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Abstract: In line with Pomeau’s conjecture about the relevance of directed percolation (DP)
to turbulence onset/decay in wall-bounded flows, we propose a minimal stochastic model
dedicated to the interpretation of the spatially intermittent regimes observed in channel flow
before its return to laminar flow. Numerical simulations show that a regime with bands obliquely
drifting in two stream-wise symmetrical directions bifurcates into an asymmetrical regime,
before ultimately decaying to laminar flow. The model is expressed in terms of a probabilistic
cellular automaton of evolving von Neumann neighborhoods with probabilities educed from a close
examination of simulation results. It implements band propagation and the two main local processes:
longitudinal splitting involving bands with the same orientation, and transversal splitting giving
birth to a daughter band with an orientation opposite to that of its mother. The ultimate decay stage
observed to display one-dimensional DP properties in a two-dimensional geometry is interpreted
as resulting from the irrelevance of lateral spreading in the single-orientation regime. The model
also reproduces the bifurcation restoring the symmetry upon variation of the probability attached
to transversal splitting, which opens the way to a study of the critical properties of that bifurcation,
in analogy with thermodynamic phase transitions.

Keywords: transition to/from turbulence; wall-bounded shear flow; plane Poiseuille flow;
spatiotemporal intermittency; directed percolation; critical phenomena

1. Context

How laminar flow becomes turbulent, or the reverse, when the shearing rate changes, is a problem
of great conceptual interest and practical importance. This special issue is focused on the case when
the transition is characterized by the fluctuating coexistence of domains either laminar or turbulent in
physical space at a given Reynolds number Re (control parameter), a regime called spatiotemporal
intermittency, relevant to wall-bounded flows in particular. Several years ago, Y. Pomeau [1] placed
that problem in the realm of statistical physics by proposing its approach in terms of a non-equilibrium
phase transition called directed percolation (DP). This process displays specific statistical properties
defining a universality class liable to characterize systems with two competing local states, one active,
the other absorbing, with remarkably simple dynamical rules: any active site may contaminate a
neighbor and/or decay into the absorbing state, and an absorbing state cannot give rise to any
activity [2]. The coexistence is regulated by the contamination probability, and a critical point can be
defined above which the mixture of active and absorbing states is sustained and below which the active
state recedes, leaving room for a globally absorbing state. The fraction of active sites is a measure of the
global status of the system. The subcritical context typical of wall-bounded flows, initially pointed out
by Pomeau, seems an interesting testbed for universality [3,4]. Here, turbulence plays the role of the
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active state and laminar flow, being linearly stable, represents the absorbing state. DP has indeed been
shown relevant to simple shear between parallel plates (Couette flow) [5] and its stress-free version
(Waleffe flow) [6]. The most recent contributions to the field can be found in [7]. In this paper we will
be interested in plane channel flow (also called plane Poiseuille flow), the flow driven by a pressure
gradient between two parallel plane plates, which is not fully understood despite recent advances.

In this context, universal properties are notably difficult to extract from experiments, since they
relate to the thermodynamic limits of asymptotically large systems in the long time limit, whereas what
plays the role of microscopic scales involves already macroscopic agents, e.g., roll structures in
convection or turbulent streaks in open flows, and the turnover time associated with such structures.
However, universality focuses on quantitative aspects of systems sharing the same qualitative
characteristics, in particular symmetries and the effective space dimension D in which these systems
evolve. Delicate questions can thus be attacked by modeling attempts that implement these traits
appropriately. This approach involves simplifications from the primitive equations governing the
problem, here the Navier–Stokes equations, to low-order differential models implementing the building
blocks of the dynamics [8], to coupled map lattices (CML) in which the evolution is rendered by
maps and space is discretized [9,10], to cellular automata for which local state variables are also
discretized, and ultimately to probabilistic cellular automata (PCA), where the evolution rule itself
becomes stochastic [11]. The absence of a rigorous theoretical method supporting the passage from
one modeling level to the next, such as multi-scale expansions or Galerkin approximations, makes the
simplification rely on careful empirical observations of the case under study, which somehow comes
and limits the breadth of the conclusions drawn.

1.1. Physical Context: Plane Channel Flow

Of interest here, the transitional range of plane channel flow displays a remarkable series of
steps at decreasing Re from large values where a regime of featureless turbulence prevails. It has
been the subject of numerous studies and references to them can be found in the article by Kashyap,
Duguet, and Dauchot in this special issue [12]; see also [13]. Our own observations based on numerical
simulations are described in [14,15] and summarized in Figure 1.

Re

Reg Re2 Ret
1-sided 2-sided

tight network

"featureless"

A Bloose network

laminar

ReDP

Figure 1. Bifurcation diagram of plane channel flow after [14]. Reg ≈ 700. Transversal splitting sets in
at Re ∼ 800 (event A). The extrapolated 2D-DP threshold is ReDP ' 984. The “one-sided→ two-sided”
transition takes place at Re2 ' 1011. localized turbulent bands (LTBs) exist up to Re ≈ 1200 (event
B), beyond which a continuous laminar–turbulent oblique pattern prevails up to the threshold for
featureless turbulence Ret ≈ 3900.

The Reynolds number used to characterize the flow regime is defined as Re = Uch/ν, where 2h is
the gap between the plates, Uc is the mid-gap stream-wise speed of a supposedly laminar flow under
the considered pressure gradient, and ν the kinematic viscosity. This definition using Uc is appropriate
for our numerical simulations under constant pressure-gradient driving. Other definitions involve
the friction velocity Uτ , or the stream-wise speed averaged over the gap Ub. They are related either
empirically, vis., Ub vs. Uc, or theoretically, vis., Reτ =

√
2Re to be used in particular for connecting

to the work presented in [12], and some other articles. See [14] for details. Below a first threshold
Ret, featureless turbulence leaves room for a laminar–turbulent, oblique, patterned regime (upper
transitional range) that next turns into a sparse arrangement of localized turbulent bands (LTBs)
propagating obliquely along two directions symmetrical with respect to the general stream-wise flow
direction, experiencing collisions and splittings (“two-sided” lower transitional regime). Event B in
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Figure 1 corresponds to the opening of laminar gaps along the intertwined band arrangement observed
in the tight laminar–turbulent network regime, and the simultaneous prevalence of downstream active
heads (DAHs) driving the LTBs. Upon decreasing Re further, a symmetry-breaking bifurcation takes
place at a second threshold Re2, below which a single LTB orientation prevails. Figure 2 displays
snapshots of the flow illustrating these last two stages.

Figure 2. Illustration of the different regimes featuring the wall-normal velocity component at the
mid-gap; turbulent/laminar flow is pink/white, after data in Figure 1 of [14]. The domain size is
250× 500 (span-wise × stream-wise). The flow is from left to right. Left: Strongly intermittent loose
continuous LTB network at Re = 1200 (∼event B). Centre: Two-sided regime at Re = 1050 (Re & Re2).
Right: One-sided regime at Re = 850. Downstream active heads (DAHs) are easily identified in the
two right-most panels; a single one is visible in the upper left corner of the left image, marking the
transition between sustained regular patterns and loose intermittent ones. Images here and in Figures 2
and 3 are adapted from snapshots taken out of the supplementary material of reference [14].

A significant result in [14] was that the decrease of turbulence intensity with Re below event B
followed expectations for directed percolation in two dimensions but that, controlled by the decreasing
probability of transversal splitting, the bifurcation at Re2 prevented the flow to reach the corresponding
threshold. The latter could nevertheless be extrapolated to a value ReDP < Re2. The ultimate decay
stage takes place at Reynolds numbers below the point whereat transversal splitting ceases to operate.
Figure 3 illustrates an extremely rare occurrence of transversal splitting at a Reynolds number roughly
corresponding to event A in Figure 1.

Figure 3. First observed occurrence of transversal splitting during a simulation at Re = 800 for
t ∈ (17100:100:17500). The stream-wise direction is horizontal and the flow is from left to right.

At lower Re, deprived of the possibility to nucleate daughters’ LTBs of opposite propagation
orientation, LTBs are forcibly maintained in the “one-sided” regime that eventually decays below a
third threshold Reg, marking the global stability of the laminar flow. Corresponding flow patterns
are illustrated in Figure 4, the right panel of which displays the surprising result that the turbulent
fraction decreases as a power law with an exponent β of the order of that for directed percolation in
one dimension, despite the fact that the flow develops in two dimensions [16].

The objective of the present work is the design of a minimal PCA model for these two last stages
that is applicable to flow states for Re below event B, incorporates the anisotropy features visible in
Figures 2–4, and accounts for the specific role transversal splitting above event A, in view of providing
clues to their statistical properties in relation to dimensionality and universality issues.
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Figure 4. (Left): One-sided flow at Re = 725, 750; same representation as in Figure 2. The domain size
is now 500× 1000, the stream-wise direction is vertical, and the flow upwards. (Right): Used as a proxy
for the turbulent fraction, Ey = V−1 ∫ u2

y dV is displayed as a function of 1/Re; inset: same data raised
at power 1/β with β = 0.28 suggesting decay according to the DP scenario in 1D, adapted from [16].

1.2. Modeling Context: Directed Percolation, Probabilistic Cellular Automata, and Criticality Issues

Various modeling approaches to transitional wall-bounded flows have received considerable
attention recently, from low-order Galerkin expansions of the primitive equations [17,18],
to phenomenological theories based on a deep physical analysis of the processes involved in a
reaction-diffusion context [19], to analogical systems expressed in terms of deterministic coupled map
lattices [6,10], and to more conceptual models implementing the dynamics of cellular automata with
probabilistic evolution rules (PCA) [20–22]. The model developed below belongs to this last category,
implementing rules that focus on the main qualitative features seen in experiments. Such models are
based on the conventional modeling of DP [2] which is most appropriate to account for the absorbing
versus active character of local states.

Let us briefly recall the PCA/DP framework. In the most general case, the activity at site j at
time t + 1, call it Sj ∈ {0, 1}, depends on the activity at sites in a full D-dimensional neighbor Vj
of that site at time t and the status of the links, permitting or not the transfer of activity within the
neighborhood. For convenience a (D + 1)-dimensional lattice is defined with one-way (directed) bonds
in the direction corresponding to time so that D-dimensional directed percolation is often presented as a
special (D + 1)-dimensional percolation problem. In the simplest case of one space dimension (D = 1),
the neighborhood of a lattice site at j is the set of sites with j′ ∈ [j− r1, j + r2], comprising r2 + r1 + 1
sites, and it is supposed that contamination of the state at j at time t + 1 depends on the status of
full configuration, the sites’ activity, and the bonds’ transfer properties (“bond–site” percolation [23]).
In some systems, the propagation rule is totalistic in the sense that the output only depends on the
number of active sites in the neighborhood and not on their positions, i.e., ς j = ∑j′∈Vj

Sj′ ; an interesting
example is given in [24].

In view of future developments, let us discuss bond directed percolation in one dimension (D = 1)
with two neighbors (r1 = 0 or r2 = 0), only depending on the probability p that bonds transfer
activity. The evolution rule S′j = R(Sj, Sj+1), where S′j denotes the state at node j and time t + 1,
is totalistic. With ς j = Sj + Sj+1, we have (a) R(ς = 0) = 0 with probability 1 (a site connected to
two absorbing parents never gets active whatever the links) and (b) R(ς = 1) = 1 with probability
p (closed link transmitting activity), so that (a’) R(ς = 1) = 0 with probability 1− p (open link
preventing transmission), (c) R(ς = 2) = 0 with probability (1− p)2 (absorbing since the two links
are open), and (d)R(ς = 2) = 1 with probability 1− (1− p)2 = p(2− p), the complementary case.

The question is whether, depending on the value of p, once initiated, activity keeps continuing
in the thermodynamic limit of infinite times in an infinitely wide system. An answer is readily
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obtained in the mean-field approximation where actual local states are replaced by their mean value,
neglecting the effect of spatial correlations and stochastic fluctuations (we follow the presentation
of [20]). The spatially-discrete Boolean variables Sj are, therefore, replaced by their spatial averages
S = 〈Sj(t)〉 and this mean value is just the probability that any given site is active. It is then argued
that the probability to get a future absorbing state, 1− S′, is given by activity not being transmitted
(1− pS)2, which yields the mean-field equation:

1− S′ = (1− pS)2 = 1− 2pS + p2S2, i.e., S′ = 2pS− p2S2. (1)

Equilibrium states correspond to the fixed points of (1): S′ = S = S∗, which gives a nontrivial activity
level S∗ = (2p− 1)/p2 when p ≥ pc = 1/2. Close to threshold, defining ε = (p− pc)/pc = 2p− 1
one gets S∗ ≈ 4ε. In the mean-field (MF) approximation S∗ is the order parameter of the transition
supposed to vary as εβ, which defines the critical exponent β, here βMF = 1. Directed percolation is
the prototype of non-equilibrium phase transitions and, as such, is associated with a set of critical
exponents (see [2]). Both the critical probability pc and the mean activity S∗ are affected by the effects of
fluctuations, with pc ≈ 0.6445 > 1/2 expressing that a probability larger than the mean-field estimate
is necessary to preserve activity, and βDP ≈ 0.276 when D = 1. The simple mean-field argument is
not sensitive to the value of D in contrast with reality: βDP ≈ 0.584 when D = 2, ≈ 0.81 when D = 3,
and trends upwards to 1 reached at D = 4 = Dc = 4, called the upper critical dimension (see [2] for a
review). Quite generally, mean-field arguments are valid for D > Dc. We are interested in another
critical exponent, α. When starting from a fully active system exactly poised at pc, the turbulent
fraction is observed to decrease with time (the number of iteration steps) as 〈S〉 ∝ t−α with α ≈ 0.159
when D = 1 and 0.451 when D = 2, whereas the mean-field prediction, easily derived from (1),
is αMF = 1. Scaling theory shows that α = β/ν‖, where ν‖ is the exponent accounting for the decay of
time correlations while ν⊥ describes the decay of space correlations [2].

Universality is a key concept in the field of critical phenomena characterizing continuous phase
transitions. It leads to the definition of universality classes expressing the insensitivity of critical
properties to specific characteristics of the systems and retaining only properties linked to the
symmetries of the order parameter and the dimension of space. For directed percolation, universality is
conjectured to be ruled by a few conditions put forward by Grassberger and Janssen: that the transition
is continuous into a unique absorbing state and characterized by a positive one-component order
parameter, and that the processes involved are short-range and without weird properties such as
quenched randomness; see [2]. Universality issues are discussed at length elsewhere in this special
issue, in particular by Takeda et al. [25].

In this first approach, we shall examine how universality expectations hold for the ultimate decay
stage of transitional channel flow at Reg, as described in Section 1.1, and limit the discussion to the
consideration of exponents β and α. This will be done in Section 3, the next section being devoted to
the derivation of the model and its mean-field study. Section 4 focuses on its ability to account for the
symmetry-breaking bifurcation at Re2, and our conclusions are presented in Section 5.

2. Description of the Model

2.1. Context

The approach to be developed is not new in the field of transitional flows. For example,
studying plane channel flow, Sano and Tamai [21] introduced a plain 2D-DP model dedicated to
support their experimental results, with a simple spatial shift implementing advection and a uniformly
turbulent state upstream corresponding to their setup. Earlier, a similarly conceptual model was
examined by Allhoff and Eckhardt [20], who introduced a PCA with two parameters accounting for
persistence and lateral spreading appropriate for the symmetries of plane Couette flow, developed its
mean-field treatment, and performed simulations to illustrate the spreading of spots and decay of
turbulence in agreement with expectations. In a similar spirit but introducing more physical input,
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Kreilos et al. [22] analyzed the development of turbulent spots in boundary layers as a function of
the residual turbulence level upstreams, separating a deterministic transport step from a stochastic
growth/decay step with probabilities extracted from a numerical experiment, gaining insight into the
statistics of boundary layer receptivity.

Following the lines of research suggested by those works, we developed a 2D model designed
to interpret the decay of channel in the LTB regimes from two-sided to one-sided at decreasing Re,
just qualitatively proposing a plausible variation of probabilities introduced as functions of Re. In our
approach, the elementary agents are the LTBs themselves either propagating to the left or to the
right of the stream-wise direction. To them we attach variables analogous to spins in magnetic phase
transitions problems. Even if in computations, numerical values S = ±1 will be used, for descriptive
and graphical convenience we shall associate them with colors—specifically: blue (B) and red (R)
for right- and left-propagating LTBs, respectively. Laminar sites will be denoted using the empty-set
symbol ∅, will have value 0, and will be graphically left blank. These agents will be seated at the
nodes of a square lattice with coordinates (i, j), i.e., S(i,j) with S 7→ {R, B, ∅} at the given site. As seen
in Figure 5a, we place the stream-wise direction along the first diagonal of the lattice so that the LTBs
will move along the horizontal and vertical axes; see Figure 5b.
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Figure 5. (a) Cellular automata lattice with the two types of active states, B and R; the state at an
empty node is denoted ∅ and left blank. (b) Left: the two possible kinds of propagation from an
initial position marked with the “∗”. Right: collision configuration to the point marked with the “∗”.
(c) Labeling of the von Neumann neighborhood used to account for the dynamics.

A strong assumption is that an LTB as a whole corresponds to a single active state, while the
discretization of space coordinates (i, j) ∈ Z2, and time t ∈ N tacitly refers to an appropriate rescaling
of time and space. Furthermore, interactions are taken as local, with configurations limited to
nearest neighbors in each space direction. Accordingly, the dynamics at a site (i, j) only depend
on the configuration of its von Neumann neighborhood V(i,j) := {(i, j), (i± 1, j), (i, j± 1)}, Figure 5c,
while evolution is driven by a random process. We now turn to the definition of rules that mimic the
actual continuous space-time, subcritical and chaotic, Navier–Stokes dynamics governing the LTBs’
propagation, decay, splitting, and collisions, via educated guesses from the scrutiny of simulation
results, in particular those in the supplementary material attached to [14].

2.2. Design of the Model

Let us first give a brief description of the processes to be accounted for. Below Re ≈ 800 (event A)
only decay and longitudinal splittings are possible. Not visible in the snapshots of Figure 4 (left)
but observable in the movies is the fact that a daughter LTB resulting from longitudinal splitting
runs behind its mother along a track that may be slightly shifted upstream. This shift is negligible
when Re is small (in-line longitudinal splitting) but as Re increases it becomes more and more visible
while the general propagation direction is unchanged (off-aligned longitudinal splitting). On the
other hand, Figure 4 clearly illustrates the fact that, upon transversal splitting, the new-born LTB
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systematically develops on the downstream side of its parent. Importantly, the propagation of LTBs is
a dynamical feature different from advection treated as a deterministic step in [22]. Accordingly, it will
be understood as a statistical propensity to move in a given direction resulting from an imbalance
of stochastic “forward” and “backward” processes along their directions of motion. Other complex
processes also seen in the simulations, such as fluctuating propagation with acceleration, slowing down,
or lateral wandering, will be included only in so far as they can be decomposed into such more
elementary events. All the events to be included in the model can be translated into the language of
reaction–diffusion processes, persistence or death, offspring production, and coalescence, common in
the field of DP theory [2].

On general grounds the governing equation reads:

S′(i, j) = ∑
C ′

RC ′δC ′C(i,j) , (2)

where C(i, j) is the neighborhood configuration of site (i, j) at time t, C ′ one of the possible
configurations, and RC ′ a stochastic variable taking value 1 with probability pC ′ corresponding to
configuration C ′ and value 0 with probability 1− pC ′ . The Kronecker symbol δC ′C is here to select the
configuration C ′ that matches C. Depending on C and C ′, the output S′(i, j) can be B or R.

Figure 6 illustrates the set of possible single-colored neighborhoods, either B (upper line)
or R (lower line). Following the indexation in Figure 5c, the order of the columns is based on
the physical condition and respects the upstream/downstream distinction illustrated in Figure 5a,
making configurations with the same index physically equivalent.

(1) (2) (3) (4) (5)

(B)

(R)

? ? ? ??

? ? ? ??

Figure 6. Single-color configurations: from the overall geometry depicted in Figure 5a, the downstream
side of a state is to the top for B states and to the right for R states. Each colored square indicates the
active state in the configuration at time t of site (i, j) at the center. The question mark features the
probabilistic outcome (time t + 1).

These single-color elementary configurations will be denoted as Ci with i ∈ [1:5]. They will
be described as [SSSSS] with S = B, R, or ∅. Hence C3 ≡ [∅ ∅ B ∅ ∅] or [∅ R ∅ ∅ ∅].
Later, more complicated configurations will not be given a name but just a description following
the same rule, e.g., [∅ BBR ∅].

Importantly, we make the assumption that the future state at a given node, the question marks in
Figure 6, is the result of the probabilistic combination of the independent contributions of elementary
configurations involving a single active state in its neighborhood.

First of all, the void configuration C0 ≡ [∅ ∅ ∅ ∅ ∅] obviously generates an empty site with
probability 1, hence an occupied site with probability pC0 = 0, in order to preserve the absorbing
character of the dynamics. All the other configurations evolves according to probabilities that are free
parameters just constrained by empirical observations. Let us now interpret probabilities associated
with the five situations depicted in Figure 6, focusing on the case of B states:
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1. C5 ≡ [∅ ∅ ∅ ∅ B] corresponds to the natural propagation of the active state along its own motion
direction. Accordingly, the active site B at (i− 1, j) is expected to be found at (i, j) and time t + 1
with a high probability, pC5 = p5 . 1, which corresponds to the near-deterministic propagation
of an active state as observed for Re ≥ Reg. With probability 1− p5 � 1, site (i, j) will not turn
active, which means that the LTB has decayed or experienced a speed fluctuation that delayed its
propagation. The corresponding R configuration is C5 ≡ [∅ ∅ ∅ R ∅].

2. Configuration C1 ≡ [B ∅ ∅ ∅ ∅] corresponds to an active site B at (i, j) that is not supposed to
stay in place but move to (i + 1, j) with probability p5 and leave site (i, j) empty at time t + 1.
The probability p1 that (i, j) is still active at time t + 1, therefore, generally corresponds to the
creation of a novel active state by in-line longitudinal splitting at the rear of the active state that
has effectively moved. Persisting activity at (i, j) and time t + 1 can also be the result of state at
(i, j) and time t experiencing a speed fluctuation leaving it stuck at the same place with probability
1− p5 as argued above for configuration C5. The presence of parameter p1 undoubtedly makes
the dynamics richer. The corresponding R-configuration is C1 ≡ [R ∅ ∅ ∅ ∅].

3. Configuration C2 ≡ [∅B ∅ ∅ ∅] corresponds to an active state B at site (i, j + 1) that contaminates
backwards and laterally upstream the site at (i, j) in addition to its likely propagation to
(i + 1, j + 1) with probability p5. This is precisely what is sometimes observed for longitudinal
splitting, where the daughter follows a track parallel to that of the mother but slightly shifted
upstream, i.e., off-aligned. Configurations C1 and C2 both account for longitudinal splitting but
the latter hence introduces some lateral diffusion. Along this line of thought, numerical simulation
results in [14], illustrated in Figure 4, suggest that probability p2 is tiny close to Reg but increases
with Re. The corresponding R-configuration is C2 ≡ [∅ ∅R ∅ ∅].

4. In configuration C3 ≡ [∅ ∅ B ∅ ∅], the active site B at (i + 1, j) is supposed to advance further at
(i + 2, j) with probability p5. Persisting activity at (i, j), therefore, means longitudinal splitting
ahead but now with the opening of a wide laminar gap between the offspring left behind at (i, j)
and the parent that has advanced, with probability p5, at (i + 2, j). Else, activity at (i, j) and t + 1
could result from activity at (i + 1, j) and time t propagating backwards to (i, j) at time t + 1.
These circumstances have not been observed and appears unlikely or impossible, which suggests
to take p3 = 0. The corresponding R-configuration is C3 ≡ [∅ R ∅ ∅ ∅].

5. In configuration C4 ≡ [∅ ∅ ∅ B ∅], the state B at (i, j− 1) and time t is expected to be at (i+ 1, j− 1)
at time t + 1. State at (i, j) being active at t + 1 means contamination backwards and laterally
downstream, which is never observed in the simulations; hence, p4 = 0. The corresponding
R-configuration is C4 ≡ [∅ ∅ ∅ ∅ R].

6. Still about configuration C4, the situations described in the previous items all imply single-colored
evolution, which is guaranteed below the onset of transversal splitting, i.e., R . 800. When Re &
800, as illustrated in Figure 3, this splitting produces an R offspring at (i, j) out of a B parent at
(i, j− 1) or B offspring from an R parent at (i− 1, j), as sketched in Figure 7 (left). A probability
p′4 6= 0 will be associated with it, where the prime is meant to recall that it involves states of
different colors.

To summarize, as it stands the model involves four parameters: p1 mainly governs longitudinal
splitting and p2 additional lateral diffusion, p5 is for propagation, and p′4 for transversal splitting.
The propagation of active states along their own direction involves probabilities associated with
elementary configurations C1 and C5 while the overwhelming contribution of p5 favors one direction.
Configuration C3 that could have contributed to the balance is empirically found negligible, saving one
parameter as indicated above.

Neighborhoods with more than one active site are treated by assuming that the future state S′ of
the central node (i, j) is the combined output of its elementary ingredients, each contribution being
considered as independent of the others, i.e., without memory of the anterior evolution, of which the
considered configuration is the outcome. The computation of the probability attached to the output of
a given single-colored neighborhood is then straightforward. The argument follows the lines given for
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directed percolation, bearing on the probability that the state at the node will be absorbing (empty) and
leading to Equation (1) in the mean-field approximation [20,24]. Things are a little more complicated
when the neighborhood is two-colored since in all mixed-colored cases some configurations correspond
to collisions and others allow for the nucleation of a differently colored offspring when p′4 6= 0.

For an elementary configuration, non-contamination of site (i, j) from an active neighboring
state in position k ∈ [1:5] takes place with probability (1− pk) and of course with probability 1 if the
corresponding site is empty. This gives the general formula (1− pkSk), where Sk = 1, when the site is
active, either B or R, and Sk = 0 when it is absorbing (∅). For a configuration Cx = [S1, S2, S3, S4, S5],
where S = B, R, or ∅, the probability to get an absorbing state is (1− pCx ) = ∏k(1− pkSk) hence for
the node to be activated pCx = 1−∏k(1− pkSk). To deal with two-colored neighborhoods properly,
we must be a little more specific and write the probability of the state S′ of a given color S as

p[S1,S2,S̄4,S5]
= 1− (1− p1S1)(1− p2S2)(1− p′4S̄4)(1− p5S5) (3)

where it is understood that if S = B, then S̄ = R or the reverse, and Sj = 0 for j = 1, 2, 5, or S̄4 = 0 if
the corresponding states are ∅. Figure 7 (right) illustrates the most interesting two-state configurations
with different colors corresponding to collisions (C1) and offspring generation (C2). Such a situation is
dealt with by adding a supplementary rule:

(R)(B) (C2)(C1)

Figure 7. Modeling of transversal splitting for states of type (B) propagating horizontally and (R)
propagating vertically, the base flow being along the diagonal (↗). Heavy colors indicate states present
at time t and, playing the role attributed to question marks in Figure 6; light colors stand for states
possibly present at time t + 1 according to probabilities p5 (propagation) and p′4 (transversal splitting).
Conflicting configurations are (C1) ([SSSRB] corresponding to propagation leading to a collision and
(C2) [SSSBR] corresponding to simultaneous transversal splittings, respectively (here S = ∅ for clarity).

7. When the general expression (3) gives non-zero probabilities to S′ and S̄′ the resulting
superposition of states is not allowed and a choice has to be made. It might seem natural
to keep the state with the maximum probability but, depending on circumstances hard to
decipher, collisions sometimes appear to cause the decay of both protagonists or else reinforce the
dominance of one color in a given region of space. A similar bias can affect transversal splitting.
These peculiarities are not taken into account here: for simplicity, in all conflicting cases, we make
the assumption that the result is non-empty and random with probability 1/2.

The model is now complete with parameters clearly related to empirical observations,
plausible relative orders of magnitude and sense of variation: Probability p5 is the main ingredient for
the built-in propagation of the two families of LTBs (active states). In turn p1 is obviously related to the
behavior of the system close to decay at and slightly above Reg. The value given to probability p2 will
appear crucial to the 1D reduction of DP in a 2D medium as observed experimentally (Figure 4, right).
Finally, we can anticipate that probability p′4 will control the one-sided/two-sided symmetry-restoring
bifurcation, as it continuously grows from 0 beyond Event A at R ≈ 800.

2.3. Mean-Field Approach

The explanatory potential of the model is first examined by means of a mean-field approximation
which mainly relies on the replacement of fluctuating quantities by space-averaged values and the
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neglect of correlations. The observables involved in the mean-field expressions are the ensemble
averages of the microscopic states 〈S(i, j)〉. Their values at t + 1 are obtained by taking averages
of the governing Equation (2) using the expression of the configurational probabilities given in (3).
By assumption/definition 〈S′〉 is the mean outcome of pCx averaged over all the possible configurations,
where space dependence (i, j) is temporarily kept: 〈S′(i, j)〉 = 〈p[S1,S2,S̄4,S5]

〉. This gives a set of
two equations:

〈B′(i, j)〉 = 1−
〈
(1− p1B(i, j))(1− p2B(i, j + 1))(1− p′4R(i− 1, j))(1− p5B(i− 1, j))

〉
, (4)

〈R′(i, j)〉 = 1−
〈
(1− p1R(i, j))(1− p2R(i + 1, j))(1− p′4B(i, j− 1))(1− p5R(i, j− 1))

〉
. (5)

The approximation now enters the evaluation of the products on the right hand side of the equation.
Each variable is replaced by its average and the spatial dependence is dropped: 〈B(i, j)〉 7→ 〈B〉
and 〈R(i, j)〉 7→ 〈R〉. Further, correlations are neglected so that the average of a product is just the
product of averages. The expansions of (4) and (5) in powers of 〈B〉 and 〈R〉 are then readily obtained.
Forgetting for a moment the intricacy linked to transversal splitting/collisions, the general expression
for the dummy variables 〈S〉 and 〈S′〉 reads:

〈S′〉 = ∑
k

pk〈Sk〉 − ∑
k1,k2

pk1 pk2〈Sk1〉〈Sk2〉+ h.o.t. (6)

with pk ∈ {p1, p2, p′4, p5} and where h.o.t. stands for the higher order terms, formally cubic, quartic,
etc. The first sum in (6) corresponds to the contribution of the elementary configurations introduced in
Figure 6, and the second sum to binary configurations, in particular the nontrivial ones corresponding
to transversal splittings and collisions examined in Figure 8 (right). Orders of magnitude among
the pk, further support neglecting the contribution of configurations populated with three or more
active sites, involving products of three or more probabilities pk, and among contributions of a given
degree, those not containing p5 when compared to those that do, recalling the assumption p5 . 1
and {p1, p2} � 1 implied by the nearly deterministic propagation of states in position 5 of Figure 6.
A number of terms can, therefore, be neglected in the expanded forms of (4) and (5), which after
simplification read:

〈B′〉 = (p1 + p2 + p5)〈B〉+ p′4〈R〉 − p5(p1 + p2)〈B〉2 − p5
2〈B〉〈R〉 , (7)

〈R′〉 = (p1 + p2 + p5)〈R〉+ p′4〈B〉 − p5(p1 + p2)〈R〉2 − p5
2〈R〉〈B〉 . (8)

This system presents itself as the discrete time counterpart of the differential system introduced in [14]
to interpret the symmetry-breaking bifurcation observed at decreasing Re in the simulations. As a
matter of fact, subtracting 〈B〉 and 〈R〉 on both sides of (7) and (8) respectively, one gets:

〈B′〉 − 〈B〉 ≈ d〈B〉
(dt ≡ 1)

= (p1 + p2 + p5 − 1)〈B〉+ . . . (9)

〈R′〉 − 〈R〉 ≈ d〈R〉
(dt ≡ 1)

= (p1 + p2 + p5 − 1)〈R〉+ . . . (10)

to be compared with system (1,2) in [14], reproduced here for convenience:

dX+

dt
= aX+ + cX− − bX2

+ − dX+X− , (11)

dX−
dt

= aX− + cX+ − bX2
− − dX−X+ , (12)

where X± represents what are now the densities 〈B〉 and 〈R〉. The coefficients in (11) and (12) are then
related to the probabilities introduced in the model as a ∝ p1 + p2 + p5 − 1, b ∝ p5(p1 + p2), c ∝ p′4,
and d ∝ p2

5. By omitting the common proportionality constant that accounts for the time-stepping
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inherent in the discrete time reduction (featured by the denominator of left-hand sides in (9) and (10)
as “(dt ≡ 1)),” constants a, b, c, and d will serve as short-hand notation for the corresponding full
expressions in terms of the probabilities pk.

Since fixed points given by the condition 〈S′〉 = 〈S〉 is strictly equivalent to dX±/dt = 0, we can
next take advantage of the analysis performed in [14] and predict a supercritical symmetry-breaking
bifurcation for an order parameter |〈B〉 − 〈R〉| (denoted “A” in [14]) at a threshold given by
ccr = a(d− b)/(d + 3b). This symmetry-breaking bifurcation takes place for p′4 = c > 0, but the model
can deal with the regime below event A at Re ≈ 800 for which p′4 ≡ 0. In that case the bifurcation
corresponding to global decay at Reg takes the form of two coupled equations generalizing (1) for DP.
Using the abridged notation, these equations read:

〈B′〉 = (a + 1)〈B〉 − b〈B〉2 − d〈B〉〈R〉 , 〈R′〉 = (a + 1)〈R〉 − b〈R〉2 − d〈R〉〈B〉 . (13)

In addition to the trivial solution 〈R〉0 = 〈B〉0 = 0 corresponding to laminar flow, we have two
kinds of non-trivial solutions, either single-sided (∗) with 〈R〉 6= 0 and 〈B〉 = 0 or 〈B〉 6= 0 and
〈R〉 = 0, the non-vanishing solution being 〈S〉∗ = a/b, with S = R or B, or double-sided (∗∗) with
〈B〉∗∗ = 〈R〉∗∗ = a/(b + d). A straightforward stability analysis of the fixed points of iterations (13)
shows that the one-sided solution is stable when b < d and unstable otherwise whereas the reversed
situation holds for the two-sided solution. Returning to probabilities, the global stability threshold is
thus given for a = 0; hence, (p1 + p2 + p5)

cr = 1 and the one-sided solution is expected when b < d;
i.e., p1 + p2 < p5. Results of the mean-field approach adapted from [14] to the present formulation
will be illustrated in Figure 14 below.

2.4. Numerical Simulations

While serving as a guide to the exploration of a vast range of parameters, the simplified
mean-field theory developed above is not expected to give realistic results relative to the critical
properties expected near the transition point, whether decay at Reg or symmetry restoration above
Re2. For example, observations suggest that LTB propagation is a dominant feature; hence, p5 . 1
and {p1, p2} is small, leading us to expect stable one-sided solutions systematically. This conclusion,
however, strongly relies on neglecting all terms beyond second degree in (4) and (5) in the evaluation
of the contribution of densely populated configurations, leading to (7) and (8). This is legitimate
only when 〈S〉n � 〈S〉2, i.e., 〈S〉 � 1, that is, close to decay in the case of a continuous
(second-order) transition but not necessarily elsewhere in the parameter space, in particular at the
one-sided/two-sided bifurcation where both 〈R〉 and 〈B〉 are of the same order of magnitude but may
be large. Even when keeping the assumption of independence of contributions to the future state at a
given lattice node, this problem is not easily addressed and, at any rate, has to be properly accounted
for in the presence of stochastic fluctuations, which will be done numerically.

The translation of the probabilistic rules introduced in Section 2.2 using Matlab R© is
straightforward once the “B/R/∅” convention is appropriately translated into “+1/−1/0”.
No assumption is made other than the independence of the contributions of the different configurations
to the outcome at a given lattice node, by strict application of the rules expressed through (2) and (3).
In particular, computations involve the contribution of all configurations and not only the unary or
binary ones, as presumed to derive the mean-field equations. Periodic boundary conditions have
been applied to 2D lattices of various dimensions (NB × NR), where NB (NR) is the number of sites in
the propagation direction of B (R) active states, with ordinarily NB = NR. At each simulation step,
we shall measure the mean activity of B and R states denoted 〈B〉 and 〈R〉 above and from now on
called turbulent fractions, as Ft(B) = (NBNR)

−1#(B) and Ft(R) = (NBNR)
−1#(R) where #(B) and

#(R) are the numbers of sites in the corresponding active state.
A preliminary study of the model in a small domain has shown that the different transitional

regimes and the symmetry-breaking bifurcation were indeed present as expected from the simplified
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mean-field approach. (We remind that the model contains nothing appropriate for organized
laminar–turbulent regimes for Re > 1200 and is relevant only for the strongly intermittent sparse
LTB networks pictured in Figures 2 and 3). In [14], we argued that the onset of transversal splitting
was the source of genuinely 2D behavior. Accordingly we shall consider the stochastic model in two
steps, below and above the onset of transversal splitting, here associated with p′4 ≡ 0 and p′4 > 0
respectively. Furthermore, in the simulations the LTBs were seen to propagate obliquely with respect
to the background downstream current. This propagation is nearly all contained in the probability
attached to configuration C5 (p5 for propagation and 1− p5 for decay or slowing-down), and to a lesser
extent influenced by the contribution of configuration C1, mostly associated with in-line longitudinal
splitting. We shall account for the limited sensitivity of the propagation speed to the value of Re to fix
p5 constant and close to 1, more specifically p5 = 0.9, and let other parameters vary. The role of p2 and
p′4, both related to 2D features, will be studied separately in the two next sections.

3. Before Onset of Transversal Splitting, P′
4 = 0

3.1. Coarsening from Two-Sided Initial Conditions

In the absence of transversal splitting, changes in the population of each state only comes from
transversal collisions. As documented in [14], when starting from an initial condition with two
similarly represented orientations, collisions lead to the formation of domains uniformly populated by
one of each species, following from a majority rule, with interactions limited to the domain boundaries.
A coarsening takes place with one species progressively disappearing to the benefit of the other,
leaving a single-sided state at large times. The process is illustrated here using simulations of the
model with p5 = 0.9, p1 = 0.1, p2 = 0.07, values known from the preliminary study to produce a
sustained nontrivial final state.

The decay from a fully active state populated with a random distribution of B and R states in equal
proportions is scrutinized in a 256× 256 domain with periodic boundary conditions. Figure 8 illustrates
a particularly long transient displaying the different stages observed during a typical experiment.

The upper panel displays the time series of the turbulent fractions for each species, B and R, for
a two-sided high-density initial condition, Ft(B) + Ft(R) = 1, Ft(B) ' Ft(R) ' 0.5. Contrasting with
the monotonic variation observed when starting from one-sided initial conditions, either increasing
from a low density of active states (Ft = 0.05) or decreasing from a fully active configuration (Ft = 1),
the turbulent fractions change in a more complicated way that is easily understood when looking
at the bottom line of snapshots. The total turbulent fraction first decreases due to the dominant
effect of collisions. These collisions tend to favor a spatial modulation of the activity amplifying
inhomogeneities in the initial conditions. This distribution results from the majority effect expressing
the local stability of one-sided states predicted by the mean-field analysis. A periodic pattern already
appears at t = 100, with bands oriented parallel to the second diagonal of the square domain. B states
move right along the horizontal axis, and R states up along the vertical axis, at the same average speed
so that the pattern drifts along the first diagonal of the domain. Regions where B or R dominate are
locally stable against destructive collisions and activity is limited to B/R interfaces. After a while,
splittings begin to counteract collisions and an overall activity recovers, here for t ≈ 250. The local
density of B and R states increases inside bands that become better defined, reaching a sustained
regime with two R–B alternations, wide and narrow, at t ' 1500. This configuration is nearly stable
and slowly evolves only due to the erosion of narrowest bands at the R/B interfaces. At t ≈ 5500 these
bands disappear by merging, leaving two bands, B wide and R narrow. The same slow erosion process
leads to the final homogeneous B regime by decay of the R band at t ∼96,000. The two successive
band decays take place at roughly constant total turbulent fraction with fast adjustment at the band
decay, up to the final single-sided turbulent fraction. The asymptotic state is independent of the way it
has been obtained, from one-sided or two-sided initial conditions.
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Figure 8. (Top): Time series of the turbulent fractions for a simulation from a fully active initial
configuration with B and R states in equal proportions—blue and red in graphs, respectively; the dotted
black trace is for the total turbulent fraction. Two simulations starting from low (Ft = 0.05, cyan) and
high (Ft = 1, magenta) density one-sided states are displayed for comparison. (Bottom): Snapshot of
state during the simulations from the two-sided initial condition, at t = 100 during initial decay,
at t = 5500 with two pairs of active bands of each color, at t = 13,000 when the narrowest bands merge
and disappear, at t = 96,000 when the R active band disappears, leaving a uniform B state.

The long duration of the transient taken as an example is due to the near stability of the rather
regular pattern building up after the initial fast decay. This property is in fact the result of a geometrical
peculiarity of the square domain: B and R states travel statistically at the same speed through the
domain, horizontally and vertically, respectively, so that the band integrity is maintained despite
propagation and the evolution controlled by collisions at the B–R and R–B interfaces only. The observed
slow erosion process only results from large deviations among collisions. In rectangular domains,
the propagation times become different and the symmetry of the two interfaces is lost. A bias results,
which induces a systematic erosion of bands and a shorter transient duration. Whatever the aspect
ratio, one of the states is always ultimately eliminated and the last stage of the transient corresponds
to a trend toward a statistically uniform saturated one-sided regime with a turbulent fraction strictly
independent of the shape. Accordingly, to save the time corresponding to the transient, in the
next section we will study the decay of the one-sided regime by starting from random one-sided
initial conditions.

All these features nicely fit the empirical observations discussed at length in [14] where similar
transients were obtained below the onset of transversal splitting—in much smaller effective domains
and with far fewer interacting LTBs, however (Figure 2, right panel, and Figure 4, left panels).
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3.2. Decay: 1D vs. 2D

The model is designed to exemplify a decay according to the DP scenario in a two-dimensional
setting, with specificities linked to the anisotropic propagation properties of the LTBs in transitional
channel flow, and, in particular, propose an interpretation for the observation of 1D-DP exponents in
the absence of transversal splitting (p′4 = 0). Accordingly, we examine the role of transverse diffusion
(parameter p2) modeling the slight upstream shift that may affect LTBs at longitudinal splitting.
We focus on a set of experiments with p5 = 0.9, p2 fixed, and control parameter p1. When p2 cancels
exactly, it is easily understood that transversal expansion is forbidden: An active B state at (i, j + 1)
or R state at (i + 1, j) at time t cannot give birth to an active state of the same kind at (i, j) at t + 1.
The evolution stems from processes associated with configuration C5 with probability p5 or C1 with
probability p1. These processes change occupancy only along direction i for B states, and j for R states,
precisely in the direction corresponding to the single-sided regime considered (after termination of the
transient). The dynamics are, therefore, strictly one-dimensional and decay is expected to follow the
1D-DP scenario. In contrast, introducing some transverse diffusion (p2 6= 0) immediately gives some
2D character to the dynamics. This is illustrated in Figures 9–12.

We consider first p2 non-zero and relatively large p2 = 0.1. Figure 9 displays the behavior of the
turbulent fraction as a function of p1.
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Figure 9. (Left): Time series of the turbulent fraction at different values of p1; average over 5 (10)
independent simulations (p1 = 0.0584 ≈ pc

1, black trace). (Right): Mean value of the turbulent
fraciton at stationary state as a function of p1 (original data). Inset: once raised to power 1/β,
with β = 0.584 ≈ βDP for D = 2, the mean turbulent fraction tends to 0 linearly with an extrapolated
threshold pc

1 = 0.05843.

The left panel illustrates the decrease of the turbulent fraction with the number of steps from a
uniformly fully turbulent single-sided state (Ft = 1 at t = 0) in a domainD = (192× 192), showing the
saturation to a finite value 〈Ft〉 above threshold, a near power-law decay close to threshold, and an
exponential decay below. The right panel presents the mean of Ft after elimination of an appropriate
transient as a function of p1, for simulations in domains up to 512× 512 for the lowest values of Ft.
Once fitted in the range p1 ∈ [0.058, 0.064] against the expected power law behavior 〈Ft〉 = a(p1 − pc

1)
β

one gets a = 3.213 (2.936, 3.489), pc
1 = 0.05844 (0.05842, 0.05845), β = 0.5811 (0.566, 0.5962), in very

good agreement with the value βDP ≈ 0.584 when D = 2 [2]. This is confirmed in the inset of Figure 9
(right) showing 〈Ft〉1/0.584 as a function of p2 for Ft small, the linear variation of which extrapolates to
zero for p1 ≈ 0.05843.

Having a good estimate of the threshold one can next consider the decay of the turbulent fraction,
which is supposed to decrease as a power law at criticality, p1 = pc

1: Ft ∼ t−αDP with αDP = βDP/ν‖DP
where ν‖DP

≈ 1.295; hence, αDP ≈ 0.451 [2]. Figure 10 (left) shows that this is indeed the case for the
compensated turbulent fraction Ft × tαDP , up to the moment when fluctuations become too important
due to size effects and lack of statistics. When p1 is different from pc

1 but stays sufficiently close to it,
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the variation of the turbulent fraction keeps trace of the critical situation, except that the number of
steps needs to be rescaled by the distance to threshold due to critical slowing down: the time scale τ

diverging as (p1 − pc
1)
−ν‖ , number of steps is rescaled upon multiplying it by (p1 − pc

1)
ν‖ . Figure 10

(right) indeed shows a good collapse of the compensated curves as a function of the rescaled number
of steps when using the exponents corresponding to 2D-DP, αDP ≈ 0.451 and ν‖DP

≈ 1.295 [2].
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Figure 10. (Left): Power law decay of the turbulent fraction at p1 = 0.0584 ≈ pc
1 = 0.05843:

compensation with αDP confirms the 2D nature of the process. (Right): Critical behavior near
threshold: compensated turbulent fraction 〈Ft〉 × tαDP as a function of the number of steps rescaled
by (p1 − pc

1)
ν‖DP for p1 ∈ [4.5:0.2:6.5] ×10−2 surrounding the presumed critical value pc

1, with the
exponents corresponding to DP for D = 2.

We now consider p2 = 0 which, as argued earlier, should fit the critical behavior of directed
percolation when D = 1. In that case, when using square or nearly-square rectangular domains,
size effects turn out to be particularly embarrassing as will be illustrated quantitatively soon.
However, we can take advantage of the fact that, assuming propagation in the one-sided regime,
e.g., along the direction for B active states, NB being the corresponding number of sites involved,
the computed turbulent fraction is, in fact, the average of the activity over NR independent
lines in the complementary direction, while still being sensitive to size effects controlled by NB.
Accordingly, at given computational load (proportional to NB × NR), one can freely increase the size
artificially in considering a strongly elongated domain D′ = [(NB × k)× (NR/k)], with k sufficiently
large that the average over NR/k independent lines still make sense from a statistical point of view,
while postponing size effects. With reference to a (192× 192) domain, we have obtained good results
with k = 16, i.e., 3072× 12 up to k = 64, i.e., 12288× 3.

Though this choice is a bit extreme, we present here results about 1D-DP criticality with the
12288× 3 domain in Figure 11. The left panel displays the variation of the mean turbulent fraction
with p1, which has been fitted against the expected power law, 〈Ft〉 = a(p1 − pc

1)
β. One gets a = 1.473

(1.446, 1.5), pc
1 = 0.2682 (0.2682, 0.2683), β = 0.2701 (0.2664, 0.2738). This value of β is quite compatible

with the value βDP ≈ 0.276 when D = 1 [2]. Furthermore, accepting this value, a linear fit of 〈Ft〉1/β

with p1 then provides an extrapolated threshold pc
1 = 0.26817. As seen in the right panel of Figure 11,

in the neighborhood of pc
1 a good collapse is obtained for the compensated turbulent fraction as

a function of the rescaled number of steps when using the exponents α = 0.159 and ν‖ = 1.734
corresponding to 1D-DP [2].
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Figure 11. (Left): Mean turbulent fraction at stationary state as a function of p1. Once raised
at power 1/β with β = 0.276 ≈ βDP for D = 1, the mean turbulent fraction tends to 0
linearly with an extrapolated threshold pc

1 = 0.26817. (Right): Critical behavior near threshold:
compensated turbulent fraction 〈Ft〉 × tαDP as a function of the number of steps rescaled by
(p1 − pc

1)
ν‖DP for p1 ∈ [0.260:0.002:0.280] surrounding the presumed critical value pc

1, with the
exponents corresponding to DP for D = 1.

Size effects already alluded to above are illustrated in Figure 12.
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Figure 12. Size effects when p2 = 0. (Left): Raw data showing late exponential decay and progressive
prevalence of power-law decay as NB grows. (Right): Rescaled data. According to scaling theory,
the appropriate scale for the number of steps (time t) is NB

z/D; hence, t 7→ t/Nz/D
B , with z ≈ 1.58

when D = 1, while the turbulent fraction has to be compensated for decay as Ft × tα with α = 0.159.
The collapse of traces illustrates universality with respect to 1D-DP.

Displaying the turbulent fraction as a function of the number of steps for linear size NB from small
systems to relatively large ones (NB = 64 up to 768) in lin-log scale, the left panel illustrates the late
stage of decay right at criticality as obtained from the previous study summarized in Figure 11. It is
seen that, in the time-window considered (0, 105) the exponential dependence observed at small sizes
is progressively replaced by the power-law behavior expected at criticality at infinite size. Size effects
are also ruled by scaling theory; see, e.g., [2] for DP. They relate to correlations in physical space that
are associated with exponent ν⊥. The ratio z = ν‖/ν⊥ is called the dynamical exponent and theory
predicts that, for finite size systems, scaling functions depend on time with the number of sites as
tD/z/N where N is the total number of sites. In the (quasi-)one-dimensional regime we are interested
in, D = 1, N is just NB and z = 1.58 [2]. The right panel of Figure 12 indeed shows extremely good
collapse of the traces corresponding to those in the left panel, once the number of steps is rescaled as
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t/N1.58
B and the turbulent fraction is compensated for decay as Ft(t)× t0.159, both exponents taking on

the 1D-DP values already mentioned.
Of interest in the context of channel flow decay, the crossover from 2D behavior for p2 sizable

(e.g., p2 = 0.1, Figures 9 and 10) to 1D behavior for p2 = 0 is of interest since p2 is associated with the
progressive importance of off-aligned longitudinal splitting as Re increases. A series of values of p2,
decreasing to zero roughly exponentially, has been considered and the corresponding DP threshold
has been determined as given in Table 1 and shown in Figure 13 (left).

Table 1. Values of p1 at criticality at given p2 (p5 = 0.9 and p′4 = 0).

p2 0.0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1

pc
1 0.2682 0.2585 0.2548 0.2476 0.2404 0.2302 0.2111 0.1907 0.1629 0.1109 0.0584

Except for p2 = 0 determined as explained above (Figure 11), these values have been obtained in
domains 192 × 192 with averaging over 10 independent experiments. Figure 13 (right) displays
the averaged time-series of the turbulent fraction at criticality for each of these values of p2,
once compensated for decay according to 2D-DP (α = 0.451).
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Figure 13. Crossover p2 → 0. (Left): Criticality condition separating the sustained active regime
from the absorbing regime. (Right): A DP-like process governs the decay when the line is crossed,
the characteristics of which can be understood from the asymptotic power-law decrease of the turbulent
fraction as a function of time, here compensated by tα, with α = αDP(D = 2).

The results for p2 = 0, evolving as tα2D−α1D are marked with (∗) and (∗∗) are obtained in the
192× 192 domain and in the 3072× 12 quasi-1D domain, respectively. In the time span considered
here, the latter is free from finite-size effects which is not the case of the former with the corresponding
compensated data decaying exponentially at the largest times. It is easily seen that, except for p2 = 0,
the compensated time series display a wide plateau indicating that 2D behavior holds for a certain
amount of time. Whereas traces for p2 = 0.1 and p2 = 0.05 cannot be distinguished, for smaller values
of p2 the plateau regime starts at larger and larger times and develops after having followed the 1D
trace for longer and longer durations, clearly indicating the influence of the anisotropy controlling the
effective dimensional reduction. A similar consequence of the crossover affects the decrease of the
mean turbulent fraction with the distance to threshold but, apart from this qualitative observation,
no reliable information can be obtained on exponent β owing to the difficulty to reach the relevant
critical regime.

We shall not document the case when p1 = 0 and p2 varies. This situation is not observed
in the simulations since off-aligned longitudinal splitting is conspicuous only sufficiently above
Reg, in the vicinity of which decay is fully accounted for by in-line longitudinal splitting modeled
by a variable p1 6= 0, but the possibility remains, at least conceptually. The decay when p1 = 0
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happens to follow the same 1D-DP scenario though the argument is slightly less immediate. It relies
on the observation that no growth is possible in the propagation direction of a given LTB species,
whereas off-aligned longitudinal splitting (p2 6= 0) permits growth and diffusion in the transverse
direction. Under the combined effects of transversal diffusion (p2 small) and propagation (p5 large),
near-threshold, the sustained turbulent regime is made of quasi-1D clusters that are aligned with and
drift along the diagonal of the lattice, i.e., the stream-wise direction, and get thinner and thinner when
decaying, supporting the reduction to a “D = 1” scenario. Here, the trick used for p2 = 0 does not
work, and simulations in square domains are necessary with no escape for size effects which hinders
the observation of the critical regime. Nevertheless, pc

2 when p1 = 0 seems close to pc
1 when p2 = 0,

suggesting some symmetry between p1 and p2.
The relevance of the results with p′4 ≡ 0 to transitional channel flow will be discussed in

the concluding section. We now turn to the general two-sided case with transversal collisions
and splittings.

4. Beyond Onset of Transversal Splitting, P′
4 > 0

In statistical thermodynamics systems, critical properties at a second order phase transition
leads to define a full set of exponents governing the variation of macroscopic observables close to
criticality [26]. The concept of universality was introduced to support the observation that these
systems can be classified according to the value of their exponents depending on a few qualitative
characteristics, the most prominent ones being the symmetries of the order parameter and the
dimension of physical space. This viewpoint can be extended to far-from-equilibrium systems such as
coupled map lattices (CMLs) displaying nontrivial collective behavior. The associated ordering
properties present many characteristics of thermodynamical critical phenomena at equilibrium.
Universality classes beyond those known from equilibrium thermodynamics have been shown to exist
with different sets of exponents. An additional criterion, the synchronous or asynchronous nature of
the dynamics, has been found relevant to distinguish among them [27]. In the context of the present
model, as soon as probability p′4 grows from zero, fully one-sided configurations previously reached
after the termination of a possibly long transient are now unstable against the presence of states with
the complementary color. The stationary regime that develops in the long term can be, either ordered,
i.e., one-sided with one dominant active state (B or R), or disordered, i.e., two-sided with statistically
equal fractions of each active state (B and R). Furthermore, a transition at some critical value p′4

c is
expected to take place on general grounds. This gives us the motivation to study the response of the
model to the variation of p′4 as a critical phenomenon beyond the mean-field expectations of Section 2.3.

The results of the mean-field approach, system (11) and (12), rephrased from [14], are depicted
in Figure 14 (left). Upon variation of parameter c representing p′4 up to an unknown rescaling factor,
all along the one-sided regime (c < ccr), the total turbulent fraction is seen to decrease while the order
parameter measuring the lack of symmetry similarly decreases to zero according to the usual Landau
square-root law. Obviously symmetrical, the two-sided regime (c > ccr) is then characterized by a
total turbulent fraction that regularly grows due to the contribution of splitting, whatever the type of
active state.

From now on, we shall simply refer to the turbulent fractions and other statistical quantities as
their time average over a sufficiently long duration, up to 2× 106 simulation steps, after elimination
of an appropriate transient, up to 105 steps, the largest values being necessary close to the transition
point owing to the well-known critical slowing down. On the one hand, the total turbulent fraction
is obviously defined as Ft(B) + Ft(R), where the over-bar denotes the time averaging operation.
(Later on, we shall omit this over-bar when no ambiguity arises between the instantaneous value of a
quantity and its time average, especially for the axis labelling in figures.) On the other hand, the lack
of symmetry can be measured by the signed difference averaged over time Ft(B)− Ft(R), able to
distinguish global B orientation from its R counterpart, or rather its absolute value

∣∣∣Ft(B)− Ft(R)
∣∣∣

since we are only interested in the amplitude of the asymmetry (called ‘A’ in [14]) and not in which
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orientation is dominant, the two being equivalent a priori for symmetry reasons. However, due to
the finite size of the system, in the symmetry-broken regime close to threshold, orientation reversals
can be observed as illustrated later (Figure 15), so that blind statistics in the very long durations are
no longer representative of the actual ordering. Like in thermal systems [28] or their non-equilibrium
counterparts [27], it is thus preferable to define the order parameter through the mean of the unsigned
difference: |Ft(B)− Ft(R)| . Corresponding simulation results are displayed in Figure 14 (right) for a
system of size (256× 256). The general agreement between the two diagrams is remarkable, up to
an unknown multiplicative factor translating c into p′4, as discussed earlier. One can notice that the
order parameter is minimal but not zero in the two-sided regime, which is due to fluctuations and the
fact that the two operations of averaging over time and taking the absolute value do not commute.
Finite-size effects are also apparent as a rounding of the graph at the location of the would-be critical
point in the thermodynamic limit.
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Figure 14. (Left): Bifurcation diagram of system (11) and (12) after [14]. The total turbulent fraction is
Ft(B) + Ft(R) and the order parameter characterizing the transition is abs(Ft(B)− Ft(R)). A standard
supercritical bifurcation is expected for this quantity with abs(Ft(B) − Ft(R)) ∝ (cc − c)1/2 in the
one-sided regime, whereas Ft(B) = Ft(R) in the two-sided regime. (Right): Time average of turbulent
fractions as functions of the control parameter p′4 after elimination of an appropriate transient as
obtained from simulations of the stochastic model.

The current justification for taking the absolute value is that the time between orientation reversals
diverges with the system size and the phase transition only takes place once we have taken the
thermodynamic limit of infinitely large systems studied over asymptotically long durations [28].
Accordingly, very long well-oriented intermissions can be considered as representative of the
symmetry-broken regime. The problem is illustrated in Figure 15 displaying the time series of
Ft(B) − Ft(R) and histograms of |Ft(B) − Ft(R)| for p′4 = 0.0121, still in the one-sided but already
alternating regime, next for p′4 = 0.0125 and 0.0126, where one can notice a change in the shape of
the histogram, and finally for p′4 = 0.0140, sufficiently deep inside the two-sided regime where the
histogram displays a sharp maximum at the origin. On this basis one could use the histograms
of the “order parameter” and determine the threshold from the position of its most probable
value, whether non-zero in the symmetry-broken state or at the origin when symmetry is restored.
This procedure would give p′4

c ≈ 0.01255.
The symmetry-breaking bifurcation can now be studied beyond the mean-field description

as other collective phenomena studied in equilibrium and far-from-equilibrium statistical physics:
In addition to the order parameter, the variation of which leads to the definition exponent β in the
ordered regime, another observable of interest is the susceptibility measuring the response to an
applied field conjugate to the order parameter, vis. M = χH with the magnetization M coupled to
magnetic field H in the case of magnets. The susceptibility diverges near the critical point, with leads
to the definition of two exponents γ and γ′ in the disordered and ordered regime, respectively.
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Universality implies γ = γ′, as can already easily be derived in the mean-field framework. When a
conjugate field cannot be defined, one uses the property that fluctuations take the instantaneous value
of the order parameter away from its average value, which can be understood as resulting from the
response to a conjugate field. This helps one to relate the susceptibility to the variance of fluctuations
of the order parameter. The identification is up to a multiplication by the “volume” of the system that
has to be introduced in order to compare the results from systems with different sizes. This is what
will be done here; hence, χ = NBNR × var (|Ft(B)− Ft(R)|). As shown in Figure 16 (top), this quantity
displays a sharp maximum, indicative of the singularity expected at the thermodynamic limit. In a
finite-size but large system, the critical point is then estimated from the position of the maximum of
the susceptibility. Here, this gives p′4

c ≈ 0.0123 slightly smaller but compatible with the value obtained
above from the examination of the histograms. Unfortunately, this discrepancy due to size-effects
forbids us to determine exponents β and γ with some confidence.
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Figure 15. Time series of the instantaneous mean orientation as measured by Ft(B) − Ft(R) in a
256× 256 domain for p1 = p2 = 0.1 and p5 = 0.9, at p′4 = 0.0121 below the onset of the one-sided
regime, at p′4 = 0.0125 and 0.0126 near the bifurcation point, and at p′4 = 0.0140 in the two-sided
regime. Bottom line: Corresponding histograms of |Ft(B)− Ft(R)|. The histograms were all built
using 75 bins and contain the same number of points for 105 < t < 2× 106, but the vertical scales are
not identical.

Having in mind results of the mean-field approach, namely, β = 1/2 and γ = 1, we can,
however, estimate the range where stochastic fluctuations have nontrivial effects. The bottom-left
panel of Figure 16 displays the variation of the order parameter already shown in Figure 14 (right),
but now squared in order to show that, far from the critical point, the system fulfils the mean-field
square-root prediction to an excellent approximation, with an extrapolated threshold p′4

MF ' 0.0133,
shifted upwards with respect to the estimates obtained from the simulations p′4

c. ' 0.0123–0.0125.
In the same way, the divergence of the susceptibility with exponents γ = γ′ = 1 expected from

the mean-field argument shows up upon retreating the data already given in Figure 16 (top) and
plotting 1/χ as a function of p′4. This is done in Figure 16 (bottom-right) showing the same linear
variation of 1/χ below and above the transition point, in agreement with the theory. The extrapolation
of the linear fits on both sides of the transition yield p′4

c ≈ 0.0127 in reasonable agreement with
the value obtained from the order parameter variation in the same conditions and definitely larger
than the empirical values. Clearly, deviations seen in the boxed parts of these two figures warrant
further scrutiny, motivating our current approach via finite-size scaling theory [28] in search for
universality. On going work attempts at a full characterization of the critical regime through exponents
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determination. Though local agents do not behave as Ising spins, symmetries are basically identical,
so that the equilibrium 2D Ising universality class or its non-equilibrium extension [27] might be
relevant. We shall discuss this further below.
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Figure 16. (Top): Variation of the susceptibility χ as a function of p′4. (Bottom): Evidence of
mean-field behavior away from the critical regime: The order parameter squared (left) and the
inverse of the susceptibility (right) both vary linearly with p′4 sufficiently far from the mean-field
extrapolated threshold.

5. Discussion and Concluding Remarks

Coming long after a conjecture by Pomeau [1], empirical evidence is growing that the
ultimate stage of decay of wall-bounded turbulent flows towards the laminar regime follows a
directed-percolation scenario. The evidence comes from laboratory experiments and direct numerical
simulation of the Navier–Stokes equations but this support is still far from a theoretical justification.
The recognition of the globally subcritical character of nontrivial states away from laminar flow and
the elucidation of the structure of coherent structures involved in these nontrivial states [29] were
first steps in this direction. The next ones would be the elucidation of special phase space trajectories
from sustained localized turbulence accounting for the decay to laminar regime, on one side, and to
proliferation via splitting, on the other side, using specific algorithms for the detection of rare events
and the determination of transition rates that can be attached to them (see [30] for an illustrative
example and references). These are heavy, and possibly not much rewarding, tasks but it would be nice
to be able to attach numbers to specific events such as the splittings illustrated in Figure 3 or Figure 4.
We have chosen to short-circuit such studies through analogical modeling, by which seemed more
appropriate to make further progress regarding the thermodynamic limit and associated universality
issues. One should though consider this practice as providing hints and not a demonstration that the
results will apply to the case under study.

In the present paper, the problem has been considered from this last viewpoint, assuming that
the ultimate decay stages were amenable to the most abstract level of implementation in terms of
probabilistic cellular automata [2], following [20,22]. We focussed on the specific case of channel flow
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that offers a particularly rich transitional range. Its upper part displays regular non-intermittent
laminar–turbulent patterns that can better be described using the tools of pattern-forming
theory [15,25,31]. The lower transitional range is characterized by their spatiotemporally intermittent
disaggregation, to which the considered type of modeling is particularly relevant. The analogy
alluded to above has, however, been severely constrained to fit the empirical observations. The main
assumptions were the introduction of two types of active agents attached to each kind of localized
turbulent bands propagating in one of the two possible orientations with respect to the stream-wise
direction. Interactions were assumed local so that the probabilistic cellular automata evolved simple
nearest neighbors von Neumann neighborhoods (Figures 5–7). Scrutiny of simulation results lead to the
introduction of a certain number of probabilities governing the fate of single-occupancy neighborhoods.
Multiple-occupancy was treated as a combination of single-occupancy configurations supposedly
independent, reducing the number of parameters to be introduced and drastically simplifying
the interactions (at any rate impractical to estimate in detail). A clear-cut physical interpretation
was, however, given to each parameter in the set reduced to four, accounting for every possible
stochastic event affecting the agents, namely, propagation, decay, and splitting, either longitudinal
or transversal. A mean-field study of the model, neglecting the nontrivial effects of stochastic
fluctuations, reproduced the empirical bifurcation diagram of channel flow at a qualitative level
(Figure 14). Transitions have been studied quantitatively by numerical simulation of the stochastic
model considering variations of these parameters as putative functions of the Reynolds number Re,
highlighting three situations:

In the two first cases, the parameter p′4 associated with transversal splitting, i.e., the nucleation of
a daughter with orientation opposite of its mother, was switched off, as inferred from observations
for Re . 800, where the single-sided regime is well established. The coarsening observed when
starting from two-sided initial conditions was faithfully reproduced (Figure 8) and decay seen to
follow the directed-percolation expectations. The specific conclusion was that, when parameter p2 is
no-zero, with p2 attached to longitudinal but upstream-shifted splitting, the scenario is typical of a
2D system with a high level of confidence, whereas when it is strictly zero, i.e., the daughter strictly
aligned with the mother, the decay is 1D. A cross-over is observed when p2 is reduced, that manifests
itself as a transient reminiscent of 1D behavior, the longest the closest p2 is to zero. Simulations of
channel flow have shown that exponent β controlling the ultimate decay of the turbulent fraction
was that of 1D directed percolation [16]. Since parameter p2 is attached to the slight upstream
trajectory shift experienced by a daughter upon splitting from its mother, this observation strongly
suggests that the trajectory shift is mostly irrelevant and that localized turbulent bands propagate
along independent tracks so that the end result is just a mean over the direction complementary to
their propagation direction.

The last situation we have considered corresponds to p′4 6= 0, with transversal splitting on.
This parameter measures the frequency of transversal splitting and is expected to increase with
Re. Accordingly, the system can change from one-sided when p′4 is zero or small, to two-sided
when it is large. The transition has indeed been observed and mean-field predictions were well
observed far from the transition point. Unfortunately, while the effect of fluctuations close to that
point was obvious, strong size effects have forbidden us to approach it and evaluate critical corrections.
This is the subject of on-going work within the framework of finite-size scaling theory [2,27,28].
This follow-up should allow us to establish the universality class to which this transition belongs.
Here, the left-right symmetry of localized turbulent bands with respect to the stream-wise direction is
reminiscent of the up-down symmetry of magnetic systems at thermodynamic equilibrium, which may
lead to conjecture the relevance of the 2D Ising class [26]. This class appears also applicable to
coupled map lattices with the same up-down symmetry when updated asynchronously, one site
after the other, close to randomization by thermal fluctuations. In contrast, another universality
class is obtained with synchronous update [27]. Here, the situation is unclear: on the one hand,
configurations are treated as a whole in a simulation step, which tips the scales in favor of a synchronous
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update model (in line with what is expected for a problem primitively formulated in terms of partial
differential equations); on the other hand, spatial correlations generated by the deterministic dynamics
governing the coupled map lattices are weakened by the independence of random drawings at the
local scale, which can be viewed as a source of asynchrony in the probabilistic cellular automata. In its
application to the symmetry-breaking bifurcation in channel flow, this uncertainty is, however, only of
conceptual importance in view of size effects: owing to the large and unknown time-scale rescaling
that allowed us to pass from flow structures to local agents in the model and to the narrowness of the
region where critical corrections are expected, the mean-field interpretation developed in [14] appears
amply sufficient.

In the three cases that were considered in detail (specific cuts in the parameter space),
the transitions remained continuous. However, this may not always be the case since there are known
example of similar systems displaying transitions akin to first-order ones [24]. Even while keeping the
same general frame, a plethora of circumstances of physical interest can be mimicked: propagation can
be made more stochastic by decreasing p5, splitting rules not observed in channel flow can be
considered, e.g., with p3 or p4 different from zero, etc., though it seems hard to anticipate situations
where the universal features pointed out here would not hold. In contrast, when dealing with highly
populated configurations, even in the simple nearest-neighbor von Neumann setting, rules can be made
more complicated by introducing the neighborhood’s degree of occupation. This introduction might
help us to account also for the upper part of the transitional range of wall-bounded flows characterized
by the emergence of regular patterns in the same stochastic framework [11]. The construction of the
present model is, of course, fully adapted to the study of universality in the framework of the theory of
critical phenomena in statistical physics, especially directed percolation. Still, we are confident that the
kind of approach illustrated here brings a valuable contribution to the understanding of the transition
to turbulence, by rationalizing its key ingredients in an easily accessible way.
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Abbreviations

1D/2D/3D One/two-dimensional (depending on 1/2 space coordinates)
DP Directed percolation (stochastic competition between decay and contamination)
LTB Localized turbulent bands
DAH downstream active head (part of an LTB controlling its propagation)
PCA Probabilistic cellular automata
CML Coupled map lattice (spatially-discrete iterative model)
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