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Abstract: We present an unsupervised method to detect anomalous time series among a collection
of time series. To do so, we extend traditional Kernel Density Estimation for estimating probability
distributions in Euclidean space to Hilbert spaces. The estimated probability densities we derive
can be obtained formally through treating each series as a point in a Hilbert space, placing a kernel
at those points, and summing the kernels (a “point approach”), or through using Kernel Density
Estimation to approximate the distributions of Fourier mode coefficients to infer a probability density
(a “Fourier approach”). We refer to these approaches as Functional Kernel Density Estimation for
Anomaly Detection as they both yield functionals that can score a time series for how anomalous it is.
Both methods naturally handle missing data and apply to a variety of settings, performing well when
compared with an outlyingness score derived from a boxplot method for functional data, with a
Principal Component Analysis approach for functional data, and with the Functional Isolation Forest
method. We illustrate the use of the proposed methods with aviation safety report data from the
International Air Transport Association (IATA).

Keywords: time series; anomaly detection; unsupervised learning; kernel density estimation;
missing data

1. Introduction

Being able to detect anomalies has many applications, including in the fields of medicine and
healthcare management [1,2]; in data acquisition, such as filtering out anomalous readings [3];
in computer security [4]; in media monitoring [5]; and many in the realm of public safety such
as identifying thermal anomalies that may precede earthquakes [6], identifying potential safety issues
in bridges over time [7], detecting anomalous conditions for trains [8], system level anomaly detection
among different air fleets [9], and identifying which conditions pose increased risk in aviation [10].
Given a dataset, anomaly detection is about identifying individual data that are quantitatively
different from the majority of other members of the dataset. Anomalous data can come in a variety
of forms such as an abnormal sequence of medical events [11] and finding aberrant trajectories of
pantograph-caternary systems [12]. In our context, we look for time series of aviation safety incident
frequencies for fleets of aircrafts that differ substantially from the rest. By identifying the aircraft types
or airports that have significant different patterns of frequencies of specific incidents, our model can
provide insights on the potential risk profile for each aircraft type or airport and highlight areas of
focus for human analysts to perform further investigations.
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Identifying anomalous time series can be divided into different types of anomalous behaviour [13]
such as: point anomalies (a single reading is off), collective anomalies (a portion of a time series
that reflects an abnormality), or contextual anomalies (when a time series behaves very differently
from most others). Identifying anomalous time series from a collection of time series, as in our
problem, can be done through dimensionality reduction (choosing representative statistics of the
series, applying PCA, and identifying points that are distant from the rest) and through studying
dissimilarity between curves (a variant of classical clustering like kmeans) [14]. After reducing
the dimension, some authors have used entropy-based methods, instead, to detect anomalies [15].
Archetypoid analysis [16] is another method, which selects time series as archetypeoids for the dataset
and identifies anomalies as those not well represented by the archetypeoids. Very recently, authors
have used a generalization of Isolation Forests to identify anomalies [17] and have examined the
Fourier spectrum of time series and looked at shifting frequency anomalies [18]. Our approach, like
Functional Isolation Forest, is geometric in flavor and we employ Kernel Density Estimation and
analysis of Fourier modes to detect anomalies.

In this manuscript, we present two alternative means of anomaly detection based on Kernel
Density Estimation (KDE) [19]. We use two approaches: the first and simplest considers each time
series as element of a Hilbert spaceH and employs KDE, treating each time series inH as if it were a
point in one-dimensional Euclidean space, placing a Gaussian kernel at each curve with scale parameter
ξ > 0. We refer to this as the point approach to Functional KDE Anomaly Detection, because each
curve in H is treated as a point. This approach then formally generates a proxy for the “probability
density” overH. Anomalous series are associated with smaller values of this density. This is distinct
from considering a single time series as collection of points sampled from a distribution and using KDE
upon points in the time series as has been done before [20]. This is a very simple, and seemingly effective
method, with ξ chosen as a hyper-parameter. We also present a Fourier approach, which approximates
a probability density overH through estimating empirical distributions for each Fourier mode with
KDE. This allows us to estimate the likelihood of a given curve. Curves with lower likelihoods
are more anomalous. Both methods naturally handle missing data, without interpolating. In real
flight operations, sometimes it is not possible to capture and record complete information because
incident data is documented from voluntary reporting, which may result in incomplete datasets.
Therefore, model robustness to the impact of missing data is crucial to derive the correct understanding,
which may save human lives and prevent damaged aircrafts.

The rest of our paper is organized as follows: in Section 2, we present the details and implementation
of our methods; in Section 3, we conduct some experiments to investigate the strengths and weaknesses
of the approaches and compare them with three other methods (Functional Isolation Forest available
in Python and the PCA and functional boxplot methods available in R); following this, we apply our
techniques to data from the International Air Transport Association (IATA); finally, in Section 4, we discuss
our results and present some recommendations.

2. Functional Kernel Density Estimation

2.1. Review of Kernel Density Estimation

We first recall KDE over Rd, d ∈ N. Given a sample S ⊂ Rd of n points from a distribution with
probability density function (pdf) f : Rd → [0, ∞) with

∫
Rd f (x)dx = 1, KDE provides an empirical

estimate for the probability density given by [19]

f̃ (x) =
1
n ∑

y∈S
|Ξ|−1/2K(Ξ−1/2(x− y)) (1)
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where Ξ is a symmetric, positive definite matrix known as the bandwidth matrix and K is a Kernel
function. We choose the form of a multivariate Gaussian function so

f̃ (x) =
1
n ∑

y∈S

e−
1
2 (x−y)TΞ−1(x−y)

(2π)d/2|Ξ|1/2 , x ∈ Rd (2)

and we choose [19]
Ξ = α diag(σ̃1, σ̃2, ..., σ̃d) (3)

where σ̃i is the sample standard deviation of the ith-coordinate of the sample points in S and

α =
( 4
(d + 2)n

)1/(d+4)
. (4)

We used tilde (~) rather than hat ( ˆ ) to denote estimators as later on we use the hats for Fourier
Transform modes and wish to avoid ambiguities. In general tildes will be used for estimates derived
from samples.

2.2. Setup, Assumptions, and Notation

The proposed methods are applicable to situations where we look for anomalous time-series
relative to the sample we have. We study time series, which we consider more abstractly as being
discrete samples from curves of form x(t) where x : [0, T] → R for some T > 0. The space of all
such curves is quite general and we limit the scope to Hilbert spaces on [0, T]. For example, we may
consider spacesH = L2([0, T]) or H1([0, T]), the space of square integrable functions or the space of
square integrable functions whose derivative is also square integrable, respectively. Within our Hilbert
space, H, there is an inner product (·, ·) : H2 → C and an induced norm, || · || : H → [0, ∞) where
||x|| = (x, x)1/2. With this norm, we can define distances between elements ofH.

Observations are made at p different times, t0, t1, ..., tp−1 where ti = i∆ with ∆ = T/p and
i = 0, 1, ..., p− 1. We also have tp = T, but this time is not included in the data. Although observations
are made at these times, some time series could have missing values. When a value is missing, we will
say its "value" is Not-a-Number (NaN). While the set of observation points are uniformly spaced,
the times at which a given time series has non-NaN values may not be.

We denote by n the number of time series observed, given to us as a sample of form X =

{{(t(k)j , x(k)j )}Pk−1
j=0 }

n
k=1, where k = 1, ..., n indexes the time series, Pk is the number of available

(i.e., non-NaN) points for time series k, 0 ≤ t(k)0 < t(k)1 < ... < t(k)Pk−1 < T are the times for series

k, with corresponding non-NaN values x(k)0 , x(k)1 , ..., x(k)Pk−1 ∈ R.

2.3. Preprocessing

The methods often performed better if we normalized the data by a standard centering and
rescaling. At each fixed observation time, the values of the time series were shifted to have mean zero
and then rescaled to have unit variance. When the variance was already zero, the values were mapped
to 0. Further remarks are given in Section 4.

Even though our methods do not assume stationary or other similar properties, applying
transformations to the data before applying them can be done. For example, we may wish to make the
series stationary, or to extract some characteristics (e.g., the cyclical part, or the seasonal part). This can
be useful if we want to focus on finding specific types of anomalies.
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2.4. Point Approach to Functional KDE Anomaly Detection

Our first method can be summarized as follows: treat each x ∈ H as a point in one dimension.
Select a value for the KDE scale hyper-parameter ξ > 0, and define a score functional overH by

SP[a] = ∑
x∈X

e
− ||x−a||2

2ξ2 , a ∈ H, (5)

which, at least formally, can be thought of as a proxy to a “probability density” functional.
More rigorously, one should consider measures on Hilbert spaces [21]. Assuming anomalous curves
are truly rare, they should be very distant from the majority of curves and SP[·] should be smaller
at such curves. See Figure 1 for a conceptual illustration. We find that choosing ξ to be the mean
of {||a||}a∈X to work well; another natural choice would be the median. These choices are natural
because they represent a natural size/scale for the series. This approach can also be interpreted from a
Fourier perspective which we remark on in Appendix A.

Figure 1. A visual depiction of the Point method. The curves are time series in a Hilbert space H
but after applying KDE, there is a score associated to each point in H. In the cartoon, curves 1 and
2 are similar and curve 3 is anomalous. (Left): the time series. (Right): a representation of them
with associated scores in the color scale. In reality, the space is infinite dimensional and this is only a
conceptual illustration.

This method can be implemented with the following steps:

1. Choose ξ > 0.
2. For each x ∈ X , compute its score from (5) where, for example, in the case ofH = L2([0, T]),

||x− a||2 =
∫ T

0
|(x(t)− a(t)|2dt. (6)

3. Identify anomalies as curves with the lowest score.

The integral in (6), even with some data points missing, can be computed as below:

1. To compute I =
∫ T

0 |(x(t)− a(t)|2dt, determine all t-values where both x and a are not NaN.
Call these t∗0 , t∗1 , ..., t∗r−1.

2. Define t∗r = T − t∗r−1 + t∗0 , x∗r = x∗0 and y∗r = y∗0 .
3. Estimate the integral as

I ≈ 1
2

r−1

∑
m=0

(t∗m+1 − t∗m)(|x(t∗m)− y(t∗m)|2 + |x(t∗m+1)− y(t∗m+1)|2).

This is a second-order accurate (trapezoidal) approximation to I where we have extended the signal
periodically at the endpoint. This ensures that in a pathological case such as there being only a single
point of observation for the integrand with value v, then the inner product evaluates to Tv.
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2.5. Fourier Approach to Functional KDE Anomaly Detection

We first observe that most Hilbert spaces of interest such as L2([0, T]) have a countable,
orthogonal basis B = {exp(2πikt/T)|k ∈ Z}. By considering time series as being represented by these
basis vectors, we can more accurately consider a true probability density overH. In practice, we pick
L ∈ N large and represent a ∈ H by

a(t) ≈
L

∑
j=−L

âke2πikt/T .

Then, up to a Fourier mode of size L, we can define a probability density at a ∈ H by ∏L
k=−L ζk(âk)

where ζk is a pdf over C for mode k.
Our time series are discrete with finitely many points so we consider a Non-Uniform Discrete

Fourier Transform (NUDFT). To estimate the probability density overH at a, we:

1. Compute p∗ = min{P1, P2, ..., Pn}.
2. Compute the Discrete Fourier coefficients

x̂(k)j =
1
Pk

Pk−1

∑
m=0

exp(−2πijtm/T)x(k)(tm)

for each k = 1, ..., n and for j = 0, 1, ..., p∗ − 1.
3. For each 0 ≤ j ≤ p∗ − 1, use KDE to estimate the pdf over C for x̂j, by using KDE

(Equations (2)–(4)) for R or R2 when the coefficients are all purely real/imaginary or contain a
mix of real and imaginary components, respectively. Call the empirical distribution ζ̃ j for each j.

4. For any a ∈ H define an estimated pdf via

ρF[a] =
p∗−1

∏
j=0

ζ j(âj). (7)

5. Let the score of a ∈ H be
SF[a] = log ρF[a]. (8)

6. Identify anomalies in X as those whose scores given by (8) are smallest.

Due to missing data, this method does lose some information since the higher Fourier modes
necessary to fully reconstruct a given time series may be discarded. Additionally, as the missing data
may result in non-uniform sampling, the typical aliasing of the Discrete Fourier Transform does not

take effect. In general for one of the series x(k), we will not have x̂(k)Pk−j = x̂(k)j , where the bar denotes
complex conjugation. See the remark on aliasing in Appendix B.

In multiplying the pdfs in each mode to estimate the probability density at a point in the Hilbert
space, we have implicitly assumed the modes are independent. It may seem intuitive to decouple the
modes by applying a Mahalanobis transformation upon the modes prior to KDE, but this results in
poor outcomes. Thus, this implicit independence seems to work well in practice, without adjustments.

A Discrete Fourier transform of a signal x0, x1, ..., xPS−1 measured at times t̃0, t̃1, ..., t̃PS−1 is a

representation in a new basis {e(k)}PS−1
k=0 where e(k)j = e2πikt̃j/T for j = 0, ..., PS − 1. In general, such a

basis of vectors for a NUDFT will not be orthogonal [22]. However, if m = p− PS � p and the t̃’s are
a subset of a uniformly spaced set of times, we can show that the vectors are almost orthogonal with
a cosine similarity of size O(m/p). Details appear in Appendix C. This orthogonality is not strictly
necessary to run the method, but doing so allows a deeper justification of multiplying the pdfs in
each mode if the Fourier modes are truly independent because the Discrete Fourier Transform is then
approximately a projection onto an orthogonal basis of modes, each of which are independent.
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3. Method Performance

We begin by illustrating the performance of our methods for some synthetic data and compare
Functional KDE to other methods. The first one is the Functional Boxplot (FB) [23]. The fbplot function
in the R package fda is used to obtain a center outward ordering of the time series based on the band
depth concept which is a generalization to functional data of the univariate data depth concept [24].
The idea is that anomalous curves will be the ones with the largest ranks, that is, the ones that are
farther away from the center. The second method is the recently proposed Functional Isolation Forest
(FIF) [17], which is also depth-based and assigns a score to a curve, with higher values indicating that it
is more anomalous. We used the code provided for FIF directly on GitHub [25] with the default settings
given. The third is the method proposed in [26] and implemented in the R package anomalousACM [27].
This method works in three steps: (i) extract features (e.g., mean, variance, trend) from the time-series;
(ii) use Principal Component Analysis (PCA) to identify patterns; (iii) Use a two dimensional outlier
detection algorithm with the first two principal components as inputs. It will be referenced as the PCA
method in what follows After testing them on synthetic data, we apply our techniques to real data to
identify anomalies in time series for aviation events.

The methods against which we compare our methods did not have standard means of managing
missing entries. For these methods, we replace missing data (NaN) in a series using Python’s default
interpolation scheme. For the methods proposed in this paper, we do not have to use imputation.

3.1. Synthetic Data

We apply the Point and Fourier Approaches to Functional KDE, Functional Boxplot, and Functional
Isolation Forest to the two scenarios described below.

Scenario 1 : we define a base curve

x0(t) = a0(1 + tanh(b0(t− t0))) + c0 sin(ω0t/T),

with a0 = 5, b0 = 2, T = 50, t0 = T/2 = 25, and ω0 = 2π. Ordinary curves are generated via

x0(t) + ε(t),

where ε(t) represents Gaussian white noise at every t with mean µg = 0 and standard deviation
σg = 0.05. We then consider a series of 7 anomalous curves:

• C1(t) = x0(t)
(

1 + r1
(t−t∗)2

1+(t−t0)2 Θ(t− t0)
)
+ ε(t), where r1 = 0.05 and Θ denotes the Heaviside

function. Thus, the function is scaled up after t0.
• C2(t) = x0(t) +

(
1 + r2Θ(t− t0)

)
ε(t), where r2 = 3. Thus, the noise is larger after t0.

• C3(t) = x0(t) − r3(t − t0)Θ(t − t0) + ε(t), where r3 = 0.05. Thus, there is a decreasing
component added to the function after t0.

• C4(t) = 2a0Θ(t− t0)+ c0 sin(ω0t/T)+ ε(t), i.e., the tanh is replaced by a discontinuous function.
• C5(t) = x0(t) + E(t), where E(t) represents an exponential random variable at every t with

mean 0.05.
• C6(t) = a0(1+ tanh(2b0(t− t0))) + c0 sin(ω0t/T) + ε(t), which has a slightly steeper transition

rate than the base curve.
• C7(t) = a0(1 + tanh(b0(t − t0))+ c0 sin((1 + r7t/T)ω0t/T) + ε(t), where r7 = 0.1 so the

frequency increases with time.

Over 50 trials, we generate 70 time series, 63 normal curves, and 7 anomalous curves with each of
C1 through C7 being used once. See Figure 2 for an illustration. We used a uniform mesh with 50 points,
0, 1, ..., 49. Since we used a 9 : 1 ratio of regular to anomalous series, successful methods, after ranking
curves in ascending order of “regular,” should rank anomalous curves as among the bottom 10%.
We can also determine the 95th percentile for the percentile rank of each curve, to give an estimate for
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how much of the data would need to be re-examined to capture such anomalies. These trials can also
be done by dropping data points independently at random with a fixed probability to simulate missing
data. We ran sets of trials with 0% and 10% of drop probabilities. Results for the mean percentile rank
and 95th percentile of the percentile ranks are presented in Tables 1 and 2.

Figure 2. Plot of 63 normal curves and the 7 anomalous curves Ci(t), i = 1, ..., 7. Left: un-normalized.
Right: normalized.

Table 1. Mean percentiles (out of 100) for curves C1–C7 in Scenario 1. A correct classification is a
percentile less than or equal to 10 (in bold in the table). The -N suffix denotes the data were normalized
by the pre-processing described in Section 2.3; the -U suffixed denotes the data were un-normalized.
Note that method FB is not affected by the normalization.

Method Lost C1 C2 C3 C4 C5 C6 C7

Point-N 0% 4.3 5.8 1.4 21 12 24 2.9
Point-U 0% 4.3 5.7 1.4 14 8.8 16 2.9

Fourier-N 0% 4.7 1.9 2.8 28 51 29 8.5
Fourier-U 0% 5.8 4.0 2.8 38 43 35 1.7

FIF-N 0% 51 24 72 56 79 58 13
FIF-U 0% 19 2.2 4.8 18 53 19 5.3
PCA 0% 7.5 20. 4.3 7.5 53 9.4 11
FB 0% 4.5 5.6 1.8 36 21 37 2.5

Point-N 10% 4.3 6.0 1.4 23 18 29 2.9
Point-U 10% 4.3 5.7 1.4 20. 14 23 2.9

Fourier-N 10% 4.3 4.5 2.5 28 43 36 4.0
Fourier-U 10% 45 59 50 46 49 53 49

FIF-N 10% 50. 21 75 48 74 51 13
FIF-U 10% 45 15 29 42 48 44 32
PCA 10% 32 20. 6.1 36 47 35 7.7
FB 10% 7.5 8.7 4.2 47 24 49 5.1

Scenario 2: we utilized the testing examples of Staerman et al. [17]. The data consist of 105 time
series over [0, 1] with 100 time points. There are 100 regular curves defined by x(t) = 30(1− t)qtq

where q is equi-spaced in [1, 1.4]–thus there is a large family of normal curves. Then, there are
5 anomalous curves:

• D1(t) = 30(1− t)1.2t1.2 + βχ[0.2,0.8], where β is chosen from a Normal distribution with mean 0
and standard deviation 0.3 and χI is the characteristic function of I (there is a jump discontinuity
at 0.2 and 0.8).

• D2(t) = 30(1− t)1.6t1.6, being anomalous in its magnitude.
• D3(t) = 30(1− t)1.2t1.2 + sin(2πt).
• D4(t) = 30(1− t)1.2t1.2 + 2χ{τ}, where τ = 0.7 is a single point.
• D5(t) = 30(1− t)1.2t1.2 + 1

2 sin(10πt).

Each curve was sampled uniformly at 100 points. We did not drop any data points and, owing to
the limited randomness, we only present the results of one trial. The results are presented in Table 3.
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Table 2. The 95th percentile of the percentile ranks (out of 100) for curves C1–C7 in Scenario 1.
See Table 1 caption for -N vs. -U distinction.

Method Lost C1 C2 C3 C4 C5 C6 C7

Point-N 0% 4.3 6.5 1.4 47 42 62 2.9
Point-U 0% 4.3 5.7 1.4 30. 12 46 2.9

Fourier-N 0% 8.6 3.6 4.3 67 99 74 13
Fourier-U 0% 5.7 4.3 4.2 84 94 77 2.9

FIF-N 0% 84 69 92 90 100 96 30
FIF-U 0% 57 7.5 11 55 97 53 11
PCA 0% 25 67 7.1 17 96 27 47
FB 0% 5.7 5.7 2.9 75 74 75 2.9

Point-N 10% 4.3 7.1 1.4 52 51 72 2.9
Point-U 10% 4.3 5.7 1.4 46 43 59 2.9

Fourier-N 10% 6.5 10. 5.1 61 91 89 5.7
Fourier-U 10% 84 97 92 93 93 92 89

FIF-N 10% 81 67 97 91 99 95 39
FIF-U 10% 84 27 56 88 95 94 56
PCA 10% 82 60. 31 73 94 73 19
FB 10% 11 13 10. 75 75 75 9.4

Table 3. Percentiles (out of 100) for curves D1–D5 in Scenario 2. A correct classification is a percentile
less than or equal to 4.8 (in bold in the table) since 5/105 = 4.8%. See Table 1 caption for -N vs.
-U distinction.

Method D1 D2 D3 D4 D5

Point-N 74 0.95 6.7 73 1.9
Point-U 83 0.95 44 85 71

Fourier-N 3.8 4.8 1.9 2.9 0.95
Fourier-U 1.9 8.6 30 0.95 2.9

FIF-N 1.9 28 3.8 10 0.95
FIF-U 1.9 2.9 3.8 4.8 0.95
PCA 4.8 2.9 3.8 1.9 0.95
FB 75 0.95 21 75 75

Our method is unsupervised and thus the distinction as to what constitutes an anomaly requires
considering a curve’s score relative to the others and making a decision based upon this. This can involve
human judgment. However, since our method returns a scalar score, we can also use a univariate outlier
test on the score to formally test the hypothesis H0: There are no anomalies. The Rosner test [28] is
such a test and is available in the R package EnvStats [29]. In Appendix D, by considering scenarios
where anomalies are present or absent, we show the validity of this approach.

3.2. Aviation Safety Reports

We now consider how our methods behave in identifying anomalous time series for aviation
safety events. A discussion on method performance is deferred to Section 4.

We were provided IATA data for safety-related events of different types on a month-by-month
basis from 2018–2020 for different aircraft types and airports. Aircraft types were given IDs from 1
to 64 (not every ID in the range was included). We were also given separate data pertaining to flight
frequency in order to normalize and obtain event rates (cases per 1000 flights). Events of interest could
include phenomena occurring during a flight such as turbulence or striking birds, or physical problems
such as a damaged engine. We study two events: A and B. Event Type A is a contributing factor for one
specific type of accident; Event Type B is the aircraft defense against that type of accident. To illustrate
our method while preserving the confidentiality of the data, we do not state what A and B represent.

We plot histograms for the scores of Type A and B Events in Figure 3. These histograms suggest
that, for events A and B, anomalous curves could be those with scores below 10 for the Point approach.
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Then, we consider curves anomalous by the Fourier method if they have scores below −60 for event A
and −30 for event B. As the method is unsupervised, the notion of where to draw the line of being
anomalous is somewhat subjective. The idea here is to raise a flag so that experts can investigate
the anomalous cases more closely. The aircraft types identified as anomalous for both methods are
presented in Table 4. It appears for these data, the curves deemed anomalous by the Fourier method
are a subset of the curves deemed anomalous by the Point method. In Figure 4, we plot the anomalous
curves (with markers) along with the normal curves (dotted lines) for the fleet IDs that were common
to both approaches.

Figure 3. Histogram of scores for Point and Fourier methods for Type A Point (top-left), Type A
Fourier(top-right), Type B Point (bottom-left) and Type B Fourier (bottom-right). The dashed vertical
line represents the division we chose between anomalous (left of line) and normal (right of line).
The Sturges estimate was used to set bin widths [30].

Figure 4. Plots of the time series for Type A and Type B events. Anomalous are dotted curves with
markers in the legend; normal curves are solid black curves.
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Table 4. IDs of anomalous flights for events A and B. Columnwise, the bolded IDs are common to both
methods for a given event type.

Method Type A Type B

Point 14, 21, 22, 23, 35 1, 2, 4, 5, 6, 7, 8, 9, 25, 34
Fourier 14, 21, 22, 35 1, 2, 4, 7, 8, 9

4. Discussion and Conclusions

4.1. Method Performance

From Tables 1 and 2 with regards to Scenario 1, the Point method and FB are superior.
They correctly classify C1–C3 and C7 as anomalous. The Point and PCA methods significantly
outperform the other methods in the more difficult C4–C6 curves. With these data, the Point
method generally performs better without normalization. Generally all methods failed to identify
the replacement of Gaussian white noise with exponential noise (C5) as anomalous, although the
un-normalized Point approach succeeded. Additionally, all methods considered, except PCA,
had difficulty identifying the discontinuous replacement of the hyperbolic tangent (C4) and a slightly
steeper hyperbolic tangent (C6). The PCA method was not as good as the others for identifying the
noise increases (C2) and the frequency increase with time (C7). This suggests that not all methods are
effective at detecting the same types of anomalies and that they may be complementary.

From Table 3 for Scenario 2, the Fourier approach with normalized data, FIF on un-normalized
data, and PCA classify equally correctly. Data can always be normalized and this is therefore not a
problem for the Fourier method. In this example, the Point approach fares better with normalization.
However, this method and the FB method are not as effective as the FIF, PCA, and Fourier methods.

From our experiments, when there was a large family of curves as with Scenario 2, the Fourier
method performed better at detecting anomalies, especially when provided normalized data. But when
the family of curves were all close to the same, except for noise, the Point method was better, with or
without normalization. Providing more theoretical understanding as to whether these are general
phenomena is left for future work.

4.2. Aviation Safety Data

From Figure 4, it appears the methods can detect different sorts of anomalies. In the case of Type
A events, the anomalous curves appear to have anomalously large values at an isolated point or over
small range of values. The anomalies in Type B events are more interesting and subtle. Even some of
the normal curves have sizeable event frequencies, sometimes even exceeding the anomalous curves.
But on the average it seems the anomalous curves are higher. In the case of curve 9, the reason it is
deemed anomalous is not immediately intuitive. Whether such differences are of a concern to safety
would require follow-up from safety inspectors.

To prevent aviation accidents, identifying the potential hazards and risks before they evolve into
accidents is the key to proactive safety management. While collecting and analyzing data manually
is a time-consuming process, especially on a global scale, the risk identification process may remain
reactive process if there is not an automated process. The application of the anomaly detection will
enable proactive data-driven risk identification in global aviation safety, by continuously monitoring
aviation safety data across multiple criteria (e.g., airport, aircraft type and date), then automatically
raising a flag when the model detects any anomalous patterns.

The proposed model shows potential value in automatically detecting potential risk areas with
robustness from missing data; however, the interpretation of the model still requires future study.
As safety risk is an outcome of complex interactions between multiple factors, including human,
machine, environment, and other hidden factors, understanding the full context of such risk requires
in-depth investigation and validation from multiple experts. While the model can identify some
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anomalous patterns, this does not take into consideration the interactions. For example, some aircraft
fleets fly more frequently over certain pathways than others. Thus, some differences identified as
anomalous due to aircraft type may actually stem from location. Therefore, there will always be a
human layer between the model and the interpretation of the model.

4.3. Comments on the Models

There are various degrees of freedom the proposed methods allow for, which are worth noting.
Firstly, the point method could be generalized to compute H1([0, T]), and higher Sobolev norms too,
but that could lead to additional hyper-parameters in how heavily to weigh the derivative terms.
With the Fourier approach, it may seem more appropriate to replace the NUDFT with a weighted
combination of terms that more accurately reflects the non-uniform spacing, i.e., a Riemann Sum.
Interestingly such an approach tends to make the results slightly worse, hence our choice to use the
standard NUDFT.

We anticipate these methods perform well when the time series are sampled at regular intervals
and a small portion of entries are missing. If the number of missing entries is very large, this makes
inner products computed with the Point method less accurate (without additional interpolations) and
the preprocessing of shifting and rescaling could result in poorer outcomes due to a limited sample
size upon which to base the normalizations. For many applications, however, most data are present.

4.4. Future Work

We note that our proposed methods aim to identify anomalous time series relative to the sample
taken. In general, even if all time series are sampled from the same distribution, due to low probability
events, some time series could still be anomalous relative to the sample given. As such, our work
has mostly been an empirical investigation of the methods; however, by adding further assumptions
on the underlying distribution of time series, it could be possible to obtain a more theoretical basis
for the method performance. This would be worth investigating, but is beyond our current work.
Going hand-in-hand with this theory it would be interesting to investigate the optimal choice of ξ

in the point approach, to understand how the Fourier modes being treated as independent works as
effectively as it does, or to more rigorously establish classes of problems when the Point or Fourier
approaches are superior.

In conclusion, we have presented two approaches to detecting anomalous time series using KDE
to generate functionals to score a series for its degree of anomalousness. The methods handle missing
data and perform well in comparison to other methods.
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Appendix A. Fourier Perspective of the Point Method

From Parseval’s identity [31], we can also write the terms of (5) as

e
− ||x−a||2

2ξ2 = e
−∑k∈Z |x̂k−âk |

2

2Tξ2 ,

i.e., each kernel can be thought of as a Gaussian in C∞ with constant variance in all directions.
Unfortunately this thinking can only be true in spirit because such a series would not be in L2([0, T])
as ∑k∈Z |âk|2 would almost surely diverge.

Appendix B. Aliasing

Observe that if the real time series x0, x1, ..., xN−1 is observed at p equally spaced points tj = j∆,
∆ = T/p, j = 0, ..., p− 1 then for j = 1, ..., p− 1:

x̂p−j =
p−1

∑
m=0

e−2πitp−jm∆/Txm

=
p−1

∑
m=0

e−2πi(p−j)m∆/Txm

=
p−1

∑
m=0

e2πijm∆/Txm

= x̂j

where in getting from the first to second line we used exp(−2πipm∆/T) = exp(−2πim) = 1. On the
other hand, if data are only observed at t̃0 < t̃1 < ... < t̃PS , a subset of the times t0, ..., tp with PS < p
then t̃j is not, in general j∆ and the identity does not hold.

Appendix C. Approximate Orthogonality

Before our approximate orthogonality result, we first define the standard inner product for vectors
over CN :

(x, y) =
N

∑
j=1

x̄iyi.

Theorem A1 (Approximate Orthogonality). Let tj = j∆ for j = 0, 1, ..., p− 1 where ∆ = T/p for T > 0.

Let {t̃j}
PS−1
j=0 ⊂ {t0, t1, ..., tp−1}. Define m = p − PS and define the basis vectors {e(k) = e2πikt̃j/T , j =

0, ..., PS|k = 0, ..., PS}. Then
(e(k), e(k

′))

|e(k)||e(k′)|
=

{
1, k = k′

O(m/p), k 6= k′
.

In other words the cosine similarity of the two vectors is either 1 or O(m/p).

Proof. We trivially note that |e(k)| =
√

PS for any k. Next, if k = k′ then

(e(k), e(k
′))

|e(k)||e(k′)|
=

1
PS

PS−1

∑
j=0

1

= 1.

Let us define the set B = {j|tj /∈ {t̃k|k = 0, ..., PS} for j = 0, ..., p}, i.e., it is a listing of all regular time
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values that have been lost in only observing at the t̃’s. Note that |B| = m. Also let q = k′ − k so that
when k 6= k′ :

(e(k), e(k
′))

|e(k)||e(k′)|
=

1
PS

NS−1

∑
j=0

exp(2πiqt̃j/T)

=
1
PS

( p−1

∑
j=0

exp(2πiqtj/T)−∑
j∈B

exp(2πiqtj/T)
)

=
−1
PS

∑
j∈B

exp(2πiqtj/T)

where in arriving at the final equality we used that the sum of e2πiqtj over j = 0, ..., p− 1 is 0 (1 + η +

η2 + ... + ηp−1 = 0 if ηp = 1 and η 6= 1). As each term in the remaining sum is bounded by 1 and
|B| = m, we have that

(e(k), e(k
′))

|e(k)||e(k′)|
= O(m/PS)

= O(m/p).

Appendix D. Rosner Test on the Scores

We briefly explore the capacity of our methods to test the hypothesis H0: There are no anomalies.
The idea is to compute the scores from our methods, which are scalars, and use a univariate outlier test
on them. In this experiment, we use Rosner test [28] with the R package EnvStats [29]. Specifically,
we test H0 for each of the 50 trial datasets of Scenario 1 and report the proportion of time the null
hypothesis is rejected at the α = 0.05 level. In this case, the proportion of rejection measures the
power of the test and we wish to have the highest values possible. However, to verify the validity
of the test, we also run the tests on the samples containing only the 63 normal curves. This time,
we want the proportion of rejection to be close to the level α = 0.05. The results, presented in Table A1,
show that this method is working. Setting aside the un-normalized Fourier approach (Fourier-U) with
10% of missing data, the proportion of rejection varies between 0.02 and 0.08 when the data contain
no anomalies, showing that the test is able to maintain its prescribed level. When the data contain
anomalies, the power ranges between 0.98 and 1, showing that the anomalies are detected in almost all
cases. The only exception is the Fourier-U method with 10% of missing data, which never rejects H0

whether or not the data contain anomalies. But this is consistent with the fact that this method had a
very poor performance in this case and was not able to detect the anomalies as seen in Table 1.

Table A1. Proportions of time the null hypothesis H0 is rejected at the α = 0.05 level. See Table 1
caption of main manuscript for -N vs -U distinction.

Method Lost Anomalies Present H0 Reject Fraction

Point-N 0% No 0.04
Point-N 0% Yes 1
Point-U 0% No 0.08
Point-N 0% Yes 1

Fourier-N 0% No 0.08
Fourier-N 0% Yes 0.98
Fourier-U 0% No 0.02
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Table A1. Cont.

Method Lost Anomalies Present H0 Reject Fraction

Fourier-U 0% Yes 1
Point-N 10% No 0.04
Point-N 10% Yes 1
Point-U 10% No 0.08
Point-N 10% Yes 1

Fourier-N 10% No 0.06
Fourier-N 10% Yes 1
Fourier-U 10% No 0
Fourier-U 10% Yes 0
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