
entropy

Article

Data-Driven Model Reduction for Stochastic Burgers
Equationations

Fei Lu

Department of Mathematics, Johns Hopkins University; 3400 N. Charles Street, Baltimore, MD 21218, USA;
feilu@math.jhu.edu

Received: 1 October 2020; Accepted: 30 November 2020; Published: 30 November 2020

Abstract: We present a class of efficient parametric closure models for 1D stochastic Burgers equations.
Casting it as statistical learning of the flow map, we derive the parametric form by representing the
unresolved high wavenumber Fourier modes as functionals of the resolved variable’s trajectory.
The reduced models are nonlinear autoregression (NAR) time series models, with coefficients
estimated from data by least squares. The NAR models can accurately reproduce the energy spectrum,
the invariant densities, and the autocorrelations. Taking advantage of the simplicity of the NAR
models, we investigate maximal space-time reduction. Reduction in space dimension is unlimited,
and NAR models with two Fourier modes can perform well. The NAR model’s stability limits
time reduction, with a maximal time step smaller than that of the K-mode Galerkin system. We
report a potential criterion for optimal space-time reduction: the NAR models achieve minimal
relative error in the energy spectrum at the time step, where the K-mode Galerkin system’s mean
Courant–Friedrichs–Lewy (CFL) number agrees with that of the full model.
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1. Introduction

Closure modeling aims for computationally efficiently reduced models for tasks requiring
repeated simulations such as Bayesian uncertainty quantification [1,2] and data assimilation [3,4].
Consisting of low-dimensional resolved variables, the closure model must take into account the
non-negligible effects of unresolved variables so as to capture both the short-time dynamics
and large-time statistics. As suggested by the Mori–Zwanzig formalism [5–7], trajectory-wise
approximation is no longer appropriate, and the approximation is in a statistical sense. That is,
the reduced model aims to generate a process that approximates the target process in distribution, or
at least, reproduce the key statistics and dynamics for the quantities of interest. For general nonlinear
systems, such a reduced closure model is out of the reach of direct derivations from first principles.

Data-driven approaches, which are based on statistical learning methods, provide useful and
practical tools for model reduction. The past decades witness revolutionary developments of
data-driven strategies, ranging from parametric models (see, e.g., [8–14] and the references therein)
to nonparametric and machine learning methods (see, e.g., [15–18]). These developments demand a
systematic understanding of model reduction from the perspectives of dynamical systems (see, e.g.,
[7,19,20]), numerical approximation [21,22], and statistical learning [17,23].

With 1D stochastic Burgers equation as a prototype model, we aim to further the understanding of
model reduction from an interpretable statistical inference perspective. More specifically, we consider
a stochastic Burgers equation with a periodic solution on [0, 2π]:

ut = νuxx − uux + f (x, t) , 0 < x < 2π, t > 0

u(0, t) = u(2π, t) = 0, ux(0, t) = ux(2π, t),
(1)
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from an initial condition u(·, 0). We consider a stochastic force f (x, t) that is smooth in space, residing
on K0 low wavenumber Fourier modes, and white in time, given by

f (x, t) = σ
K0

∑
m=1

sin(mx)Ẇm(t) + cos(mx)Ẇ ′m(t), (2)

where {Wm, W ′m} are independent Brown motions. Here ν > 0 is the viscosity constant and σ > 0
represents the strength of the stochastic force.

Our goal is to find a discrete-time closure model for the first K Fourier modes, so as to efficiently
reproduce the energy spectrum and other statistics of these modes.

We present a class of efficient parametric reduced closure models for 1D stochastic Burgers
equations. The key idea is to approximate the discrete-in-time flow map statistically, in particular, to
represent the unresolved high wavenumber Fourier modes as functionals of the resolved variable’s
trajectory. The reduced models are nonlinear autoregression (NAR) time series models, with coefficients
estimated from data simply by least squares. We test the NAR models in four settings: reduction of
deterministic responses (K > K0) vs. reduction involving unresolved stochastic force (K < K0), and
small vs. large scales of stochastic force (with σ = 0.2 and σ = 1), where K0 is the number of Fourier
modes of the white-in-time stochastic force and σ is the scale of the force. In all these settings, the
NAR models can accurately reproduce the energy spectrum, invariant densities, and autocorrelation
functions (ACF). We also discuss model selection, consistency of estimators, and memory length of the
reduced models.

Taking advantage of our NAR models’ simplicity, we further investigate a critical issue in model
reduction of (stochastic) partial differential equations: maximal space-time reduction. The space
dimension can be reduced arbitrarily in our parametric inference approach: NAR models with two
Fourier modes perform well. The time reduction is another story. The maximal time step is limited
by the NAR model’s stability and is smaller than those of the K-mode Galerkin system. Numerical
tests indicate that the NAR models achieve the minimal relative error at the time step where the
K-mode Galerkin system’s mean CFL (Courant–Friedrichs–Lewy) number agrees with the full model’s,
suggesting a potential criterion for optimal space-time reduction.

One can readily extend our parametric closure modeling strategy to general nonlinear dissipative
systems beyond quadratic nonlinearities. Along with [14], we may view it as a parametric inference
extension of the nonlinear Galerkin methods [24–27]. However, it does not require the existence of
an inertial manifold (and the stochastic Burgers equation does not satisfy the spectral gap condition
that is sufficient for the existence of an inertial manifold [28]), and it applies to resolved variables of
any dimension (e.g., lower than the dimension of the inertial manifold if it exists [14]). Notably, one
may use NAR models that are linear in parameters and estimate them by least squares. Therefore, the
algorithm is computationally efficient and is scalable for large systems.

The limitation of the parametric modeling approach is its reliance on the derivation of a parametric
form using the Picard iteration, which depends on the nonlinearity of the unresolved variables (see
Section 3.1). When the nonlinearity is complicated, a linear-in-parameter ansatz may be out of reach.
One can overcome this limitation by nonparametric techniques [23,29] and machine learning methods
(see, e.g., [16,17,30]).

The stochastic Burgers equation is a prototype model for developing closure modeling techniques
for turbulence (see e.g., [31–37]). In particular, Dolaptchiev et al. [37] propose a closure model
for stochastic Burgers equation in a similar setting, based on local averages of finite-difference
discretization, reproducing accurate energy spectrum similar to this study. We directly construct
a simple yet effective NAR model for the Fourier modes, providing the ground of a statistical inference
examination of model reduction.

We note that the closure reduced models based on parametric inference are different from the
widely studied proper orthogonal decomposition (POD)-based reduced order models (ROM) for
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parametric full models [38,39]. These POD-ROMs seek new effective bases to capture the effective
dynamics by a linear system for the whole family of parametric full models. The inference-based
closure models focus on nonlinear dynamics in a given basis and aim to capture both short-time
dynamics and large-time statistics. In a probabilistic perspective, both approaches approximate
the target stochastic process: the POD-ROMs are based on Karhunen-Loéve expansion, while the
inference-based closure models aim to learn the nonlinear flow-map. One may potentially combine
the two and find nonlinear closure models for the nonlinear dynamics in the POD basis.

The exposition of our study proceeds as follows. We first summarize the notations in Table 1.
Following a brief review of the basic properties of the stochastic Burgers equation and its numerical
integration, we introduce in Section 2 the inference approach to closure modeling and compare it with
the nonlinear Galerkin methods. Section 3 presents the inference of NAR models: derivation of the
parametric form, parameter estimation, and model selection. Examining NAR models’ performance
in four settings in Section 4, we investigate the space-time reduction. Section 5 concludes our main
findings and possible future research.

Table 1. Notations: the variables in the full and reduced models.

Model Notation Description

Full model

u(x, t) = ∑|k|≥1 ûk(t)eiqk x solution of (1) in its Fourier series
f (x, t) = ∑K0

|k|≥1 f̂k(t)eiqk x stochastic force in (2) in its Fourier series

v(x, t) = ∑|k|≤K ûk(t)eiqk x the resolved variable, the target process for closure modeling
w(x, t) = ∑|k|>K ûk(t)eiqk x the unresolved variable; u = v + w in (12)
ν, σ the viscosity in (1) and the scale of the stochastic force
N,dt number of modes and time step-size in numerical solution

Reduced models

K number of Fourier modes in reduced (NAR) models in (17)
(un

k )|k|≤K state variable in reduced model, corresponding to ûk(tn)

δ = dt×Gap observation time interval
Rδ

k , Φn, gn parametric terms in the NAR model in (10) and (17)

2. Space-Time Reduction for Stochastic Burgers Equationations

In this section, we first review basic properties of the stochastic Burgers equation and its numerical
integration. Then, we introduce inference-based model reduction and compare it with the nonlinear
Galerkin methods.

2.1. The Stochastic Burgers Equationation

A Fourier transform of Equation (1) leads to

d
dt

ûk = −νq2
k ûk −

iqk
2

∞

∑
l=−∞

ûl ûk−l + f̂k(t) (3)

with qk = k, k ∈ Z, where ûk are Fourier modes:

ûk(t) = F [u]k =
1

2π

∫ 2π

0
u(x, t)e−iqkxdx, u(x, t) = F−1[û] = ∑

k
ûk(t)eiqkx,

The system has the following properties. First, it is Galilean invariant: if u(x, t) is a solution, then
u(x− ct, t) + c, with c an arbitrary constant speed, is a solution. To see this, let v(x, t) = u(x− ct, t) + c.
Then, vt = −cux + ut, vx = ux, and

vt = cvx + uxx + uux + f = cvx + vxx + (v− c)vx + f = vxx + vvx + f .
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Without loss of generality, we set
∫ 2π

0 u(x, 0)dx = 0. This implies that û0(0) = 0. In this study, we

only consider forces with mean zero, i.e.
∫ 2π

0 f (x, t)dx = 0, therefore from Equation (3), we see that

û0(t) ≡ 0, or equivalently,
∫ 2π

0 u(x, t)dx ≡ 0. Second, the system has an invariant measure [31,40,41],
due to a balance between the diffusion term, which dissipates energy, and the stochastic force, which
injects energy. In particular, the initial condition does not affect the large time statistical properties
of the solution. Third, since u is real, the Fourier modes satisfies û−k = û∗k , where û∗k is the complex
conjugate of ûk.

2.2. Galerkin Spectral Method

We consider the Galerkin spectral method for numerical solutions of the Burgers equation. The
system is approximated as follows: the function u(x, t) is represented at grid points xi = i∆x with
i = 0, . . . , 2N − 1 and ∆x = 2π

2N . The Fourier transform F is replaced by discrete Fourier transform

ûk(t) = F2N [u]k =
2N−1

∑
i=0

u(xi, t)e−iqkxi , u(xi, t) = F−1
2N [û]i =

1
2N

N

∑
k=−N+1

ûkeiqkxi .

For simplicity of notation, we abuse the notation u(xi, t) so that it denotes either the true solution or its
high-resolution 2N-mode approximation. Since u is real, we have û−k = û∗k . Noticing further that
û0 = 0 due to Galilean invariance, and setting ûN = 0, we obtain a truncated system

d
dt

ûk = −νq2
k ûk −

ik
2 ∑
|k−l|≤N,|l|≤N

ûl ûk−l + f̂k, with |k| = 1, . . . , N. (4)

We solve Equation (4) using the exponential time differencing fourth order Rouge–Kutta method
(ETDRK4) (see [42,43]) with standard 3/2 zero-padding for dealiasing (see e.g., [44]), with the force
term f̂k treated as a constant in each time step. Such a mixture scheme is of strong order 1, but
it has an advantage of preserving both the numerical stability of ETDRK4 and the simplicity of
Euler–Maruyama.

We will consider a relatively small viscosity ν = 0.02, so that random shocks are about to
emerge in the solution. In general, a smaller viscosity constant demands a higher resolution in
space-time to resolve the solution, particularly the emerging shocks as ν vanishes. To sufficiently
resolve the solution, we set N = 128 and dt = 0.001. The solution is accurately resolved, with mean
Courant–Friedrichs–Lewy (CFL) numbers being 0.139 and 0.045 for σ = 1 and σ = 0.2, respectively.
Here the mean CFL number is computed as the average along a trajectory with Nt = 105 steps

Mean CFL number =
1

Nt

Nt

∑
n=1

sup
x
|u(x, tn)|

∆t
∆x

,

where ∆t and ∆x are the time step and space step, respectively. Furthermore, numerical tests show
that the marginal densities converge as trajectory length increases.

2.3. Nonlinear Galerkin and Inferential Model Reduction

For simplicity of notation, we write the Burgers equation in an operator form as

∂tu + Au = B(u) + f , u(0) = u0 (5)

with a linear operator A : H1
0(0, 2π)→ L2(0, 2π) and a nonlinear operator B : H1

0(0, 2π)→ L2(0, 2π)

A = −ν∂xx, B(u) = −(u2)x/2,

and with f being the stochastic force.
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We first decompose the Fourier modes of u into resolved and unresolved variables. Recall that
our goal of model reduction is to derive a closed system that can faithfully describe the dynamics of
the coefficients {ûk(t)}K

|k|=1, or equivalently, the low dimensional process v(x, t) = ∑K
|k|=1 ûk(t)eiqkx.

Denote by P the projection operator from H1
0(0, 2π) to span{eiqkx}K

|k|=1, and let Q := I − P (and
for simplicity of notation, we will also denote them as projections on the corresponding vector spaces
of Fourier modes). With u = Pu + Qu = v + w, we can write the system (5) as

dv
dt

= −PAv + PB(v) + P f + [PB(v + w)− PB(v)], (6)

dw
dt

= −QAw + QB(v + w) + Q f . (7)

To find a closed system for v, we quantify the truncation error PB(v + w)− PB(v) in (6), which
represents the nonlinear interaction between the low and high wavenumber modes, by either a function
of v or a functional of the trajectory of v. In particular, in the nonlinear Galerkin method based on
inertial manifold theory, see e.g., [24–27]), one aims to represent the high modes w as a function of the
low modes v (and hence obtaining an approximate inertial manifold). In the simplest implementation,
one neglects the time derivative in Equationation (7) and solves w = ψ(v) from

w ≈ −(QA)−1[QB(v + w) + Q f ]

by fixed point iterations: ψ0 = 0, ψi+1 = −(QA)−1[QB(u+ψi)+ Q f ]. This leads to an approximation
of w as a function of v, which exists if K is large enough and if the system satisfies a gap condition (so
that an inertial manifold exists). However, among many dissipative systems with global attractor, only
a few have been proven to satisfy the gap condition (see [28] for a recent review). More importantly,
we can not always expect K to be larger than the dimension of an inertial manifold, which is unknown
in general. Therefore, such a nonlinear Galerkin approach works for neither a system without an
inertial manifold nor for a K smaller than the dimension of the inertial manifold.

We take a different perspective on the reduction. Unlike the nonlinear Galerkin which aims for
a trajectory-wise approximation, we aim for a probabilistic approximation of the distribution of the
stochastic process (v(·, t), t ≥ 0). The randomness of the process v can come from random initial
conditions and/or from the stochastic force. We emphasize that a key is to represent the dependence
of the model error PB(v + w)− PB(v) on the process v, not simply constructing a stochastic process
with the same distribution as PB(v + w)− PB(v), which may be independent of the process of v.

In a data-driven approach, such a probabilistic approximation leads naturally to the statistical
inference of the underlying process, aiming to represent the model error [PB(v + w)− PB(v)](t) as a
functional of the past trajectory (v(·, s), s ≤ t). This inferential reduction approach works flexibly for
general settings: there is no need of an inertial manifold and the dimension K can be arbitrary (e.g.
less than the dimension of the inertial manifold, as shown in [14]).

Space-time reduction. To achieve a space-time reduction for practical computation, the reduced
model should be a time series model with a time step δ > dt for time reduction, instead of a differential
system. It approximates the flow map (with tn = nδ)

ûk(tn+1) = F(û·(tn), f̂·([tn : tn+1]))k, |k| ≤ K, (8)

where û·(tn) = (ûk(tn), |k| ≥ 0) is the vector of all Fourier modes, and thus the above map is not a
closed system for the low modes. Recall that for |k| ≤ K,

d
dt

ûk = −νq2
k ûk −

ik
2 ∑
|k−l|≤K,
|l|≤K

ûl ûk−l

︸ ︷︷ ︸
K-mode truncation

− iqk
2 ∑
|k−l|>K
or |l|>K

ûl ûk−l

︸ ︷︷ ︸
truncation error

+ f̂k(t) (9)
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Clearly, the K-mode truncated Galerkin system can provide an immediate approximation to F in (8).
Making use of it, we propose a time series model for {ûk(tn)}K

|k|=1 in the form of

un+1
k = un

k + δ[Rδ
k(u

n) + f n
k + Φn

k ] + gn+1
k , |k| ≤ K, (10)

where Rδ· (un) is from a one-step forward integrator with time step-size δ of the deterministic K-mode
Galerkin, and f n

k = f̂k(tn) is white noise in the kth Fourier mode of the stochastic force at time tn. Here,
the term Φn and the noise gn+1 aim to represent the truncation error, as well as the discretization error.
Together with the other terms in (10), they provide a statistical approximation to the flow map F in
(8). In particular, the term Φn approximates F based on information up to time n (e.g., the conditional
expectation), and the noise gn+1 aims to statistically represent the residual of the approximation. Since
the truncation error depends on the past history of the low wavenumber modes, and as suggested by
the Mori–Zwanzig formalism [6,7], we make Φn depend on the trajectory u1:n of the state process, as
well as the trajectories f 1:n and g1:n :

Φn := Φ(u1:n, f 1:n, g1:n). (11)

For simplicity, we assume the noise {gn} to be iid Gaussian, and the resulted time series model in (10)
is a nonlinear autoregression moving average model (NARMA) [13,45,46].

The right hand side of Equation (10), together with Φn defined in Equation (11), aims for a
statistical approximation of the discrete-time map (8). However, the general form in Equation (11)
leads to a high dimensional function to be learned from data, which is intractable by regression
methods using either global or local polynomial basis, due to the well-known curse of dimensionality.
Fortunately, the physical model provides informative structures to reduce the dimension, and we
can obtain effective approximations based on only a few basis functions with finite memory. In the
next section, we derive from the physical model a parametric form for the reduced model, whose
coefficients can be efficiently estimated from data.

To avoid confusions between notations, we summarize the correspondence of the variables
between the full and reduced models in Table 2.

Table 2. Correspondence of the variables between the full and reduced models.

Full Model in (4) Reduced Model in (10) or (17)
State variables ûk(tn) or û(tn) in (4) and (9) un

k or un in (10)
Resolved variable v(x, tn) or v, in (6) and (12) the vector (un

−K , . . . , un
K) in (17)

Unresolved variable w(x, t) or w in (7) and (12) NA
Stochastic force white noise f̂k(tn) in (9) white noise f n

k in (10)
Noise introduced in inference NA gn in (10)
Flow map of resolved variable F in Equation (8) Equation (10)

3. Inference of Reduced Models

We present here the parametric inference of NAR models: derivation of parametric forms,
estimation of the parameters, and model selection.

3.1. Derivation of Parametric Reduced Models

We derive parametric reduced models by extracting basis functions from numerical integration
of Equation (6). The combination of these basis functions will give us Φ(u1:n, f 1:n, g1:n) in (11), which
approximates the flow maps {F(û·(tn), f̂·([tn : tn+1]))k, |k| ≤ K} in (8) in a statistical sense.
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We first write a closed integro-differential system for the low-mode process (v(·, t), t ≥ 0). In
view of Equation (6), this can be simply done by integrating the equation of the high modes w in
Equation (7):{

dv
dt = −PAv + PB(v) + P f + [PB(v + w)− PB(v)],
w(t) = e−QAτw(t− τ) +

∫ t
t−τ e−QA(t−s)[QB(v(s) + w(s)) + Q f (s)]ds,

(12)

where τ ∈ [0, t]. Note that in addition to the trajectories (v(·, s), s ∈ [t− τ, t]) and (Q f (s), s ∈ [t− τ, t]),
which we can assume to be known, the state w(·, t) also depends on the initial condition w(·, t− τ).
Therefore, this equation is not strictly closed. However, as τ increases, the effect of the initial condition
decays exponentially, allowing for possible finite time approximate closure. Given w(·, t− τ) and
(Q f (s), s ∈ [t− τ, t]), the Picard iteration can provide us an approximation of w as a functional of the
trajectory of v. That is, the sequence of functions {w(l)}, defined by

w(l+1)(t) = e−QAτw(l)(t− τ) +
∫ t

t−τ
e−QA(t−s)[QB(v(s) + w(l)(s)) + Q f (s)]ds,

with w(0)(s) = 0 for s ∈ [t− τ, t], will converge to w as l → ∞. In particular, the first Picard iteration

w(1)(t) =
∫ t

t−τ
e−QA(t−s)[QB(v(s)) + Q f (s)]ds (13)

provides us a closed representation: from its numerical integrator, we can derive parametric terms for
the reduced model. We emphasize that the goal is to derive parametric terms for statistical inference,
but not to have a trajectory-wise approximation. Thus, high-order numerical integrators or high-order
Picard iterations are helpful but may complicate the parametrization. For simplicity, we shall consider
only the first Picard iteration and Riemann sum approximation of this integral.

We can now propose parametric numerical reduced models from the above integro-differential
equation. In a simple form, we parametrize both the Riemann sum approximation of the first Picard
iteration and a numerical scheme of the differential equation to obtain

v(tn) ≈ v(tn−1) + a1δRδ(v(tn−1)) + a2δP f (tn−1) + δ[PB(v + w)− PB(v)](tn−1),

w(tn−1) ≈
p

∑
j=0

cje−QAjδ[QB(v(tn−j)) + Q f (tn−j)].

Here δ = tn − tn−1 denotes the time step-size, the nonlinear function Rδ(·) comes from a numerical
integration of the deterministic truncated Galerkin equation dv

dt ≈ −PAv + PB(v) at time tn−1 and
with time step-size δ, and the coefficients (a1, a2, cj) are to be estimated by fitting to data in a statistical
sense. To distinguish the approximate process in the reduced model from the original process, we
denote it by vn, and write the reduced model as

vn = vn−1 + a1δRδ(vn−1) + a2δP f (tn−1) + δ[PB(vn−1 + wn−1)− PB(vn−1)] + gn, (14a)

wn−1 =
p

∑
j=1

cje−QAjδ[QB(vn−j) + Q f (tn−j)], (14b)

where {gn} is a process representing the residual, can be assumed to be stochastic force for simplicity,
but can also be assumed to be a moving average part to better capture the time correlation as in
[13,46]. The second Equation (14b) does not have a residual term, as its goal is to provide a set of basis
functions for the approximation of the forward map v(tn) = F(v(tn−1), w(tn−1), f ) as in Equation (8),
not to model the high modes.
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Note that the time step-size δ can be relatively large, as long as the truncated Galerkin equation
dv
dt ≈ −PAv + PB(v) of the slow variable v can be reasonably resolved. In general, such a step-size
can be much larger than the time step-size needed to resolve the fast process w, because the effect of
the unresolved fast process is “averaged” statistically when fitting the coefficients (a1, a2, cj) to data.
Furthermore, the numerical error in the discretization is taken into account statistically.

Theoretically, the right-hand side of Equation (14a) is an approximation of the conditional
expectation E

[
v(tn)|v(tn−p:n−1), P f (tn−p:n−1)

]
, which is the optimal L2 estimator of the forward

map conditional on the information up time tn−1. Here, the L2 is with respect to the joint measure of
the vector (v(t·−p:·−1), P f (t·−p:·−1)), which is approximated by their joint empirical measure when
fitting to data.

To avoid nonlinear optimization, the parametric form may be further simplified to be linearly
dependent on the coefficients by dropping the terms that are nonlinear in the parameter, which
is quadratic. In fact, recall that in the Burgers equation B(u) = uux and PB(v + w) − PB(v) =

vxw + vwx + wwx. By dropping the interaction between the high modes wwx and approximating

PB(vn−1 + wn−1)− PB(vn−1) ≈ vn−1
x wn−1 + vn−1wn−1

x

in (14a), we obtain a reduced model that depends linearly on the coefficients {aj, cj}.

3.2. The Numerical Reduced Model in Fourier Modes

We now write the reduced model in terms of the Fourier modes as in Equation (10).
As discussed in the above section, the major task is to parametrize the truncation error PB(v +

w)k − PB(v)k. Recall that the operator P projects u to modes with wavenumber 1 ≤ |k| ≤ K and that
the bilinear function PB(v)k = ∑l ûl ûk−l (hereafter, to simplify notation, we also denote P and Q on
the corresponding vector spaces of Fourier modes).

PB(v + w)k − PB(v)k = −
ik
2 ∑
|l|>K or |k−l|>K

ûl ûk−l . (15)

Since the quadratic term B(v) can only propagate energy from (ûk, 1 ≤ |k| ≤ K) to modes with wave
numbers less than 2K + 1, we get only the high modes with wave numbers K < |k| ≤ 2K when
we compute w by a single iteration of QB(v). (We use a single iteration for simplicity, but one can
reach higher wave numbers by multiple iterations at the price of more complicated parametric forms.)
Therefore, in a single iteration approximation, the truncated error will involve the first 2K Fourier
modes:

PB(v + w)k − PB(v)k ≈ −
ik
2 ∑

K<|k−l|≤2K
or K<|l|≤2K

ûl ûk−l .

Dropping the interaction between the high-modes to avoid nonlinear optimization in parameter
estimation, we have

PB(v + w)k − PB(v)k ≈ −
ik
2 ∑
|k−l|≤K,K<|l|≤2K

or |l|≤K,K<|k−l|≤2K

ûl ûk−l .

We approximate the high modes (ûk, K < |k| ≤ 2K) by a functional of low modes as in (14b),

ûk(tn−1) ≈
p

∑
j=1

ck,je−QAjδ[ũk(tn−j) + f̂k(tn−1)], K < |k| ≤ 2K
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where ũk is the high modes of the nonlinear function B(v):

ũk = QB(v)k = −
ik
2 ∑
|l|≤K,|k−l|≤K

ûl ûk−l , for K < |k| ≤ 2K.

Here QB(v) only represents the modes up to wavenumber 2K, due to the fact that quadratic
nonlinearity only involves interaction between double wave-numbers. One can reach higher wave
numbers by iterations of the quadratic interaction.

The truncation error term can now be linearly parametrized as

[PB(v + w)− PB(v)]k(tn)) ≈ −
iqk
2

p

∑
j=0

ck,je−QAjδ ∑
|k−l|≤K,K<|l|≤2K

or |l|≤K,K<|k−l|≤2K

ũl(tn)ũk−l(tn−j), (16)

where we also denote ũk = ûk for |k| ≤ K for simplicity of notation.

We have now reached a parametric numerical reduced model for the Fourier modes. Denote
un = (un

k , |k| ≤ K) ∈ CK the low-modes in the reduced model that approximates the original low
modes (ûk(tn), |k| ≤ K). The reduced model is

un
k = un−1

k + δ[Rδ(un−1
· ) + f n

k + Φn
k ] + gn

k , 1 ≤ k ≤ K, (17a)

Φn
k =

p

∑
j=1

cv
k,ju

n−j
k + cR

k,jR
δ(un−j
· ) + c f

k,j f n−j
k + cw

k,j ∑
|k−l|≤K,K<|l|≤2K

or |l|≤K,K<|k−l|≤2K

ũn−1
l ũn−j

k−l

 (17b)

with the convention that un
−k = (un

k )
∗ (with the sup-script ∗ denoting complex conjugate), and where

the notion ũn−j
l represents the high modes and is defined by

ũn−j
k =

 un−j
k , 1 ≤ k ≤ K;

iqk
2 e−νq2

k jδ ∑|l|≤K,|k−l|≤K un−j
k−l un−j

l , K < k ≤ 2K.
(18)

The reduced model is in the form of a nonlinear auto-regression moving average (NARMA) model:

• The map Rδ(·) : CK → CK is the 1-step forward of the deterministic K-mode Galerkin truncation
equation dv

dt = −PAv + PB(v) using a numerical integration scheme with a time step-size δ, i.e.
vn+1 = vn + δRδ(vn). We use the ETDRK4 scheme.

• The term f n
k denotes the increment of the k-th Fourier modes of the original stochastic force in

the time interval [tn−1, tn], scaled by 1/δ, and it is separated from Rδ so that the reduced model
can linearly quantify the response of the low-modes to the stochastic force.

• The function Φn
k := Φn

k (u
n−p:n−1, f n−p:n−1) is a function CKp+Kp → CK with parameters θ =

(cv, cR, c f , cw) ∈ R4Kp to be estimated from data. In particular, the coefficients cv
k,1 and cR

k,1 act as
a correction to the integration of the truncated equation.

• The new noise terms {gn ∈ CK} are assumed for simplicity to be a white noise independent of
the original stochastic force ( f n). That is, we assume that {gn} is a sequence of independent
identically distributed (iid) Gaussian random vectors, with independent real and imaginary
parts, distributed as N (0, Diag(σg

k )) with σ
g
k to be estimated from data. Under such a white

noise assumption, the parameters can be estimated simply by least squares (see next section).
In general, one can also assume other distributions for gn, or other structures such as moving
average {gn := ξn + ∑

q
j=1 cg

j ξn−j} with {ξn} being a white noise sequence [13,46].
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3.3. Data Generation and Parameter Estimation

We estimate the parameters of the NAR model by maximizing the likelihood of the data.
Data for the NAR model. To infer a reduced model in form of Equation (17), we generate relevant

data from a numerical scheme that sufficiently resolve the system in space and time, as introduced in
Section 2.2. The relevant data are trajectories of the low-modes of the state and the stochastic force, i.e.
{ûk(tn), f̂k(tn)} for |k| ≤ K and n ≥ 0, which are taken as {un

k , f n
k } in the reduced model. Here, the

time instants are tn = nδ, where δ can be much larger than the time step-size dt needed to resolve the
system. Furthermore, the data do not include the high modes. In short, the data are generated by a
downsampling, in both space and time, of the high-resolution solutions of the system.

The data can be either a long trajectory or many independent short trajectories. We denote the
data consisting of M independent trajectories by

Data: {u1:Nt ,m
k , f 1:Nt ,m

k }M,K
m,k=1 with u1:Nt ,m

k = ûk(t1:Nt)
(m), f 1:Nt ,m

k = f̂k(t1:Nt)
(m), (19)

where m indexes the trajectories, tn = nδ with δ being the time interval between two observations, and
Nt denotes the number of steps for each trajectory,

Parameter estimation. The parameters in the discrete-time reduced model Equation (17) is
estimated by maximum likelihood methods. Our discrete-time reduced model has a few attractive
features: (i) the likelihood function can be computed exactly, avoiding possible approximation error
that could lead to biases in estimators; (ii) the maximum likelihood estimator (MLE) may be computed
by least squares under the assumption that the process {gn} is white noise, avoiding time-consuming
nonlinear optimizations.

Under the assumption that {gn} is white noise, the parameters can be estimated simply by least
squares, because the reduced model in Equation (17) depends linearly on the parameters. More
precisely, the log-likelihood of the data {u1:Nt ,m, f 1:Nt ,m}M

m=1 in (19) can be written as

l(θ, σg) = − ∑
|k|≤K

[
log σ

g
k +

T,M

∑
n,m=1

|un,m
k − un−1,m

k + δRδ(un−1,m
k ) + δ f n,m

k + δΦn,m
k (θ)|2

2MTσ
g
k

]
, (20)

where | · | denotes the absolute value of a complex number, θ = (cv, cR, c f , cw) ∈ R4Kp and σg =

(σ
g
1 , · · · , σ

g
K) ∈ RK. To compute the maximum likelihood estimator (MLE) of the parameter (θ, σg), we

note that Φn
k (θ) in (17b) depends linearly on the parameter θ. Therefore, the estimators of θ and σg can

be analytically computed by finding a zero of the gradient of the likelihood function. More precisely,
denoting

Φn
k (θ) =

4p

∑
j=1

θjΦn
k,j

with Φn
k,j denoting the parameterized terms in (17b), we compute the MLE as

θ̂k = (Ak)
−1bk, 1 ≤ k ≤ K,

σ̂
g
k =

1
MT

T,M

∑
n,m=1

‖un,m
k − un−1,m

k + δRδ(un−1,m
k ) + δ f n,m

k + δΦn,m
k (θ̂)‖2 (21)

where the normal matrix Ak and vector bk are defined by

Ak(j′, j) =
δ

MT

T,M

∑
n,m=1

〈Φn,m
k,j′ , Φn,m

k,j 〉, 1 ≤ j′, j ≤ 4p, (22)

bk(j) =
1

MT

T,M

∑
n,m=1

〈un,m
k − un−1,m

k + δRδ(un−1,m
k ) + δ f n,m

k , Φn,m
k,j 〉.
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In practice, Ak may be singular and it can be dealt with by pseudo inverse or regularization. We
assume for simplicity that the stochastic force g has independent components, so that the coefficients
can be estimated by simple least square regression. One may further improve the NAR model by
considering spatial correlation between the components of g or by using moving average models
[13,46,47] to account for the memory in the stochastic force.

3.4. Model Selection

The parametric form in Equation (17b) leaves a family of reduced models with many freedoms
underdetermined, such as the time lag p and possible redundant terms. To avoid overfitting and
redundancy, we proposed to select the reduced model by the following criterion.

• Cross validation: the reduced model should be stable and can reproduce the distribution of the
resolved process, particularly the main dynamical-statistical properties. We will consider the
energy spectrum, the marginal invariant densities, and temporal correlations:

Energy spectrum: E|ûk|2 = lim
Nt M→∞

1
Nt M

M,Nt

∑
m,n=1

|ûk(tn)
(m)|2;

Invariant density of Re(ûk): pk(z)dz = lim
Nt M→∞

1
Nt M

M,Nt

∑
m,n=1

1(z,z+dz)(Re(ûk(tn)
(m));

Auto-correlation function: ACFk(τ) = E[Reûk(t + τ)Reûk(t)]

≈ 1
Nt M

M,Nt

∑
m,n=1

Re(ûk(tn + τ)(m))Re(ûk(tn)
(m));

(23)

for k = 1, . . . , K.
• Consistency of the estimators. If the model is perfect and the data are either independent

trajectories or a long trajectory from an ergodic measure, the estimators should converge as
the data size increases (see e.g., [45,48]). While our parametric model may not be perfect, the
estimators should also become less oscillatory as the data size increases, so that the algorithm is
robust and can yield similar reduced models from different data sets.

• Simplicity and sparsity. When there are multiple reduced models performing similarly, we prefer
the simplest model. We remove the redundant terms and enforce sparsity by LASSO (least
absolute shrinkage and selection operator) regression [49]. Particularly, a singular normal matrix
(22) indicates the redundancy of the terms and the need to remove strongly correlated terms.

These criteria are by no means exhaustive. Other methods include Bayesian information criterion (BIC,
see, e.g., [50]), and the error reduction ratio [51] may be applied, but in our experience, they provide
limited help for the selection of reduced models [7,14,46].

In view of statistical learning of the high-dimensional nonlinear flow map in (8), each
linear-in-parameter reduced model provides an optimal approximation to the flow map in the function
space spanned by the proposed terms. A possible future direction is to select adaptive-to-data
hypothesis spaces in a nonparametric fashion [23] and analyze the distance between the flow map and
the hypothesis space spanned by these proposed terms [52,53].

4. Numerical Study on Space-Time Reduction

We examine the inference and performance of NAR models for the stochastic Burgers equation
in (1) and (2). We will consider two settings of the full model: the stochastic force has a scale of
either σ = 1 or σ = 0.2, representing that the stochastic force either dominates or subordinates to the
dynamics, respectively. We will also consider two settings for reduction: the number of the Fourier
modes of the reduced model is either K > K0 or K < K0, representing a reduction of the deterministic
responses and a reduction involving stochastic force, respectively.
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4.1. Settings

As reviewed in Section 2.2, we integrate the Equation (4) of 2N Fourier modes by ETD-RK4 with a
time-stepping dt that the solution is resolved accurately. We call this discretized system the full model
and its configuration is specified in Table 3. We will consider two different scales for the stochastic
force, with standard deviations σ = 1, leading to a dynamics dominated by the stochastic force, and
σ = 0.2, representing dynamics dominated by the deterministic drift.

Table 3. Settings of the full and reduced models

Full model

ν = 0.02,L = 1 viscosity, interval length of the equation
N = 128,dt = 0.001 number of modes, time step-size
K0 = 4 number of modes in the stochastic force
σ = 1 or 0.2 standard deviation of the stochastic force

Reduced models
K = 8 or 2 number of modes in the reduced model
δ = dt×Gap observation time interval
Gap ∈ {5, 10, 20, 30, 40, 50, 80, 160} gap of time steps

We generate data in (19) from the full model as described in Section 3.3. We generate an ensemble
of initial conditions by first integrating the system for 104 time units from an initial condition u0(x) =
sin(x) + 2 cos(x) and draw 103 samples uniformly from this long trajectory. Then, we generate either
a long trajectory or an ensemble of trajectories starting from randomly picked initial conditions, and
we save data with the time-stepping δ. Numerical tests show that the invariant densities and the
correlation functions vary little when the data are generated from different initial conditions.

We then infer NAR models for the first K Fourier modes with a time step δ. We will consider two
values for K (recall that K0 is the number of Fourier modes in the stochastic force)

• K = 8 > K0 = 4. In this case, Q f = 0, i.e., the stochastic force does not act on the unresolved
Fourier modes w in (7), so w is a deterministic functional of the history of the resolved Fourier
modes. In view of (14b), the reduced model mainly quantifies this deterministic map. We call
this case “reduction of the deterministic response” and present the results in Section 4.3.

• K = 2 < K0. In this case, Q f 6= 0, and w in (7) depend on the unobserved Fourier modes of the
stochastic force. Thus, the reduced model has to quantify the effects of the unresolved Fourier
modes of both the solution and the stochastic force. We call this case “reduction involving
unresolved stochastic force” and present the results in Section 4.4.

In either case, we explore the maximal time step that NAR models can reach by testing time steps
δ = dt× {5, 10, 20, 30, 40, 50, 80, 160}.

We summarize the configurations and notations in Table 3.

4.2. Model Selection and Memory Length

We demonstrate model selection and the effect of memory length for reduced models with time
step δ = 5dt. We aim to select a universal parametric form of the NAR model for different setting of
(K, σ), where K ∈ {8, 2} is the number of Fourier modes in the NAR model and σ ∈ {1, 0.2} is the
standard deviation of the full model’s stochastic force. Such a parametric form will be used later for
the exploration of maximal time reduction by NAR models in the next sections.

We select the model according to Section 3.4: for each pair (K, σ), we test a pool of NAR models
and select the simplest model that best reproduces the statistics and has consistent estimators. The
statistics are computed along a long trajectory of T = 2000 time units. We say that an NAR is
numerically unstable if it blows up (e.g. |un| exceeding 105) before reaching T = 2000 time units.
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We estimate the coefficients in (17b) for a few time lag ps. Numerical tests show that the normal
matrix in regression is almost singular, either when the stochastic force f n−j

k presents or when the lag

for un−j
k or Rδ(un−j) is bigger than two. Thus, for simplicity, we remove them by setting:

c f
k,j = 0 for all 1 ≤ j ≤ p, and cv

k,j = cR
k,j = 0 for all 1 < j ≤ p, (24)

and estimate only cv
k,1, cR

k,1, cw
k,j for 1 ≤ j ≤ p.

That is, in (17b), the terms un−j
k and Rδ(un−j) have a time lag 1, the stochastic force term f n−j

k is
removed, and only the high-order (the fourth) term has a time lag p. The memory length is pδ.

Memory length. To select a memory length, we test NAR models with time lags p ∈ {1, 5, 10, 20}
and consider their reproduction of the energy spectrum in (23). Figure 1 shows the relative error in
energy spectrum of these NAR models. It shows that as p increases: (1) when the scale of the stochastic
force is large (σ = 1), the error oscillates without a clear pattern; (2) when σ = 0.2, the error first
decreases and then increases. Thus, a longer memory does not necessarily lead to a better reduced
model when the stochastic force dominates the dynamics; but when deterministic flow dominates the
dynamics, a proper memory can be helpful.
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Figure 1: Relative error in energy spectrum reproduced by the NAR models with different memory
lengths p, in four settings of pK,�q. As the time lag p increases, the relative error tends to first decrease
and then increase, particularly in (b) and (d) with � “ 0.2.

sinpxq ` 2 cospxq and draw 103 samples uniformly from this long trajectory. Then we generate either
a long trajectory or an ensemble of trajectories starting from randomly picked initial conditions, and
we save data with the time-stepping �. Numerical tests show that the invariant densities, the energy
spectrum, and the correlation functions vary little the data are generated with other initial conditions.

We then infer NAR models for the first K Fourier modes, with a time step �. We will consider two
values for K (recall that K0 is the number of Fourier modes in the stochastic force)

• K “ 8 ° K0. In this case, Qf “ 0, i.e., the stochastic force does not act on the unresolved Fourier
modes w in (2.5), so w is a deterministic functional of the history of the resolved Fourier modes.
In view of (3.3b), the reduced model mainly quantifies this deterministic map. We call this case
“reduction of the deterministic response” and present the results in Section 4.3.

• K “ 2 † K0. In this case, Qf ‰ 0, and w in (2.5) depend on the unobserved Fourier modes
of the stochastic force. Thus, the reduced model has to quantifies the effects of the unresolved
Fourier modes of both the solution and the stochastic force. We call this case “reduction involving
unresolved stochastic force” and present the results in Section 4.4.

In either case, we explore the maximal time step that NAR models can reach by testing time steps
� “ dt ˆ t5, 10, 20, 30, 40, 50, 80, 160u.

We summarize the configurations and notations in Table 2.

4.2 Model selection and memory length

In this section, we demonstrate model selection and the effect of memory length for reduced models with
time step � “ 5dt. We aim to select a universal parametric form of the NAR model for different setting
of pK,�q, where K P t8, 2u is the number of Fourier modes in the NAR model and � P t1, 0.2u is the
standard deviation of the full model’s stochastic force. Such a parametric form will be used later for the
exploration of maximal time reduction by NAR models in the next sections.

We select the model according to Section 3.4: for each pair pK,�q, we test a pool of NAR models
and select the simplest model that best reproduces the statistics and has consistent estimators. The
statistics are computed along a long trajectory of T “ 2000 time units. We say that an NAR is
numerically unstable if it blows up (e.g. |un| exceeding 105) before reaching T “ 2000 time units.

We estimate the coefficients in (3.6b) for a few time lag p’s. Numerical tests show that the normal
matrix in regression is almost singular either when the stochastic force fn´j

k presents or when the lag

12

Figure 1. Relative error in energy spectrum reproduced by the NAR models with different memory
lengths p, in four settings of (K, σ). As the time lag p increases, the relative error tends to first decrease
and then increase, particularly in (b) and (d) with σ = 0.2.

In all four settings, the simplest NAR models with p = 1 can consistently reproduce the energy
spectrum with relative errors within 5%. Remarkably, the accuracy remains when the true energy
spectrum is at the scale of 10−2 for the modes with k = 7, 8 in Figure 2a,b and k = 2 in Figure 2d.
Figure 2 also shows that the truncated K-mode Galerkin systems cannot reproduce the true energy
spectrum in any of these settings, with upward tails, due to the lack of fast energy dissipation from the
high modes. Thus, the NAR model has introduced additional energy dissipation through Φn.
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Figure 2: Energy spectrum of NAR models with p “ 1 and the K-mode Galerkin systems in four settings
of pK,�q. The time step is � “ 5dt for the NAR models and is dt for the Galerkin models. The NAR
models accurately reproduce the true energy spectrum in all settings.

for un´j
k or R�pun´jq is bigger than two. Thus, for simplicity, we remove them and set:

Removed: cf
k,j “ 0 for all k, j, and cv

k,j “ cR
k,j “ 0 for all 1 † j § p,

To be estimated: cv
k,1, cR

k,1, cw
k,j , 1 § j § p.

(4.1)

That is, in (3.6b), the terms un´j
k and R�pun´jq have a time lag 1, the stochastic force term fn´j

k is
removed, and only the high-order (the fourth) term has a time lag p. The memory length is p�.

Memory length. To select a memory length, we test NAR models with time lags p P t1, 5, 10, 20u and
consider their reproduction of the energy spectrum in (3.12). Figure 1 shows the relative error in energy
spectrum of these NAR models. It shows that as p increases: (1) when the scale of the stochastic force
is large (� “ 1), the error oscillates without a clear pattern; (2) when � “ 0.2, the error first decreases
and then increases. Thus, a longer memory does not necessarily lead to a better reduced model when
the stochastic force dominates the dynamics; but when deterministic flow dominates the dynamics, a
proper memory can be helpful.

In all the four settings, the simplest NAR models with p “ 1 can consistently reproduce the energy
spectrum with relative errors within 5%. Remarkably, the accuracy remains when the true energy
spectrum is at the scale of 10´2 for the modes with k “ 7, 8 in Figure 2(a-b) and k “ 2 in Figure 2(d).
Figure 2 also shows that the truncated K-mode Galerkin systems can not reproduce the true energy
spectrum in any of these settings, with upward tails due the lack of fast energy dissipation from the high
modes. Thus, the NAR model has introduced additional energy dissipation through �n.

Consistency of estimators. The estimator of the NAR models tends to converge as data size in-
creases. Figure 3 shows that the estimated coefficients of NAR with p “ 1 from data consisting of M
trajectories, each with length T , where M P t2, 8, 32, 128, 512u and T P t40, 80, 160, 320, 640, 1280u. As
T ˆ M increases, all the estimators tend to converge (note that the coefficients cw

k,1 are at the scale of
10´4 or 10´3). In particular, they converge faster when � “ 1 than when � “ 0.2: the estimators in
(a)-(c) oscillate little after T ˆ M ° 103, indicating that different trajectories lead to similar estimators,
while the estimators (take cR

K,1 for example) in (b)-(d) oscillate until T ˆ M ° 105. This agrees with
the fact that a larger stochastic force makes the system mix faster, so each trajectory provides more
effective samples driving the estimator to converge faster.

Numerical tests also show that an NAR model can be numerically unstable while its coefficient

13

Figure 2. Energy spectrum of NAR models with p = 1 and the K-mode Galerkin systems in four
settings of (K, σ). The time step is δ = 5dt for the NAR models and is dt for the Galerkin models. The
NAR models accurately reproduce the true energy spectrum in all settings.

Consistency of estimators. The estimator of the NAR models tends to converge as data size
increases. Figure 3 shows that the estimated coefficients of NAR with p = 1 from data consisting of M
trajectories, each with length T, where M ∈ {2, 8, 32, 128, 512} and T ∈ {40, 80, 160, 320, 640, 1280}. As
T×M increases, all the estimators tend to converge (note that the coefficients cw

k,1 are at the scale of
10−4 or 10−3). In particular, they converge faster when σ = 1 than when σ = 0.2: the estimators in
(a)-(c) oscillate little after T×M > 103, indicating that different trajectories lead to similar estimators,
while the estimators (take cR

K,1 for example) in (b)–(d) oscillate until T ×M > 105. This agrees with
the fact that a larger stochastic force makes the system mix faster, so each trajectory provides more
effective samples driving the estimator to converge faster.
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Figure 3: Estimated coefficients pcv
k,1, c

R
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k,jq in NAR models with p “ 1 and � “ 5dt in four settings

of pK,�q. The estimators tend to converge fast as the trajectory length T and number M increase: note
that the coefficients cw

k,1 are at the scale of 10´4 or 10´3.

estimator being consistent (i.e., tending to converge as above). Thus, consistency is not sufficient for
the selection of an NAR model.

In our tests, sparse regression algorithms such as LASSO (see e.g., [Tib96]) or sequential thresholding
(see e.g., [She09,QANKB18]) have difficulty in proper thresholding, because the coefficient cw of the high
order terms are small and can vary in scales in different settings, but these high order terms are important
for the NAR model.

Since the NAR models with p “ 1 perform well in all the four settings and since they are the simplest,
we use them in the next sections to explore the maximal time reduction.

4.3 Reduction of the deterministic response

We explore in this and the next section the maximal time step � that the NAR models can reach. We
consider only the simplest models with time lag p “ 1.

We consider first the models with K “ 8 Fourier modes. Since the stochastic force acts directly only
on the first K0 “ 4 Fourier modes, the unresolved variable w in (3.1) is a deterministic functional of
the path of the K modes, so is the truncation error PBpv ` wq ´ PBpvq in (3.3b). Thus, the NAR
model mainly reduces the deterministic response of the resolved variables to the unresolved variables.
In particular, the term �n in the NAR model (3.6a) optimally approximates this deterministic response
on the function space linearly spanned by the terms in (3.6b).

We consider time steps � “ dt ˆ Gap with Gap P t5, 10, 20, 30, 40, 50u. For each �, we first estimate
the coefficients pcv

k,1, cR
k,1, cw

k,1q of the NAR model from the data with the same time step. We then
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Figure 3. Estimated coefficients (cv
k,1, cR

k,1, cw
k,j) in NAR models with p = 1 and δ = 5dt in four settings

of (K, σ). The estimators tend to converge fast as the trajectory length T and number M increase: note
that the coefficients cw

k,1 are at the scale of 10−4 or 10−3.

Numerical tests also show that an NAR model can be numerically unstable, while its coefficient
estimator was consistent (i.e., tending to converge as above). Thus, consistency is not sufficient for the
selection of an NAR model.

In our tests, sparse regression algorithms such as LASSO (see e.g., [49]) or sequential thresholding
(see e.g., [54,55]) have difficulty in proper thresholding, because the coefficient cw of the high order
terms are small and can vary in scales in different settings, but these high order terms are important
for the NAR model.

Since the NAR models with p = 1 perform well in all the four settings, and since they are the
simplest, we use them in the next sections to explore the maximal time reduction.

4.3. Reduction of the Deterministic Response

We explore in this and the next section the maximal time step δ that the NAR models can reach.
We consider only the simplest models with time lag p = 1.

We consider first the models with K = 8 Fourier modes. Since the stochastic force acts directly
only on the first K0 = 4 Fourier modes, the unresolved variable w in (12) is a deterministic functional
of the path of the K modes, so is the truncation error PB(v + w)− PB(v) in (14b). Thus, the NAR
model mainly reduces the deterministic response of the resolved variables to the unresolved variables.
In particular, the term Φn in the NAR model (17a) optimally approximates this deterministic response
on the function space linearly spanned by the terms in (17b).

We consider time steps δ = dt × Gap with Gap ∈ {5, 10, 20, 30, 40, 50}. For each δ, we first
estimate the coefficients (cv

k,1, cR
k,1, cw

k,1) of the NAR model from the data with the same time step. We
then validate the estimated NAR model by its statistics.

Numerical tests show that the NAR models with Gap ≥ 20 are numerically unstable for the
setting (K = 8, σ = 1), and the number is Gap = 50 for the setting (K = 8, σ = 0.2). Figure 4a–b shows
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the relative error in energy spectrum reproduced by NAR models with those stable time steps. The
relative errors increase as the Gap increases. Note that the relative errors for modes k = 1, 2 change
little, but those with k ∈ {3, 4, 5, 6} increase significantly. In particular, note that in (b), the relative
errors at k = 8 are about 8% for Gap ∈ {20, 30, 40}, but the relative errors at k ∈ {3, 4, 5, 6} increase
sharply to form a peak at k = 6 when Gap = 40. We will discuss connections with CFL numbers in
Section 4.5.

These NAR models reproduce the PDFs and ACFs relatively accurately. Figure 5 shows the
marginal PDFs of the real parts of the modes. The top row shows the marginal PDFs for the NAR
models with Gap = 5, in comparison with those of the full model and the Galerkin truncated system
(solved with time step dt). For the modes with wave numbers k ∈ {1, 2, 3, 4}, the NAR model captures
the shape and spread of the PDFs almost perfectly, improving those of the Galerkin truncated system.
For the modes with k ∈ {5, 6, 7, 8}, the NAR model still performs well, significantly improving those of
the truncated Galerkin system. The discrepancy between the PDFs becomes larger as the wavenumber
increases, because these modes are affected more by the unresolved modes. The bottom row shows
that the Kolmogorov–Smirnov statistics (the maximal difference between the cumulative distribution
functions) increase slightly as the Gap increases. Figure 6 shows the ACFs. The top row shows that
both the NAR model (with Gap = 5) and the Galerkin system can reproduce the ACFs accurately. The
bottom row shows that the relative error of the ACF, in L2([0, 3])-norm, increases as Gap increases
(particularly in the case σ = 0.2). Recall that the truncated Galerkin system produces PDFs with
support much wider than the truth for the high modes (see Figure 5), and that Rδ becomes less accurate
as δ increases. Thus, the terms u and Rδ(u) in the NAR model (17) preserve the temporal correlation,
and the high order term helps to dissipate energy and preserve the invariant measure.

1 2 3 4 5 6 7 8
k

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
el

at
iv

e 
er

ro
r

Gap=5
Gap=10

(a) K “ 8, � “ 1

1 2 3 4 5 6 7 8
k

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
er

ro
r

Gap=5
Gap=10
Gap=20
Gap=30
Gap=40

(b) K “ 8, � “ 0.2

1 2
k

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
er

ro
r

Gap=5
Gap=10
Gap=20
Gap=40
Gap=80
Gap=160

(c) K “ 2, � “ 1

1 2
k

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
R

el
at

iv
e 

er
ro

r
Gap=5
Gap=10
Gap=20
Gap=40
Gap=80
Gap=160

(d) K “ 2, � “ 0.2

Figure 4: Relative error in energy spectrum reproduced by the NAR models with time steps � “ dtˆGap
for Gap P t5, 10, 20, 30, 40, 50u in four settings of pK,�q. All NAR models are with time lag p “ 1. The
missing Gap’s in (a)-(b) lead to numerically unstable NAR models. Thus, the maximal �’s that an NAR
model can reach are � P r0.01, 0.02q and � P r0.04, 0.05q for (a) and (b) respectively, and � • 0.16 for
(c)-(d).

.

validate the estimated NAR model by its statistics.
Numerical tests show that the NAR models with Gap • 20 are numerically unstable for the setting

pK “ 8,� “ 1q, and the number is Gap “ 50 for the setting pK “ 8,� “ 0.2q. Figure 4(a-b) show the
relative error in energy spectrum reproduced by NAR models with those stable time steps. The relative
errors increase as the Gap increases. Note that the relative errors for modes k “ 1, 2 change little, but
those of with k P t3, 4, 5, 6u increase significantly. In particular, note that in (b), the relative error at
k “ 8 are about 8% for Gap P t20, 30, 40u, but the relative errors at k P t3, 4, 5, 6u increase sharply to
form a peak at k “ 6 when Gap “ 40. We will connect these time step with the CFL number in Section
4.5.

These NAR models reproduce the PDF’s and ACF’s relatively accurately. Figure 5 shows the
marginal PDF’s of the real parts of the modes. The top row shows the marginal PDF’s for the NAR
models with Gap “ 5, in comparison with those of the full model and the Galerkin truncated system
(solved with time step dt). For the modes with wave numbers k P t1, 2, 3, 4u, the NAR model captures
the shape and spread of the PDF’s almost perfectly, improving those of the Galerkin truncated system.
For the modes with k P t5, 6, 7, 8u, the NAR model still performs well, significantly improving those of
the truncated Galerkin system. The discrepancy between the PDF’s gets larger as the wavenumber in-
creases, because these modes are affected more by the unresolved modes. The bottom row shows that the
Kolmogorov-Smirnov statistics (the maximal difference between the cumulative distribution functions)
increases slightly as the Gap increases. Figure 6 shows the ACF’s. The top row shows that both the
NAR model (with Gap “ 5) and the Galerkin system can reproduce the ACF’s accurately. The bottom
row shows that the relative error of the ACF, in L2pr0, 3sq-norm, increases as Gap increases (particularly
in the case � “ 0.2). Recall that the truncated Galerkin system produces PDF’s with support much
wider than the truth for the high modes (see Figure 5), and that R� becomes less accurate as � increases.
Thus, the terms u and R�puq in the NAR model (3.6) preserves the temporal correlation, and the high
order term helps to dissipative energy and preserve the invariant measure.

In summary, when K “ 8, the maximal time steps are � P dt ˆ r10, 20q “ r0.01, 0.02q and � “
dt ˆ r40, 50q “ r0.04, 0.05q when � “ 1 and � “ 0.2, respectively, for NAR models with p “ 1. All these
NAR models can accurately reproduce the energy spectrum, the invariant measure and the temporal

15

Figure 4. Relative error in energy spectrum reproduced by the NAR models with time steps δ =

dt×Gap for Gap ∈ {5, 10, 20, 30, 40, 50} in four settings of (K, σ). All NAR models are with time lag
p = 1. The missing Gaps in (a)–(b) lead to numerically unstable NAR models. Thus, the maximal δs
that an NAR model can reach are δ ∈ [0.01, 0.02) and δ ∈ [0.04, 0.05) for (a) and (b) respectively, and
δ ≥ 0.16 for (c)–(d) .

In summary, when K = 8, the maximal time steps are δ ∈ dt × [10, 20) = [0.01, 0.02) and
δ = dt× [40, 50) = [0.04, 0.05) when σ = 1 and σ = 0.2, respectively, for NAR models with p = 1.
All these NAR models can accurately reproduce the energy spectrum, the invariant measure and the
temporal autocorrelation.

4.4. Reduction Involving Unresolved Stochastic Force

We consider next NAR models with K = 2. In this case, the unresolved variable w in (12) is a
functional of both the path of the K modes and the unresolved stochastic force. Thus, in view of (14b)
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and (16)–(17), the NAR model quantifies the response of the K-modes to both the unresolved Fourier
modes and the unresolved stochastic force.

Note first that K = 2 is too small for the K-mode Galerkin system to meaningfully reproduce any
of the statistical or dynamical properties; see Figure 2c,d for the energy spectrum, Figure 5c,d for the
marginal PDFs and Figure 6c,d for the ACFs. On the contrary, the NAR models with δ = 5dt, whose
term Rδ comes from the K-mode Galerkin, reproduce these statistics accurately. Remarkably, the NAR
models remain accurate even when the time step is as large as δ = 80dt, with the K-S statistics being
less than 0.025 in Figure 5c,d, and with the relative error in ACFs less than 6% in Figure 6c,d.
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Figure 5: Marginal PDF’s and K-S statistics. In each of (a)–(d), the top panels are plots of the empirical
marginal PDF’s of the real parts of the Fourier modes, from data (True), the K-mode Galerkin system
(Galerklin) and the NAR models with p “ 1 and � “ 5dt. The bottom plots are the Kolmogorov-
Smirnov statistics (the maximum difference between the cumulative distribution functions) of True and
NAR models with time steps � “ dt ˆ Gap.

autocorrelation.

4.4 Reduction involving unresolved stochastic force

We consider next NAR models with K “ 2. In this case, the unresolved variable w in (3.1) is a functional
of both the path of the K modes and the unresolved stochastic force. Thus, in view of (3.3b) and (3.5)–
(3.6), the NAR model quantifies the response of the K-modes to both the unresolved Fourier modes and
the unresolved stochastic force.

16

Figure 5. Marginal PDFs and K-S statistics. In each of (a)–(d), the top panels are plots of the
empirical marginal PDFs of the real parts of the Fourier modes, from data (True), the K-mode
Galerkin system (Galerklin) and the NAR models with p = 1 and δ = 5dt. The bottom plots are
the Kolmogorov–Smirnov statistics (the maximum difference between the cumulative distribution
functions) of True and NAR models with time steps δ = dt×Gap.
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(d) K “ 2, � “ 0.2

Figure 6: ACF (auto correlation functions) when K “ 8.

Note first that K “ 2 is too small for the K-mode Galerkin system to meaningfully reproduce any of
the statistical or dynamical properties, see Figure 2(c)-(d) for the energy spectrum, Figure 5(c)-(d) for
the marginal PDF’s and Figure 6(c)-(d) for the ACF’s. On the contrary, the NAR models with � “ 5dt,
whose term R� comes from the K-mode Galerkin, reproduce these statistics accurately. Remarkably,
the NAR models remain accurate even when the time step is as large as � “ 80dt, with the K-S statistics
being less than 0.025 in Figure 5(c)-(d), and with the relative error in ACF’s less than 6% in Figure
6(c)-(d).

To explore the maximal time step that NAR models can reach, we consider time steps � “ dt ˆ Gap
with Gap P t5, 10, 20, 40, 80, 160u. Numerical tests show that the NAR models are numerically stable
for all of them in both settings of � “ 1 and � “ 0.2. Figure 4(c)-(d) show the relative error in energy
spectrum reproduced by NAR models with these time steps. The relative error first decrease and then
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Figure 6. ACF (auto correlation functions) when K = 8.

To explore the maximal time step that NAR models can reach, we consider time steps δ = dt×Gap
with Gap ∈ {5, 10, 20, 40, 80, 160}. Numerical tests show that the NAR models are numerically stable
for all of them in both settings of σ = 1 and σ = 0.2. Figure 4c,d shows the relative error in energy
spectrum reproduced by NAR models with these time steps. The relative error first decreases and then
increases as Gap increases, reaching the lowest when Gap = 10 and Gap = 20 for the settings σ = 1
and σ = 0.2, respectively. In particular, all of these relative errors remain less than 9%, except when
Gap = 160 in the setting σ = 1.

In summary, when K = 2, NAR models can tolerate large time steps. The maximal time steps are
at least δ = dt× 80 = 0.08 and δdt× 160 = 0.16 when σ = 1 and σ = 0.2, respectively, for the NAR
models to reproduce the energy spectrum with relative error less than 9%.

4.5. Discussion on Space-Time Reduction

Since model reduction aims for space-time reduction, it is natural to consider the maximal
reduction in space-time; in other words, the minimum “spatial” dimension K and maximum time step
δ = dt×Gap. We have the following observations from the previous sections:
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1. Space dimension reduction, memory length of the reduced model and the stochastic force are
closely related. As suggested by the discrete Mori–Zwanzig formalism for random dynamics
(see e.g., [7]), space dimension reduction would lead to non-Markovian closure models. Figure 1
suggests that a proper medium length of the memory leads to best NAR model. It also suggests
that the scale of the white in time stochastic force can affect the memory length, and a larger scale
of stochastic force leads to shorter memory. We leave it as future work to investigate the relations
between memory length (colored or white in time), stochastic force, and energy dissipation.

2. Maximal time step depends on the space dimension and the scale of the stochastic force, mainly
limited by the stability of the nonlinear reduced model. Figure 4 shows that the maximum time
step when K = 2 is at least δ = dt×Gap with Gap = 160, much larger than those of the case of
K = 8. It also shows that as the scale of stochastic force increases from σ = 0.2 to σ = 1, the NAR
models’ maximal time step decreases (because the NAR models either become unstable or have
larger errors in energy spectrum). It is noteworthy to mention that these maximal time steps
of NAR models are smaller than those that the K-mode Galerkin system can tolerate. Figure 7
shows that the K-mode Galerkin system can be stable for time steps much larger than those of
the NAR models: the maximal time step for the K-mode Galerkin system is when the mean CFL
number (which increases linearly) reaches 1, but the maximal time step for the NAR models to
be stable is smaller. For example, in the setting (K = 8, σ = 0.2), the maximal time gap for the
Galerkin system is Gap = 80 (the end of the red diamond line), but the maximal time gap for
the NAR model is about Gap = 10. The increased numerical instability of the NAR model is
likely due to the nonlinear terms Φn, which are important for the NAR model to preserve energy
dissipation and the energy spectrum (see Figure 2 and the coefficients in Figure 3).
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Figure 7. The mean CFL numbers of the full models and the K-mode Galerkin systems. The mean CFL
number is computed along a trajectory with 105 steps. The time step is dt = 0.001 for the full model,
and is δ = dt×Gap for the K-mode Galerkin system. When (σ = 1, K = 8), the K-mode Galerkin
system blows up after Gap > 80, so its CFL number is missing afterwards. The stars are the maximal
Gap, such that the NAR model is stable. The red and blue squares are where the full model’s mean
CFL numbers agree with those of the K-mode Galerkin systems. The stars (I) are the largest time Gap
that our NAR model is numerically stable. The relative errors in energy spectrum in Figure 4c–d are
the smallest when the Gap’s are the closest to these squares.

Beyond maximal reduction, an intriguing question arises: when does the reduced model perform
the best (i.e., the least relative error in energy spectrum)? We call it optimality of space-time reduction.
It is more interesting and relevant to model reduction than maximal reduction in space-time, because
one may achieve a large time step or a small space dimension at the price of a large error in the NAR
model, as we have seen in Figure 4. We note that the relative errors in energy spectrum in Figure 4c,d
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are the smallest when the Gaps are the closest to the squares in Figure 7, where the full model’s mean
CFL numbers agree with those of the K-mode Galerkin system. We conjecture that optimal space-time
reduction can be achieved by an NAR model when the K-mode Galerkin system preserves the CFL
number of the full model.

5. Conclusions

We consider a data-driven model reduction for stochastic Burgers equations, casting it as a
statistical learning problem on approximating the flow map of low-wavenumber Fourier modes. We
derive a class of efficient parametric reduced closure models, based on representing the high modes
as functionals of the resolved variables’ trajectory. The reduced models are nonlinear autoregression
(NAR) time series models, with coefficients estimated from data by least squares. In various settings,
the NAR models can accurately reproduce the statistics such as the energy spectrum, the invariant
densities, and the autocorrelations.

Using the simplest NAR model, we investigate the maximal space-time reduction in four settings:
reduction of deterministic responses (K > K0) vs. reduction involving unresolved stochastic force
(K < K0), and small vs. large scales of stochastic force (with σ = 0.2 and σ = 1), where K0 is the
number of Fourier modes of the white-in-time stochastic force, and σ is the scale of the force. Reduction
in space dimension is unlimited, and NAR models with K = 2 Fourier modes can reproduce the
energy spectrum with relative errors less than 5%. The time reduction is another story. Maximal time
reduction depends on both the dimension reduction and the stochastic force’s scale, as they affect the
stability of the NAR model. The NAR model’s stability limits the maximal time step to be smaller
than those of the K-mode Galerkin system. Numerical tests indicate that the NAR models achieve the
minimal relative error at the time step where the K-mode Galerkin system’s mean CFL number agrees
with the full model’s. This is a potential criterion for optimal space-time reduction.

The simplicity of our NAR model structure opens various fronts for a further understanding of
data-driven model reduction. Future directions include: (1) studying the connection between optimal
space-time reduction, the CFL number, and quantification of the accuracy of reduced models; (2)
investigating the relation between memory length, dimension reduction, the stochastic force, and
the energy dissipation of the system; (3) developing post-processing techniques to efficiently recover
information of the high Fourier modes, so as to predict the shocks using the reduced models.
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