj4 , (c). ωj1 = ωj2 6= ωj3 = ωj4 .
Next, when ωj1 = ωj3 6= ωj2 = ωj4 we have,

∫ b

a

∫ b

a

1
T4 ∑

j1,j2

Kh(ω−ωj1)Kh(ω−ωj2)Kh(λ−ωj1)Kh(λ−ωj2)
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)×

IX,T,tu(ωj1)IX,T,tu(ωj2)
)
− E

(
IX,T,rs(ωj1)IX,T,rs(ωj2)

)
E
(

IX,T,tu(ωj1)IX,T,tu(ωj2)
)]

dω dλ

=
∫ b

a

∫ b

a

1
T4 ∑

j1,j2

Kh(ω−ωj1)Kh(ω−ωj2)Kh(λ−ωj1)Kh(λ−ωj2)
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1)IX,T,tu(ωj1)
)
×

E
(

IX,T,rs(ωj2)IX,T,tu(ωj2)
)
− E

(
IX,T,rs(ωj1)

)
E
(

IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj1)
)

E
(

IX,T,tu(ωj2)
)]

dω dλ + o(1)

=
1

T4 ∑
j1,j2

( ∫ b

a
Kh(ω−ωj1)Kh(ω−ωj2) dω

)2 di

∑
r,s,t,u=1

[(
fX,rt(ωj1) fX,su(ωj1) + fX,rs(ωj1) fX,tu(ωj1)

)
×

(
fX,rt(ωj2) fX,su(ωj2) + fX,rs(ωj2) fX,tu(ωj2)

)
−
(

fX,rs(ωj1) fX,rs(ωj2) fX,tu(ωj1) fX,tu(ωj2)
)]

+ o(1) =
1

T4h2 ∑
j1,j2

( ∫ b−ωj1
h

a−ωj1
h

K(u)K(u +
ωj1 −ωj2

h
)du
)2 di

∑
r,s,t,u=1

[
· · ·
]

= O(
1

T2h
).
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The case when ωj1 = ωj2 = ωj3 6= ωj4 would have the same rate of decay as above.
Next, when ωj1 = ωj3 6= ωj2 6= ωj4 we have,

∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j4

Kh(ω−ωj1 )Kh(ω−ωj2 )Kh(λ−ωj1 )Kh(λ−ωj4 )
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1 )IX,T,rs(ωj2 )×

IX,T,tu(ωj1 )IX,T,tu(ωj4 )
)
− E

(
IX,T,rs(ωj1 )IX,T,rs(ωj2 )

)
E
(

IX,T,tu(ωj1 )IX,T,tu(ωj4 )
)]

dω dλ

=
∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j4

Kh(ω−ωj1 )Kh(ω−ωj2 )Kh(λ−ωj1 )Kh(λ−ωj4 )
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1 )IX,T,tu(ωj1 )
)
×

E
(

IX,T,rs(ωj2 )
)

E
(

IX,T,tu(ωj4 )
)
− E

(
IX,T,rs(ωj1 )

)
E
(

IX,T,rs(ωj2 )
)

E
(

IX,T,tu(ωj1 )
)

E
(

IX,T,tu(ωj4 )
)]

dω dλ + o(1)

=
1

T4 ∑
j1,j2,j4

( ∫ b

a
Kh(ω−ωj1 )Kh(ω−ωj2 ) dω

)( ∫ b

a
Kh(λ−ωj1 )Kh(λ−ωj4 ) dλ

) di

∑
r,s,t,u=1

[(
fX,rt(ωj1 )×

fX,su(ωj1 ) + fX,rs(ωj1 ) fX,tu(ωj1 )
)
×
(

fX,rs(ωj2 ) fX,tu(ωj4 )
)
−
(

fX,rs(ωj1 ) fX,rs(ωj2 ) fX,tu(ωj1 ) fX,tu(ωj4 )
)]

+ o(1) =
1

T4h2 ∑
j1,j2,j4

( ∫ b−ωj1
h

a−ωj1
h

K(u)K(u +
ωj1 −ωj2

h
) du

)( ∫ b−ωj1
h

a−ωj1
h

K(v)K(v +
ωj1 −ωj4

h
) dv

)
×

di

∑
r,s,t,u=1

[
· · ·

]
+ o(1) = O(

1
T
).

Finally, we look at the case ωj1 = ωj2 = ωj3 = ωj4 . We have

∫ b

a

∫ b

a

1
T4 ∑

j1

K2
h(ω−ωj1)K

2
h(λ−ωj1)

di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1)IX,T,rs(ωj1)×

IX,T,tu(ωj1)IX,T,tu(ωj1)
)
− E

(
IX,T,rs(ωj1)IX,T,rs(ωj1)

)
E
(

IX,T,tu(ωj1)IX,T,tu(ωj1)
)]

dω dλ

=
1

T4 ∑
j1

( ∫ b

a
K2

h(ω−ωj1) dω
)2 di

∑
r,s,t,u=1

[
· · ·
]
=

1
T4h4 ∑

j1

( ∫ b

a
K2(

ω−ωj1
h

)dω
)2 di

∑
r,s,t,u=1

[
· · ·
]

=
1

T4h2 ∑
j1

( ∫ b−ωj1
h

a−ωj1
h

K2(u)du
)2 di

∑
r,s,t,u=1

[
· · ·
]
= O(

1
T3h2 )

Proof of Theorem 1 (b). First, we observe that

R̂X,a,b =

∫ b
a ||vec( f̂X(ω))||22dω
∫ π

0 ||vec( f̂X(ω))||22dω
=

∫ b
a ||vec( f̂X(ω))||22dω

∫ b
a ||vec( f̂X(ω))||22dω +

∫
Π(a,b)

||vec( f̂X(ω))||22dω

=
(

1 +

∫
Π(a,b)

||vec( f̂X(ω))||22dω

∫ b
a ||vec( f̂X(ω))||22dω

)−1
. (A1)
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A sufficient condition for joint consistency of (r̂X,a,b, r̂X,Π(a,b)
)>. Following the proof of Theorem 1 (a),

we have cov(r̂X,a,b, r̂X,Π(a,b)
) = C1 − C2, where

C1 =
∫

Π(a,b)

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω−ωj1)Kh(ω−ωj2)Kh(λ−ωj3)Kh(λ−ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ and

C2 =
∫

Π(a,b)

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω−ωj1)Kh(ω−ωj2)Kh(λ−ωj3)Kh(λ−ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ.

As in the proof of Theorem 1 (a), it can be seen that, for the various cases, the covariance terms are of
O( 1

Tδ1 hδ2
) where δ1, δ2 ∈ {0, 1, 2, 3} and δ1 > δ2. The result above along with Theorem 1 implies

(
r̂X,a,b, r̂X,Π(a,b)

)> P−→
(

rX,a,b, rX,Π(a,b)

)>
.

Finally, an application of the continuous mapping theorem yields the result.
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