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Abstract: Direct numerical simulations were carried out with an emphasis on the intermittency and
localized turbulence structure occurring within the subcritical transitional regime of a concentric
annular Couette–Poiseuille flow. In the annular system, the ratio of the inner to outer cylinder
radius is an important geometrical parameter affecting the large-scale nature of the intermittency.
We chose a low radius ratio of 0.1 and imposed a constant pressure gradient providing practically zero
shear on the inner cylinder such that the base flow was approximated to that of a circular pipe flow.
Localized turbulent puffs, that is, axial uni-directional intermittencies similar to those observed in the
transitional circular pipe flow, were observed in the annular Couette–Poiseuille flow. Puff splitting
events were clearly observed rather far from the global critical Reynolds number, near which given
puffs survived without a splitting event throughout the observation period, which was as long as 104

outer time units. The characterization as a directed-percolation universal class was also discussed.

Keywords: subcritical transition; spatiotemporal intermittency; direct numerical simulation

1. Introduction

The discontinuous reverse transition of wall-bounded turbulence into a laminar flow is a
fundamental problem that has been studied for many years, while the laminar-to-turbulent transition
is rather smooth, or its critical point is often well predicted by linear stability theory. Subcritical flows
in the reverse transition are known to feature two regimes in competition, namely, laminar and
turbulent, in which there occurs large-scale intermittency that coexists spatially with a laminar
flow. The large-scale nature of localized turbulence often forms a regular pattern once established.
The intermittent structure or formation pattern of localized turbulence varies depending on the flow
system, and a number of studies have been conducted on canonical flows, such as a circular pipe
flow (CPF) and planar flows. In the CPF, a so-called equilibrium turbulent puff, or simply a “puff,”
is localized in the streamwise direction, resulting in uni-directional intermittency. The puff turbulence
is sustained within a Reynolds-number range based on the bulk velocity U and the pipe diameter
D of ReD = 2000–2700 [1]: Although there are some differences depending on the experimental
conditions, such as the disturbance introduction method and the pipe length [2–4], studies have
indicated that the puff’s nature is deeply related to the determination of the lower-limit Reynolds
number (the global critical Reynolds number, Reg), above which turbulent motions can survive globally.
Streamwise-localized solutions underlying the puff have been found, and Hopf bifurcations to new
branches including unstable periodic orbits are expected to cover the turbulent attractor [5]. It is also
known that puffs can split (or proliferate) more frequently than their decay and have a finite lifetime
even at Re > Reg [6–9]. Avila et al. [10] identified Reg = 2040± 10 for the CPF by monitoring both the
puff-splitting time and the decay time. Recent attempts have been made to elucidate the puff-driving
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mechanism [11] and one-dimensional modeling [12], and an understanding of the puff’s nature is
progressing compared to other intermittent structures.

In planar flows, intermittent structures with bi-directionality were discovered during the last
two decades (excluding the spiral turbulence in a Taylor–Couette flow [13]), which are called oblique
turbulent stripes/bands with a certain inclination with respect to the streamwise direction, and were
found in a plane Couette flow (pCf) [14–18] and a plane Poiseuille flow (pPf) [19–21]. A wall turbulence
that is stably stratified by body forces, such as the Coriolis force and buoyancy, also undergoes the stripe
regime [22,23]. The stripe pattern has attracted recent interest, and some studies have found families
of relevant localized solutions [24,25]. As the Reynolds number approaches the relevant Reg, the stripe
pattern becomes isolated oblique bands, which fall into a non-equilibrium state accompanied by band
growth, a break (not the same as the splitting of the puff), and a mutual collision [26–28]. Because the
laminar gap surrounding the isolated bands is large at near criticality, a large-scale channel setup or
computational domain is required for precise tracking of the process toward a fully laminar state and
for estimating Reg. For this reason, research is still ongoing, such as elucidating the mechanism of an
isolated oblique band [29] and the statistical characteristics [30]. For details, also see recent review
papers [31–33].

The two kinds of intermittent structures mentioned above were observed in different canonical
flows, that is, the CPF and the planar flow, and the direct relationship between the turbulent puff
and stripe is unknown. Our research group therefore focused on an annular flow between concentric
cylinders. Depending on the radius ratio η ≡ rin/rout (where rin and rout are the inner and outer
cylinder radii, respectively), the curvature and the circumferential length (relative to the gap width)
should change and may affect the large-scale nature of the intermittency. With η ≈ 1 or 0, the flow
system can be regarded as a planar flow or a CPF system, respectively. Ishida et al. [34–36] conducted
direct numerical simulations (DNSs) to study the subcritical transition process of the annular Poiseuille
flow (aPf) using η as a parameter in addition to the Reynolds number. The authors observed both
the turbulent puff and the stripe according to η, i.e., a helical turbulence (i.e., a turbulent stripe in the
annular flow) at η ≥ 0.5, puff turbulence similar to the transitional CPF at η < 0.2, and an intermediate
state at 0.2 ≤ η ≤ 0.4. At η = 0.1, the observed puff split and decayed over time. A similar tendency
was also uncovered in an annular Couette flow (aCf); it was reported that puffs occur at η = 0.1,
and they split and attenuate over time [37,38]. The authors found a speckled irregular intermittent
structure that differs from turbulent stripes and puffs, which was shown to have characteristics of
the (1+1)-dimensional directed-percolation (DP) universal class. Recent studies have focused on the
relationship between the subcritical transition phenomenon and DP [39–42].

In this study, by employing an annular system as a platform, we aim to unify uni- and
bi-directional intermittent structures observed in the CPF and planar flows, respectively. The key to
achieving this aim is bridging between the two different systems in terms of the base flow. The base
flows of the studied aPf and aCf are qualitatively different from that of the CPF. This mismatch
motivated us to simulate the annular Couette–Poiseuille flow (aCPf) at a low η, which should be more
similar to the CPF. However, the presence of the inner cylinder may affect both the onset and splitting
of the puff. The main purpose of this study is to answer whether puff splitting would occur in a low η.
Moreover, Reg and the Reynolds-number dependence of puff splitting are investigated, and the DP
feature is discussed.

Previous DNS studies on Couette–Poiseuille flow mainly focused on the planar turbulence.
Kuroda et al. [43] compared the mean velocity profiles and various turbulence statistics for three
patterns of imposed mean pressure gradients in the flow path. In particular, among the three
patterns, the authors analyzed the shear stress near the moving wall surface in a turbulent field
such that it approaches zero. A similar attempt was also conducted by other researchers [44–46].
As an experimental study, Nakabayashi et al. [47] also measured the turbulence statistics of a plane
Couette–Poiseuille flow at high Reynolds numbers, and classified the flow field into a Couette-
or Poiseuille-type depending on the base flow. In addition, Klotz et al. [48,49] eliminated the net
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flow in a plane Couette–Poiseuille flow (pCPf), allowing localized turbulence to be tracked for long
periods of time while stationary in the observation window. A recent quench experiment on the
decay of Couette–Poiseuille turbulence is likely to approach the crossover of the decay rate, that is,
the quantitative identification of Reg [50]. However, to the best of our knowledge, except for in limited
studies [51,52], there is no DNS available for the subcritical transition process of the aCPf. The present
DNS is the first to explore laminar–turbulent intermittency in a low-η aCPf.

The remainder of this paper is organized as follows. Section 2 presents the flow configuration,
dimensionless parameters, and equations used in our simulations. In Section 3, which is dedicated
to the preliminary results, we validated the current code and illustrated the parameter dependence
of the base flow in terms of the mean friction on the inner cylinder. Section 4 begins with a puff
characterization of the observed turbulent patches. Space-time diagrams of a turbulent quantity
revealing the puff splitting and decay are then presented. All results are summarized and discussed in
Section 5.

2. Problem Setup and Methods

The problem under consideration is the turbulent annular flow of an incompressible Newtonian
fluid, for which the governing equations are the equation of continuity and the Navier–Stokes equation,
as described in the classical cylindrical coordinate system of (x, r, θ):

∇∗ · u∗ = 0, (1)
∂u∗

∂t∗
+ (u∗ · ∇∗) u∗ = −∇∗p∗ +

1
Rew

∆∗u∗ − dP∗

dx∗
ex. (2)

Here, the velocity vector is represented by u, or (ux, ur, uθ), which are the respective components
in (x, r, θ); p is the pressure, and t is the time. These quantities are non-dimensionalized and are marked
by a ∗ superscript: u∗ = u/uw, p∗ = p/ρu2

w (ρ, density), t∗ = tuw/h, x∗ = x/h, and r∗ = r/h, where
uw and h are the inner-cylinder axial velocity and the gap between the two cylinder radii, respectively,
as illustrated in Figure 1. The Reynolds number Rew is therefore based on uw, h, ρ, and the fluid
viscosity µ, whereas another definition using one-quarter of Rew is more conventional for studies on
the pCf [15,16,22]. In only the axial-direction component of Equation (2), a constant pressure gradient
in x is added as an external force term, −dP/dx, with the axial unit vector ex. In addition to the
imposed pressure gradient, the flow is driven by an axial translation of the inner rod with a constant
velocity of uw > 0. The x-axis corresponds to the central axis common to both cylinders, and the
radius ratio of η is an important geometrical parameter and is set to 0.1 for the main analysis in this
study. Periodic boundary conditions are imposed in both the x and θ directions, and no-slip boundary
conditions are enforced at the wall surfaces of the cylinders. In the following sections, the imposed
pressure gradient is re-defined as the pressure gradient function F(p), which is normalized as

F(p) ≡ −dP∗

dx∗
· Rew =

−dP/d(x/h)
µuw/h

(3)

and can be interpreted as the ratio of the imposed pressure gradient (i.e., the Poiseuille-like driving
force) against the wall-bounded viscous shear stress (the Couette-like driving force).

As introduced above, there are two control parameters for the flow under consideration,
i.e., Rew and F(p). Poiseuille-like flows are realized for a large F(p), whereas Couette-like flows are
obtained for a small F(p), and a specifically pure Couette flow corresponds to F(p) = 0. As indicated
in [44], the ratio of the shear stress at the two walls, which can be defined by γ = τin/τout in an aCPf,
is another candidate of the control parameter relevant to a Couette–Poiseuille flow. Flows with γ ≈ 0,
or a shear-less inner cylinder wall, are of special interest because they exhibit nearly zero mean shear
at the moving rod, and can thus be a model for an understanding of the puff dynamics in a pure pipe.
Under such conditions, the inner cylinder practically affects the core flow only as an impermeable
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thin rod, and the coherent turbulent structures and turbulent production that dominantly occur near
the static outer cylinder wall mimic those found in a canonical system of the CPF. Although the
system chosen here is closer to a CPF than to an aPf or an aCf, it should be noted that the different
boundary conditions regarding the inner rod preclude a mathematical homotopy continuation with
the CPF. Except for a fully laminar flow state, F(p) providing γ = 0 is not explicitly obvious, and thus,
a parametric survey must be conducted for each given Rew. In this study, we conducted a preliminary
survey of the F(p) dependence of τin for several Rew values using a DNS with a medium-scale
computational domain, as reported in Section 3. Based on these results, we selected F(p), which will
provide τin ≈ 0 (γ ≈ 0) at each tested Rew, and accordingly applied the main DNS using a large-scale
domain to reduce the spatial limitation on the laminar–turbulent coexistence.
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Figure 1. Couette–Poiseuille flow in an annular channel between two concentric cylinders with a
radius ratio of η ≡ rin/rout = 0.1, driven by a constant pressure gradient and an inner-cylinder axial
movement. In this study, the pressure gradient is adjusted such that the mean velocity gradient on the
inner-cylinder surface is approximately zero; that is, τin = µ [∂ux(r)/∂r]r=rin

≈ 0.

The numerical conditions of the preliminary and main simulations for η = 0.1 are summarized
in Tables 1 and 2, respectively. Long domain sizes of 51.2h and 409.6h were employed in the axial
direction to capture a single turbulent puff and expected multiple puffs, whereas the radial and
azimuthal domain lengths were of geometrically determined values of h and 2π, respectively. The grid
resolutions have been confirmed to be fine such that fine-scale eddies in turbulent patches are well
resolved, at least for the particularly interesting transitional regime of Rew ≤ 1600.

Equations (1) and (2) were discretized using a staggered central finite-difference method, where the
fourth-order central difference scheme was used in both x and θ, along with the second-order scheme
in r on a non-uniform radial grid. A time advancement was performed using a fractional-step
second-order Adams–Bashforth scheme in combination with a Crank–Nicolson scheme for the radial
viscous term. The Courant–Friedrichs–Lewy (CFL) condition was continuously monitored in all
directions, and accordingly, the time-step ∆t constraint for the nonlinear terms was enforced to ensure
stability. The details of the numerical method were reported in the literature [34,53]. The code
validation carried out is discussed in the next section.

3. Preliminary Simulations

The reliability of the current simulation code may be demonstrated through a comparison with
the existing pCPf DNS database at a comparable Reynolds number. Kasagi and coworkers [43,54]
applied a DNS of several pCPfs and released their database obtained, from which a condition of
(Rew, (p)) = (6000, 15.96) was chosen for the code validation during this test. At this Reynolds
number and the mean pressure gradient, the pCPf is under a fully turbulent state throughout the
channel, and no large-scale intermittency occurs. Its friction Reynolds number Reτ , normalized
by the friction velocity on the fixed wall and the half width of the gap, is 154. Kuroda et al. [43]
adopted a spectral method with a 128× 128 Fourier series in the horizontal directions and Chebyshev
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polynomials up to order 96 in the wall-normal direction. Their domain size was 2.5πh × h × πh,
whereas our counterpart simulation on an aCPf of η = 0.9 employed a nearly equal domain size of
8h× h× π/8 (≈ 3h at the gap center) in (x, r, θ). Figure 2 shows comparisons of the present mean and
second-order statistics. An overbar, such as ux(r), denotes an ensemble-averaged quantity with respect
to t, x, and θ, and subscript ‘rms’ indicates a root-mean-square value. The present control parameters
of Rew and F(p) for our aCPf are 6000 and 16.0, respectively, and the resulting friction velocity and the
friction Reynolds number on the fixed outer cylinder wall are 0.050uw and 151. The present results
shown in Figure 2 are in reasonable agreement with the reference study, despite the wall curvature of
the aCPf. A noticeable difference is detected only near the fixed wall (y/h ≈ 0.9), where the profile of
ux exhibits a steep gradient, and thus, those of the streamwise turbulent intensity u′xrms and Reynolds
shear stress u′xu′r have peaks. The rather coarse grid resolution and the low-order spatial discretization
(our finite difference code versus the previous spectral code) might affect the accuracy of the present
simulation. In addition to the peak values of u′xrms and u′xu′r, the second-order statistics from the
present DNS and those of Kuroda et al. [43] agree well, particularly considering the differences in the
flow geometry. The current Fortran code has been employed in different studies for several different
boundary conditions [34,35,37,38,55], and thus, no further validation will be shown here.
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Figure 2. Code validation by comparison with a previous direct numerical simulation (DNS) study on
Couette–Poiseuille flow at Rew = 6000. (Left) Mean streamwise velocity profile; (middle three panels)
root-mean-square values of velocity fluctuations in the streamwise, wall-normal (radial), and spanwise
(azimuthal) directions; and (right) Reynolds shear stress. Lines and symbols represent the results
obtained by this study for the annular Couette–Poiseuille flow (aCPf) with η = 0.9, and the result
by Kuroda et al. [43] for plane Couette–Poiseuille flow (pCPf), respectively. Here, the wall-normal
coordinate y represents the distance from the inner (bottom) wall, that is, y = r− rin.

In this study, we simulated a low-η annular flow that mimics a CPF by approximating the base
flow, or the mean velocity profile, to that in the CPF. In the CPF, the velocity profile reaches its maximum
at the pipe center; the velocity gradient becomes zero at the pipe center, and is at maximum on the
surface of the pipe (i.e., the outer-cylinder surface). To match the base-flow characteristics of a CPF in
an annular system, it is necessary to conduct a parametric investigation on the appropriate magnitude
of the pressure gradient applied in the annular channel. As a preliminary analysis, we employed
a medium-scale computational domain to reduce the computational cost of the parametric study.
The computational domain size is smaller in the x direction than the present main analysis shown
in Section 4. The streamwise length of the domain, Lx, was sufficient to capture one turbulent puff.
The purpose of the preliminary analysis is to identify the value of the pressure gradient function
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F(p) at each Reynolds number such that the friction coefficient on the inner cylindrical wall, C f ,in,
is practically zero, where C f ,in is defined by the following:

C f ,in =
τin

1
2 ρU2

, (4)

where U is the bulk mean velocity obtained through a simulation. The positive/negative sign of
C f ,in corresponds to the positive/negative velocity gradient on the wall surface of the inner cylinder.
Given du/dr < 0, C f ,in < 0, and vice versa. Table 1 shows the calculation conditions and the ranges
of Rew and F(p) in the preliminary analysis. In the preliminary analysis, the calculation area in the
mainstream direction was set to a smaller calculation area than that for the main analysis, but can
capture one turbulent puff. Figure 3 shows the F(p) dependence of C f ,in at several values of Rew near
the global critical value. In each analysis plotted in the figure, a turbulent field with a high Reynolds
number at equilibrium for each given F(p) was set as the initial flow field, and the ensemble-averaged
C f ,in value was acquired after reaching a statistically steady state. Note that laminarization did not
occur in any of the cases shown here. In general, as F(p) increases, C f ,in increases monotonically
while changing from a negative to a positive value. This is consistent with the transition of the mean
velocity profile from Couette-like to Poiseuille-like, and it can be confirmed that “the turning point”
of F(p) indicating C f ,in = 0 increases with Rew. According to this Reynolds-number dependence,
an extrapolation predicts a value of F(p) that brings C f ,in = 0 at a lower Rew, by which the main DNS
analysis in the next section was executed.

Table 1. Numerical conditions for preliminary DNS with a moderate computational domain.

η 0.1

Domain size Lx × Lr × Lθ = 51.2h× h× 2π
Number of grids Nx × Nr × Nθ = 512× 64× 128

Rew 1600–3000
F(p) 4.0–16.0
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Figure 3. Friction coefficient on the inner cylinder surface as a function of the pressure function F(p)
for different Reynolds numbers, obtained through the preliminary DNS study on an aCPf.

4. Results and Discussion

The main DNS at Rew ≤ 1600 for which a laminar–turbulent intermittency was clearly confirmed
through the preliminary analysis is presented in this section, and the characteristics of the localized
turbulence are discussed. Table 2 summarizes the numerical conditions, including the friction Reynolds
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number Reτ that was obtained. As in the preliminary analysis, the radius ratio was η = 0.1, and the
computational domain was extended only in x; however, the grid resolution was not changed.
Because Reτ is lower than that of the preliminary analysis, the grid spacing in terms of the wall
units was finer. The table also shows the grid resolutions based on the friction velocity uτ under each
condition:

uτ =
ηuτ,in + uτ,out

η + 1
, (5)

where uτ,in and uτ,out are defined by the corresponding wall shear stress, τin, and τout, as well as by
the relation τ = ρu2

τ , from which inner units can be defined. For a low Reynolds-number regime of
Rew < 1600, which is of interest in this study, the grid spacings of ∆x+ < 8, ∆r+min < 0.2, ∆r+max < 3,
and ∆z+ < 4 are comparable to or higher in resolution than those in previous studies [35,37,53].
The initial conditions during each analysis adopted a turbulent field with a one-step-higher Reynolds
number, but reduced the Reynolds number adiabatically. In other words, the study was carried
out carefully such that the sudden drop in the Reynolds number will not be a proximate cause
of laminarization.

Table 2. Numerical conditions for the main DNS with a long domain. The grid resolutions of
(∆x, ∆r, ∆θ) are described in their dimensionless form based on uτ and µ/ρ. The minimum and
maximum ∆r of the radial direction, in which we used non-uniform grids, are shown. † Laminar values
from a laminarized case.

η 0.1
Domain Size Lx × Lr × Lθ = 409.6h× h× 2π

Number of Grids Nx × Nr × Nθ = 4096× 64× 128

Rew 3000 1600 1575 1550 1540 1530 1525 1500 †

Reτ(= h+) 70.2 36.0 34.1 33.4 33.1 32.7 32.4 31.5
F(p) 14.2 6.5 6.0 5.8 5.7 5.6 5.5 5.3
∆x+ 14.1 7.14 6.82 6.68 6.61 6.53 6.47 6.30

∆r+min 0.37 0.19 0.18 0.18 0.17 0.17 0.17 0.17
∆r+max 4.44 2.26 2.16 2.11 2.09 2.07 2.05 1.99
r+in∆θ 0.77 0.39 0.37 0.36 0.36 0.36 0.35 0.34
r+out∆θ 7.66 3.89 3.72 3.64 3.61 3.56 3.53 3.44

4.1. Puffs in Annular-Pipe Flow

Figure 4 presents a three-dimensional visualization of localized turbulence in the form of puffs,
which is observed as an equilibrium state reached after a lengthy simulation under the condition of
Rew = 1600 and F(p) = 6.5. The turbulent region can be clearly detected by showing the radial velocity
fluctuations or the wall-normal velocity component. The threshold value of±0.03uw for the iso-surface
was arbitrarily chosen to extract its typical arrowhead shape similar to that of a puff. A slight change
in this threshold value does not significantly affect the interpretation of the present results. In the
snapshot, multiple turbulent patches, called ‘puffs’ hereafter, can be confirmed to be distributed
intermittently with respect to the streamwise direction. The blank regions between neighboring puffs
can be regarded as being in a laminar flow because of an insignificant fluctuating velocity, implying the
well-established coexistence of laminar and turbulent regions in the aCPf. As is clear from the enlarged
figure, the puff has an arrowhead shape, and the puff extends downstream in the center of the outer
pipe. Although the average velocity gradient on the inner cylindrical wall surface is almost zero, this
situation is considered to be due to the similar driving mechanism of the puff of the CPF. For the CPF,
Shimizu et al. [11] reported that turbulence in the puff originates from low-speed streaks, as well as
from streamwise vortices along the (outer-)pipe wall and across the trailing edge of the puff through
the Kelvin–Helmholtz instability, which induces velocity fluctuations that propagate downstream
faster than the puff itself in the core region. Such a driving mechanism of the puff is also common to
the present aCPf with nearly zero C f ,in. The streamwise size of each puff is approximately 30 times
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the gap width h, which corresponds to 15 times the hydraulic diameter, and is consistent with that of
the puff observed in the CPF [1,7,8,12]. The array of puffs seems variable in intervals, but is likely not
less than 30h. The wavelength and periodicity of the puffs are examined using two-point correlation
functions of the turbulence quantities. In the x and θ directions, the auto-correlation coefficients are
defined as follows:

Rii(∆x) =
u′i(x, rref, θ)u′i(x + ∆x, rref, θ)

u′irms(rref) · u′irms(rref)
(6)

and

Rii(∆θ) =
u′i(x, rref, θ)u′i(x, rref, θ + ∆θ)

u′irms(rref) · u′irms(rref)
, (7)

where i ∈ (x, r, θ). Figure 5 shows the two-point correlation coefficients of each velocity component
for the case visualized in Figure 4. The statistical dataset was accumulated over the time of 5000h/uw

after achieving a pseudo-equilibrium state of multiple puffs.

Figure 4. Instantaneous flow field for Rew = 1600 and F(p) = 6.5. Iso-surfaces of radial velocity
fluctuation are shown: red, u′r = 0.03uw; blue, u′r = −0.03uw. The left-to-right direction corresponds to
the direction of the main flow, by which the observed puffs propagate. Not to scale.

From Figure 5a, the axial periodicity and interval of the puff can be estimated. First, we note
that the three curves at different y∗ exhibit consistency, implying that flow state and patterning are
only weakly dependent on y or r. As also plotted in (b) and (c) for the other directional components,
fine-scale turbulent structures inside a puff should have a rather short streamwise extent, and indeed,
the profiles of Rrr and Rθθ fall to almost zero at ∆x < 5h. The profile of Rxx also decreases drastically
for a small ∆x, although its significant oscillation for a long axial extent suggests a spatial coexistence
of laminar and turbulent regions rather than turbulent structures, since these two flow states have
different mean velocity profiles, particularly near the walls. The oscillations observed in Figure 5a are
somewhat strong at both the inner and outer walls, relative to the gap center. The profile of Rxx takes
the first negative local minimum at ∆ ≈ 30h and shows regular spikes at intervals of approximately
60h. The correlation is not zero even at half the computational domain length (Lx/2 = 204.8h). Peaks at
60h, 120h, and 180h manifest the presence of seven distinct puffs in Lx on average. This suggests that
the puffs at this Reynolds number tend to be arranged regularly throughout the axial extent. If the
puff spacing is irregular, the correlation coefficient distribution should not show periodic fluctuations
and should asymptotically approach zero. This regularity of the puff arrangement may differ from
the characteristic of the DP universal class, which should exhibit a wide-scale invariant pattern close
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to the critical point [39,41]. Mukund and Hof [3] reported a similar aspect on multiple puffs in a
CPF, where they referred to the wave-like fashion as ‘puff clustering’; that is, the resultant pattern
of clustering puffs was observed to propagate like waves. They also pointed out that interactions
between puffs were responsible for the approach to the statistical steady state and strongly affected
the percolation threshold. This may predict a difference in the global stability between a single puff
(i.e., isolated puffs) and multiple puffs (puff clustering), as discussed in Section 4.2.
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Figure 5. Two-point correlation coefficient of velocity fluctuation for Rew = 1600 and F(p) = 6.5.
(a–c) Streamwise spatial correlation as a function of ∆x, and (d–f) azimuthal correlation as a function
of ∆θ. (a,d) Auto-correlation of streamwise velocity component u′x, (b,e) that of u′r, and (b,e) that of u′θ .
Here, the reference radial position rref is translated as the inner-wall-normal height y∗ = rref − r/h.

The azimuthal two-point correlation functions shown in Figure 5d–f indicate the azimuthal
intervals between fine-scale turbulent structures, such as low-speed streaks inside the puff. There exists
no large-scale pattern in the azimuthal direction, unlike those of the helically shaped turbulent patches
in high-η aPf [35] and aCf [37]. The blue curve in Figure 5d, measured near the outer cylinder wall,
only has a peak at ∆θ = π/2. The cross-sectional flow pattern observed here consists of four low-speed
streaks close to the outer wall spaced at π/2. This azimuthal configuration regarding turbulence inside
the puff is in agreement with those found in the CPF [6].
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The presence of turbulent equilibrium puffs was observed even at Rew < 1600, and the flow field
finally reached the fully laminar state at Rew = 1500. Although the space-time diagram (STD) and the
turbulent fraction, Ft(t) (the plot of which is shown later), reveal a tendency toward laminarization at
Rew = 1525, one turbulent puff was maintained in the present computational domain at least during
the present observation time of >1.3× 104, and the laminarization was not completed. If normalized
by the hydraulic equivalent diameter 2h and bulk velocity U, the Reynolds numbers of Rew = 1600
and 1500 correspond to ReD = 2190 and 2045, respectively. This range of ReD = 2045–2190 is close to
or slightly narrower than that for the counterpart of the CPF (ReD = 2000–2700 [1], 2040–2400 [10],
2300–3000 [2], and 2000–2200 [4]). In particular, a discrepancy in the lower bound value of the
subcritical transition regime, that is, the global critical Reynolds number, is of interest, although the
similarity with the results by Avila et al. [10] is rather surprising. A cause of this discrepancy remains
unclear: One of the main causes may be the presence of the inner cylinder, which suppresses turbulent
motions across the central axis in the case of an aCPf. Another cause may be the non-slip inner-cylinder
surface, which prevents a puff from splitting into two puffs in the case of an aCPf. Shimizu et al. [8]
proposed a model process of puff splitting in the CPF, which starts with an azimuthally isolated streak
propagating downstream through the laminar–turbulent interface of the puff. An emitted streaky
disturbance can be a seed of a “daughter puff,” which spreads again in the azimuthal direction and
grows into a turbulent puff after leaving the parent puff sufficiently far away. As a system even
closer to the CPF, an ideal aPf with a stress-free boundary condition at the inner wall can be analyzed,
although such an unpractical situation will be considered as a future task. In terms of the conjecture
that puff splitting is unlikely in the aCPf relative to the CPF, we traced puffs with lengthy simulations,
and their STDs are shown in Section 4.2.

4.2. Space-Time Diagrams

As for the puff turbulence in CPF, it is well known that a turbulent puff can split into two puffs
over time, the turbulence between puffs should attenuate and become a laminar pocket, and one or
both puff(s) should decay quasi-stochastically because of their finite lifetime [3,6,8,9]. Avila et al. [10]
observed the puff-turbulence sustainment only due to puff-splitting events that have time scale shorter
than the puff-decay time scale. These features may be identified from the temporal development
of the puff spatial distribution. The STDs of the present aCPf are shown in Figures 6–8, where the
horizontal axis is the streamwise coordinate in a frame of reference moving at a certain velocity,
and the vertical axis represents the dimensionless time at each Reynolds number. The frame-moving
velocity is nearly the mean gap-center velocity, which also corresponds to the propagation velocity
of an observed single puff. The color contour shows the azimuthal average of the radial velocity at
mid-gap, 〈ur〉θ =

∫ 2π
0 ur(x, h/2, θ, t)dθ/2π, such that the laminar and turbulent regions can be clearly

distinguished. Although the apparent length of each turbulent puff depends on the criterion used to
discriminate it from the surrounding laminar flow, a different choice does not change the qualitative
conclusions obtained.
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Figure 6. Space-time diagram for (a) Case 1 at Rew = 1600 and F(p) = 6.5, (b) Case 2 at Rew = 1600
and F(p) = 6.5 with a different initial condition from that in Case 1, and (c) a typical discrete expansion
process of turbulence in a subcritical transitional pipe flow at Re = 2300, cited from Avila et al. [10].
In (c), the contour color indicates the cross-sectional average of the streamwise vorticity squared,
where red and blue correspond to turbulent puff and laminar regions, respectively, and the Reynolds
number Re is based on the mean velocity U and the pipe diameter D. In (a,b), the contour shows the
azimuthally averaged radial velocity 〈ur〉θ at the gap center. The axial distribution is monitored from
a moving frame of reference with a speed close to the puff propagation. The temporal development
is monitored from t = 0, that is, the beginning of each DNS with a higher-Rew field with more puffs;
therefore, some initial puffs decayed immediately after the start of the simulation. Not to scale (aspect
ratio x:y = 10:1).

We first present the results for Rew = 1600 and F(p) = 6.5, as discussed in Section 4.1. The flow
field visualized in Figure 4 was first achieved through an adiabatic decrease in Rew (with a change in
F(p), accordingly) from a fully turbulent regime, and was then used as the initial condition for the
following simulation to trace the behavior of the puff in the phase diagram of the Lx-space and time for
as long as possible. The STD obtained is shown in Figure 6b, which monitors the pattern starting from
an initial state with several puffs—the isolated turbulent patch featured as a red and blue segment at
given time t. The overall puff pattern remains intrinsically spatiotemporally intermittent and exhibits
both puff decay and splitting very frequently. These individual puffs have statistically well-defined
lengths, similar to those in a CPF [8]. The number of puffs captured in the present domain is roughly
constant between 5 and 7, and it is again confirmed that the puff intervals tend to be constant even
if splitting or attenuation occurs in each individual puff. For this reason, Figure 5a reveals regular
oscillations in the correlation function Rxx(∆x), while a snapshot visualized in Figure 4 happens to
have no periodicity in the puffs when considering the complete pipe length. Figure 6b may invoke
an STD obtained from experimental and numerical observations of a DP-like feature in other flow
systems [39,42]. Another DNS labeled as Case 1 was repeated for the same parameter set of (Rew, F(p)),
but with a different initial condition with a single puff, which was prepared from a lower-Rew DNS
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(see Figure 6a). The initial single puff is sustained for a long period of >5000h/uw, during which
it splits irregularly, the first time at tuw/h ≈ 3000 and the second time at tuw/h ≈ 4000, but both
newborn puffs decay after they are separated from their parents. A newly emitted daughter puff
by the third splitting tuw/h ≈ 5500 grows and successively produces grandchild puffs. In addition,
there are many signs of puff splitting. The puff turbulence eventually covers the entire domain, yet is
intrinsically patchy, as in Case 2. It can be concluded that, in an aCPf similar to a CPF, the turbulent
puff can split, regardless of the initial field, in qualitative agreement with a typical STD sample of a
CPF [10], as displayed in Figure 6c.
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Figure 7. Space-time diagram for (a) Rew = 1600 (ReD ≈ 2190) and F(p) = 6.5, as well as (b)
Rew = 1500 and F(p) = 5.3 (ReD ≈ 2045). The contour shows 〈ur〉θ at the gap center. The axial
distribution was monitored from a moving frame of reference. The same initial condition was applied
for all cases presented here. Not to scale (aspect ratio x:y = 10:1).

Figure 7a shows the STD of Rew = 1600 and F(p) = 6.5 (Case 2), but the speed of the moving
frame of reference is modified such that puffs appear to be stationary with respect to space. With this
adjustment, the propagation speed of the puff can be estimated as approximately 0.625uw. According to
Figure 6a, when tracking a single puff in Case 1, the propagation speed is slightly faster and ≈0.65uw.
The result is reasonable because the bulk velocity generally decreases with the expanding turbulent
region. Figure 7b is an STD at Rew = 1500 with the same horizontal coordinate of (x− 0.625uw)/h,
showing the eventual return to laminar flow. Once a puff starts to decay, its turbulent patch seems
to accelerate slightly and takes approximately 300uw/h to attenuate completely. Before that, it took
more than 4200h/uw before the system settled to the fully laminar state. While the flow at ReD = 2190
of Figure 7a exhibits frequent puff splitting or those signs during a period of tuw/h ≈ 5000, the flow
at ReD = 2045 in Figure 7b undergoes only the puff decay with no puff splitting, and the flow field
simply reached a laminar flow.
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Figure 8. Space-time diagram for (a) Rew = 1550, (b) Rew = 1540, (c) Rew = 1530, and (d) Rew = 1525:
see Table 1 for each given F(p) value. The contour shows 〈ur〉θ at the gap center. The axial distribution
is monitored from a moving frame of reference. The same initial condition was applied for all cases
presented here. Not to scale (aspect ratio x:y = 10:1).

We further investigated the intermediate range between the two above-discussed cases (2045 <

ReD < 2190) to elucidate the trends in the frequency or time of the puff-splitting events. Figure 8
presents an STD at each control-parameter set. In all DNSs presented in the figure, the initial conditions
are exactly the same. In the figure, six puffs can be seen initially, but two or three of them decay
immediately, particularly in the lower-Reynolds-number cases. At the lowest Rew shown in Figure 8d,
puffs disappear one after another on a time scale of O(1000h/uw), and finally, one puff remains.
There is no sign of decay in the surviving puff even after 13,000h/uw, but it is likely that the puffs will
stochastically disappear and laminarize if a much longer simulation is available. This might also be
true for the other cases presented here. At Rew < 1600, no puff splitting was observed, resulting in
only puff damping. In only Figure 8b, a sign of puff splitting is detected at tuw/h ≈ 7500, although the
“daughter puff” is not perfectly formed, and is finally attenuated before leaving the parent puff.
Note here that a further DNS indicates no qualitative change in the flow pattern at least until tuw/h =
11,500 also for Rew = 1540, although not shown in the figure. According to a similar type of study
[10], the puff splitting in the CPF was observed both numerically and experimentally for ReD > 2200,
whereas clear splitting was measured in their experiments down to ReD = 2025 < Reg (=2040). If our
observations were continued as long as 107 outer time units, as Avila et al. [10] experimentally did,
the current system of the aCPf could exhibit a puff-splitting event even below the true Reg, which is
not exactly determined as of now. At least, it can be said that the puff decay and splitting rates at this
stage differ strongly from those observed at Rew = 1600 (ReD = 2190). As for this regime, a conclusion
similar to an experimental study on a CPF [3] can be drawn, i.e., the cluster of puffs in a wave-like
fashion results in fewer puff-splitting events in the STD, whose visual appearance differs from the STD
for a DP universality class. Such well-organized distances between active sites (corresponding to the
puffs) and the absence of splitting events are different features from those of the DP.

Figure 9 shows the temporal change in the turbulent fraction, Ft(t), which is the spatial ratio
of the turbulent region to the entire calculated region, including both the turbulent and laminar
regions. Here, Ft(t) ≈ 1 indicates a fully turbulent state, and Ft(t) = 0 is a fully laminar state. We set
a threshold vth to distinguish between laminar and turbulent regions such that Ft(t) ≈ 0.5 in the
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Reynolds number region where turbulent puffs densely appear in an axial extent, as in the case of
Rew = 1600 and F(p) = 6.5 visualized in Figure 7a. Figure 9a shows the temporal change of Ft(t)
at Rew = 1500 and F(p) = 5.3, that is, the case diagnosed as a laminar regime by a visualization in
Figure 7b, employing three different threshold values (vth, vth2, and vth3). It can be confirmed that the
time change of Ft(t), particularly the gradient of the curve, does not depend on the threshold value.
When vth = 0.005, the temporal changes in Ft(t) at several Reynolds numbers below Rew = 1600
are plotted in Figure 9b. In the vicinity of the critical point, a (1+1)-D DP universality class should
obey a power law of Ft(t) ∝ t−0.159 over time. From the figure, the current data at Rew = 1575–1550
seem to be consistent with (1+1)-DP, although more data and more exponents will be needed to
properly confirm this trend. However, it should be noted that, for Rew ≤ 1550, none of the puffs split
and turbulent puffs were only attenuated, as shown in Figure 8a. This result suggests that a value
close to the critical exponent of DP can be obtained even under a non-DP phenomenon of a simple
decaying process without splitting. We should regard this result as a ‘spurious’ DP feature because
the puff splitting (or an active site that creates offspring) is a requisite for the critical point and, hence,
DP behavior. In other words, this reminds us to take caution regarding the judgment of a DP within
the laminar–turbulent intermittency.
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Figure 9. Time series of turbulent fractions: (a) for Re = 1500 with different threshold values and
(b) for Re = 1525–1600 with a threshold value of vth.

5. Conclusions

We performed direct numerical simulations (DNSs) of the concentric annular Couette–Poiseuille
flow (aCPf) and investigated the laminar–turbulent intermittent field of the so-called puff turbulence,
particularly during its subcritical transition. From previous studies, the laminar–turbulent
intermittency in annular flows (a pure Couette flow [37] or Poiseuille flow [34]) exhibits the
helically shaped turbulent pattern with bi-directional spatial intermittency and puff turbulence with
uni-directional intermittency, depending on the radius ratio. This fact leads to a unified understanding
of the formation of localized turbulence patterns of different systems, including planar and circular
pipe flows (CPFs); however, these analyses were conducted under conditions in which the basic
velocity profiles do not qualitatively match those of the CPF. In this study, the radius ratio (of the
inner/outer radii) was as low as 0.1, and the mean pressure gradient was imposed such that the
inner-cylinder surface had a zero velocity gradient on average, so that the CPF was alternatively
simulated by an annular system. Multiple puffs were demonstrated using a long computational
domain in the axial direction, and the presence or absence of the puff-splitting event and its onset
Reynolds number were investigated using a long-term DNS. The Reynolds number was reduced
adiabatically from the fully turbulent field, and the following results were obtained.

• At Rew = 1600, puff-splitting events occur along with stochastic puff decay, resulting in wave-like
fashion of multiple puffs with constant intervals.
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• At Rew < 1600, no puff-splitting event occurs, but initially given individual puffs survive over a
present observation time of at least 104h/uw, maintaining the intervals among the puffs.

• At Rew ≈ 1550, a ‘spurious’ feature of (1+1)D-DP was detected during the quenching process
even without puff splitting, and a lower Rew deviates from the DP critical exponent.

• At Rew = 1500, the flow becomes fully laminar after the non-trivial finite lifetime of the puff.
• The range of Rew = 1500–1600 (with the accordingly changed F(p)) corresponds to the bulk

Reynolds-number range of ReD = 2045–2190 based on the hydraulic diameter and bulk velocity.

The question considered in this study was whether puff splitting can occur in an aCPf,
which essentially has a non-slip inner cylinder. In fact, puff splitting was clearly observed at
Rew = 1600, and a sign of splitting was detected at Rew = 1540, which may be close to the global
critical point, Reg. This result guarantees that the planar system and the in-pipe system can be linked
via the annular system. Near the criticality, oblique turbulent stripes grow or split in the longitudinal
direction of the band, but the mainstream directional splitting, as seen in the CPF, is less pronounced
in the planar flows. Our results suggest that the localized structures seen in both the planar and
pipe flows can cause mainstream directional splitting. However, we should note that no completed
puff splitting was detected near Reg. The puff splitting could be observed for Rew < 1600 and even
below Reg by increasing both the observation time and domain by orders of magnitude. Such a task
to explore the exact Reg value as well as the Reynolds-number dependence of the puff-splitting time
scale near Reg is a challenging one that is almost impossible at present. Another possible approach
is to study lifetimes of single puffs [56] and time scales of splitting [10] at conditions away from Reg,
as in earlier studies on the CPF. This may allow us to discuss whether the current system behaves
more like quasi-1D Couette flow or like pipe flow, as done by Shi et al. [57] for a pCf. We would like to
report on this issue in another paper. Moreover, the characterization of a DP universal class remains
skeptical. Similarly to the critical phenomena of the DP universal class, the region of the absorbing state
(laminar-flow gap among puffs) should increase as the criticality approaches. From these facts, it is
important to verify the DP feature after further expanding the axial computational domain. In addition,
since the transition process of an aCPf has a dependence on the radius ratio and F(p), a parametric
study will also be addressed in the future.
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The following abbreviations are used in this manuscript:

aCf annular Couette flow
aCPf annular Couette–Poiseuille flow
aPf annular Poiseuille flow
CPF Circular pipe flow
DNS direct numerical simulation
DP direct percolation
pCPf plane Couette–Poiseuille flow
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pPf plane Poiseuille flow
rms root-mean-square value
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