

Correction

# **Correction: Young Sik, K. Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra.** *Entropy* 2020, 22, 1047

### Kim Young Sik

Department of Mathematics, Hanyang University, Seoul 04763, Korea; yoskim@hanyang.ac.kr

Received: 26 November 2020; Accepted: 26 November 2020; Published: 3 December 2020

# check for updates

## 1. Correction for Equations

In the original article [1], there were some mistakes in Equations as published.

(1) We mistyped  $\frac{1-z}{2}$  as  $\frac{z-1}{2z}$ , and  $\frac{1-\lambda}{2}$  as  $\frac{\lambda-1}{2\lambda}$ , and  $\frac{1-\lambda_n}{2}$  as  $\frac{\lambda_n-1}{2\lambda_n}$  in Equation (23), Equation (25), Equations (27)–(29), Equation (41), Equation (43) and Equations (45)–(47). We correct them:

$$\lim_{n \to \infty} z^{\frac{n}{2}} \cdot E_x \bigg( \exp \bigg\{ \frac{1-z}{2} \sum_{k=1}^n [I, \phi_k(t), x(t)]^2 \bigg\} [D, F, x+y, w] \bigg).$$
(23)

$$\lim_{n \to \infty} z^{\frac{n}{2}} \cdot E_x \left( \exp\left\{ \frac{1-z}{2} \sum_{k=1}^n [I, \phi_k(t), x(t)]^2 \right\} [D, F, x+y, w] \right) \\
= \lim_{n \to \infty} z^{\frac{n}{2}} \int_{L_2[0,T]} E_x \left( \exp\left\{ \frac{1-z}{2} \sum_{k=1}^n [I, \phi_k(t), x(t)]^2 + i [I, v(t), x(t)] \right\} \right)$$
(25)

$$\cdot \left( i[I, v(t), w(t)] \right) \cdot \exp\left\{ i[I, v(t), y(t)] \right\} df(v).$$

$$\lim_{n \to \infty} \lambda^{\frac{n}{2}} \cdot E_x \left( \exp\left\{ \frac{1-\lambda}{2} \sum_{k=1}^m \left[ I \phi_k(t) x(t) \right]^2 \right\} [D, F, x+y, w) \right] \right).$$
(27)

$$\lim_{n \to \infty} \lambda_n^{\frac{n}{2}} \cdot E_x \left( \exp\left\{ \frac{1 - \lambda_n}{2} \sum_{k=1}^m [I, \phi_k(t), x(t)]^2 \right\} [D, F, x + y, w)] \right).$$
(28)

$$\lim_{n \to \infty} \lambda_n^{\frac{n}{2}} \cdot E_x \left( \exp\left\{ \frac{1 - \lambda_n}{2} \sum_{k=1}^m [I, \phi_k(t), x(t)]^2 \right\} [D, F, x + y, w)] \right).$$
(29)

$$\lim_{n \to \infty} z^{\frac{\nu n}{2}} \cdot E_{\vec{x}} \left( \exp\left\{ \frac{1-z}{2} \sum_{j=1}^{\nu} \sum_{k=1}^{n} [I, \phi_k(t), x_j(t)]^2 \right\} [D, F, \vec{x} + \vec{y}, \vec{w})] \right).$$
(41)

$$\lim_{n \to \infty} z^{\frac{\nu n}{2}} \cdot E_{\vec{x}} \left( \exp\left\{ \frac{1-z}{2} \sum_{j=1}^{\nu} \sum_{k=1}^{n} [I, \phi_k(t), x_j(t)]^2 \right\} [D, F, \vec{x} + \vec{y}, \vec{w}) \right] \\ = \lim_{n \to \infty} z^{\frac{\nu n}{2}} \int_{L_2^{\nu}[0,T]} E_{\vec{x}} \left( \exp\left\{ \frac{1-z}{2} \sum_{j=1}^{\nu} \sum_{k=1}^{n} [I, \phi_k(t), x_j(t)]^2 \right\} \right) \\ \cdot \exp\left\{ i \sum_{j=1}^{\nu} [I, v_j(t), x_j(t)] \right\} \right)$$
(43)

$$\cdot \left(i\sum_{j=1}^{\nu} [I, v_j(t), w_j(t)]\right) \cdot \exp\left\{i\sum_{j=1}^{\nu} [I, v_j(t), y_j(t)]\right\} df(\vec{v}).$$

$$= \lim_{n \to \infty} \lambda^{\frac{\nu n}{2}} \cdot E_{\vec{x}} \left(\exp\left\{\frac{1-\lambda}{2}\sum_{j=1}^{\nu}\sum_{k=1}^{m} [I, \phi_k(t), x_j(t)]^2\right\} [D, F, \vec{x} + \vec{y}, \vec{w})]\right).$$

$$(45)$$



$$= \lim_{n \to \infty} \lambda_n^{\frac{\nu n}{2}} \cdot E_{\vec{x}} \bigg( \exp \bigg\{ \frac{1 - \lambda_n}{2} \sum_{j=1}^{\nu} \sum_{k=1}^{m} [I, \phi_k(t), x_j(t)]^2 \bigg\} [D, F, \vec{x} + \vec{y}, \vec{w})] \bigg).$$
(46)

$$= \lim_{n \to \infty} \lambda_n^{\frac{\nu n}{2}} \cdot E_{\vec{x}} \bigg( \exp \bigg\{ \frac{1 - \lambda_n}{2} \sum_{j=1}^{\nu} \sum_{k=1}^{m} [I, \phi_k(t), x_j(t)]^2 \bigg\} [D, F, \vec{x} + \vec{y}, \vec{w})] \bigg).$$
(47)

(2) In Equations (26)–(29):

- (a). We mistyped [D, F, x + y, w] as D[F, x + y, w] in Equations (26)–(29).
- (b). We mistyped  $[D, F, \rho x + y, w]$  as  $D[F, \rho x + y, w]$  in Equation (26).
- (3) In Equations (31)–(47):
  - (a). We mistyped  $[D, F, \vec{x}, \vec{w}]$  as  $D[F, \vec{x}, \vec{w}]$  in Equations (31) and (32).
  - (b). We mistyped  $[D, F, \vec{x} + \vec{y}, \vec{w}]$  as  $D[F, \vec{x} + \vec{y}, \vec{w}]$  in Equations (34)–(41) and Equations (43)–(47).
  - (c). We mistyped  $[D, F, z^{-\frac{1}{2}}\vec{x} + \vec{y}, \vec{w}]$  as  $D[F, z^{-\frac{1}{2}}\vec{x} + \vec{y}, \vec{w}]$  in Equations (42) and (43).
  - (d). We mistyped  $[D, F, \rho \vec{x} + \vec{y}, \vec{w}]$  as  $D[F, \rho \vec{x} + \vec{y}, \vec{w}]$  in Equation (44).
  - (e). We mistyped  $[D, F, \lambda^{-\frac{1}{2}}\vec{x} + \vec{y}, \vec{w}]$  as  $D[F, \lambda^{-\frac{1}{2}}\vec{x} + \vec{y}, \vec{w}]$  in Equation (45).

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

#### References

1. Young Sik, K. Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra. *Entropy* **2020**, *22*, 1047.

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).