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Abstract: The surface tension and viscosity values of N-methyldiethanolamine (MDEA) aqueous
solutions promoted by tetramethylammonium arginate ([N1111][Arg]) were measured and modeled.
The experimental temperatures were 303.2 to 323.2 K. The mass fractions of MDEA (wMDEA) and
[N1111][Arg] (w[N1111][Arg]) were 0.300 to 0.500 and 0.025 to 0.075, respectively. The measured surface
tension and viscosity values were satisfactorily fitted to thermodynamic models. With the aid of
experimentally viscosity data, the activation energy (Ea) and H2S diffusion coefficient (DH2S) of
MDEA-[N1111][Arg] aqueous solution were deduced. The surface entropy and surface enthalpy of the
solutions were calculated using the fitted model of the surface tension. The quantitative relationship
between the calculated values (surface tension, surface entropy, surface enthalpy, viscosity, activation
energy, and H2S diffusion coefficient) and the operation conditions (mass fraction and temperature)
was demonstrated.
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1. Introduction

China is a large coke producer, and coke oven gas (COG) is the second most abundant coking
product after coke in the coking industry, with generation of 300–360 m3 of COG as a by-product
for every 1 t of coke produced [1]. The main components of COG are hydrogen and methane,
which have high calorific values and application value. COG can be used as an urban or industrial fuel
gas, in gas-fired power stations to generate electricity, or as a raw material to synthesize ammonia,
methanol, and other chemicals [2]. However, COG contains impurities that must be removed before
use, such as hydrogen sulfide (H2S). As an odorous, toxic, and corrosive gas, H2S can cause severe
corrosion of equipment and transportation pipelines, and its combustion products, SO2, can also cause
environmental problems, such as acid rain [3]. Therefore, COG must be desulfurized to improve the
gas quality and protect the environment.

Chemical absorption using alkanolamines as absorbents is a mature desulfurization method [4,5].
The alkanolamine method has the distinguishing feature of large absorption capacity, high removal
efficiency, and good stability and reliability. The most widely used alkanolamine is monoethanolamine
(MEA), which can remove more than 98% of H2S from COG [6]. However, the MEA method has certain
disadvantages. For example, because of its corrosiveness, the MEA content is generally not allowed to
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exceed 30% in a solution, its regeneration process is highly energy-consuming, and it is volatile and prone
to degradation, which results in large consumption during operation [7]. N-methyldiethanolamine
(MDEA), a tertiary alkanolamine, is significantly less corrosive than MEA, exhibits strong resistance to
degradation and oxidation, has low reaction heat, and its concentration in the solution can be high,
which reduces the energy consumption of the solvent regeneration process. Studies have shown that
MDEA has excellent selectivity and efficiency for the removal of H2S [8,9].

In addition to containing a single alkanolamine, an absorbent solution often contains two or three
alkanolamines to combine the advantages of each while avoiding their drawbacks. Many studies
have shown that a mixed alkanolamine solution has better desulfurization performance than a single
alkanolamine solution [9–11]. Our previous study indicated that adding small quantities of MEA to
MDEA aqueous solutions can obviously improve the H2S absorption capacity and absorption rate [12].

Ionic liquids (ILs) are considered a green solvent with many excellent properties and are attracting
increased attention in the field of acid gas absorption [13–21]. However, ILs are highly viscous and their
current prices are relatively high, which hinders their use as a pure solvent in large-scale commercial
applications. Therefore, it is desirable to use ILs jointly with alkanolamines. Amino acid ionic liquids
(AAILs), which are synthesized from amino acids, have advantages over ILs. Furthermore, they can
be synthesized from widely available raw materials and, thus, their costs are much lower. As a
result, they are often used in H2S removal studies [22–24]. In our previous studies, we used MDEA
aqueous solutions promoted by two ILs, namely tetramethylammonium glycinate ([N1111][Gly]) and
tetramethylammonium arginate ([N1111][Arg]), to explore the performances of such mixed solutions
for absorbing H2S. The results showed that the two AAILs were superior to MEA in promoting
the absorption of H2S by MDEA solution. Moreover, of these two promoters, the MDEA aqueous
solutions promoted by [N1111][Arg] exhibited the highest absorption capacity and absorption rate for
low-concentration H2S. Therefore, [N1111][Arg]-promoted MDEA aqueous solutions show commercial
potential [12,25].

Viscosity and surface tension are the two main physical parameters of a solution, and significantly
affect the mass transfer, heat transfer, and gas–liquid flow process [26–29]. They play a vital role in
process simulations and the development of desulfurization equipment. Zuiderweg [30] reported that
the surface tension has a greater effect on mass transfer processes than other physical properties, such as
the density, viscosity, and diffusion coefficient. The smaller the surface tension, the smaller the mean
diameter of the bubbles, which increases the interfacial mass transfer area [31]. If the desulfurization
equipment is a tray column, the surface tension impacts the bubble size by affecting the bubble stability,
which has an effect on the mass transfer area. A high solution viscosity promotes bubble accumulation,
which leads to a decrease in the mass transfer efficiency [32]. Therefore, the determination of these
thermodynamic properties is vital for practical applications of a solution. To date, no studies have
been conducted on the measurement of the viscosity and surface tension values of MDEA-[N1111][Arg]
solutions, or to investigate the effects of the temperature and solution concentration on the viscosity
and surface tension.

To fill this knowledge gap, the viscosity and surface tension values of MDEA-[N1111][Arg]
solutions under different mass fractions and temperatures were measured and modeled in this study.
Based on the experimental data and calculation, the surface entropy (SS), surface enthalpy (HS),
viscosity activation energy (Ea), and H2S diffusion coefficient (DH2S) were obtained, and the effects
of the temperature and solute mass fraction on these results were analyzed. To this end, the mass
fractions of MDEA (wMDEA) and [N1111][Arg] (w[N1111][Arg]) in the solutions were changed from 0.300
to 0.500 and from 0.025 to 0.075, respectively, and the solution temperature was changed from 303.2 to
323.2 K.
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2. Experimental

2.1. Reagents

The reagents used in the experiments are shown in Table 1. Each component in the absorbent
was accurately weighed using an analytical balance (FA1604A, uncertainty = ±0.1 mg) based on the
required mass percentages, and the components were well mixed.

Table 1. Sample description.

Chemical Name CAS Purity (Mass Fraction, as Stated
by the Supplier) Source

MDEA 105-59-9 ≥0.98 Aladdin Reagent, Shanghai, China

[N1111][Arg] 1450589-45-3 ≥0.98 Shanghai Cheng Jie Chemical Co.,
Ltd., Shanghai, China

water 7732-18-5 Electrical resistivity > 15 MΩ cm
at T = 298 K

Heal Force ROE-100 apparatus,
Shanghai, China

2.2. Instrumentation and Process

Surface tension was determined by the BZY-1 surface tension meter (which employs the Wilhemy
plate method, uncertainty = ±0.1 mN·m−1). The viscosity was determined by the NDJ-5S digital
viscometer (uncertainty =±0.1 mPa·s). The operational procedures and the reliability of the instruments
were documented in our previous studies and are not repeated here [33–35].

3. Results and Discussion

3.1. Surface Tension and Model

Table 2 presents the surface tension values of the aqueous MDEA-[N1111][Arg] solutions at different
mass fractions and temperatures. In addition to obtaining data experimentally, it is also important to
develop an accurate model to fit and predict the surface tension values. The surface tension of a mixed
solution depends on the composition and temperature of the solution. The model used in a previous
study was adopted here because of its simplicity and prediction accuracy [36]:

γaq = 0 + γ′ (1)

where γ0 and γ′ can be expressed as follows:

γ0 = x1γ1 + x2γ2 + x3γ3 (2)

γ′ = x1x2G12 + x1x3G13 + x2x3G23 (3)

where the subscripts 1, 2, and 3 in the formulas represent MDEA, [N1111][Arg], and water, respectively;
xi represents the mole fraction of component i; and γi represents the surface tension of pure component
i, which is linear with temperature. Gij represents the mutual influence between components i and j.
To adapt to the new solution system in this study, the calculation equation is obtained by modifying
the equation used in the previous research [36]:

G13 = (a13 + b13wMDEA)T (4)

G23 =
(
a23 + b23w[N1111][Arg]

)
T (5)

G12 =
(
a12 + b12

[(
wMDEA + w[N1111][Arg]

)
/2

])
T (6)
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Table 2. Surface tensions (γ) of N-methyldiethanolamine (MDEA)-[N1111][Arg] aqueous solutions
under different mass fractions of MDEA (wMDEA), [N1111][Arg] (w[N1111][Arg]), and temperature a.

wMDEA w[N1111][Arg]
γ/(mN·m−1)

T = 303.2 K T = 313.2 K T = 323.2 K

0.300 0.025 52.2 50.0 47.8
0.050 51.8 49.5 47.5
0.075 51.5 49.2 47.2

0.400 0.025 50.1 48.2 46.1
0.050 49.5 47.6 45.8
0.075 49.0 47.2 45.5

0.500 0.025 47.4 45.9 43.8
0.050 46.9 45.6 43.6
0.075 46.3 45.4 43.3

a standard uncertainties u are u(T) = 0.1 K; u(wMDEA) = 0.011; u(w[N1111][Arg]) = 0.002; u(γ) = 0.2 mN·m−1.

By combining Equations (1)–(6), the surface tension can be formulated as:

γaq = γ0 + γ′ = x1γ1 + x2γ2 + x3γ3 + x1x2G12 + x1x3G13 + x2x3G23

= x1(a1T + b1) + x2(a2T + b2) + x3(a3T + b3) + x1x2(a12

+b12
[(

wMDEA + w[N1111][Arg]

)
/2

]
)T + x1x3(a13 + b13wMDEA)T

+x2x3
(
a23 + b23w[N1111][Arg]

)
T

(7)

where γi = (aiT + bi) represents the surface tension of pure component i, which varies linearly
with temperature.

For a ternary solution, six adjustable model parameters should be optimized using experimental
data so that the established thermodynamic model can provide accurate predictions. In the process of
optimizing parameters, the average relative deviation (ARD) can be defined as follows:

ARD =
1
n

n∑
i=1

[
1− γcal/γexp

]
·100% (8)

The superscripts cal and exp represent the experimental and calculated results, respectively, and n
is the number of experimental data. The optimized parameters were determined to be the following:
a13 = −1.31, b13 = 1.59, a23 = −1.73, b23 = −0.866, a12 = 8.72, b12 = 11.5, and ARD = 1.23%. The small
ARD value indicates that the predicted results fit well with the experimental results.

Figure 1 presents the changes in the surface tension of MDEA-[N1111][Arg] aqueous solutions
with changes in the w[N1111][Arg] and temperature. The surface tension gradually decreased as the
temperature increased. This phenomenon may be because the molecular motion intensified as the
temperature increased, which increased the kinetic energy and decreased the intermolecular cohesion,
thereby reducing the surface tension [37]. In addition, as the w[N1111][Arg] and wMDEA increased,
the surface tension showed a gradual decrease. This might be caused by the presence of alkyl groups
in the solvent component, which makes them easier to distribute at the gas–liquid interface.
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Figure 1. The effect of w[N1111][Arg] (main plot) and temperature (inset plot) on the surface tensions
of MDEA-[N1111][Arg] aqueous solutions. Main plot: wMDEA = 0.500, NT = 303.2 K, �T = 313.2 K,
•T = 323.2 K. Inset plot: wMDEA = 0.500, Nw[N1111][Arg] = 0.025, �w[N1111][Arg] = 0.050, •w[N1111][Arg] =

0.075. Symbols: Experimental values. Lines: Calculated values.

Moreover, the established model parameters can be used to calculate other surface thermodynamic
properties of the solution, such as the surface entropy (SS) and surface enthalpy (HS) [35,38]:

Ss = −

(
∂γaq

∂T

)
x, P

(9)

Hs = γ− T
(
∂γaq

∂T

)
x, P

(10)

Gliński et al. [39] and Maham et al. [40] fit the surface tension values of alkanolamine solutions to
a linear function of temperature, γaq = K1 + K2T. Therefore, for a given mass fraction of alkanolamine,
the SS and HS values of the solution are−K2 and K1, respectively. However, in this study, the absorption
solution is a ternary mixture and may not be appropriate using the above equation. Given that
Equation (7) can be used to fit the surface tension, it can be used in conjunction with Equations (9) and
(10) to further calculate the SS and HS values of the solution; the results are shown in Figures 2 and 3.
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Figure 2 shows the effect of wMDEA on the SS and HS. For a given w[N1111][Arg], the SS and HS values
of the solutions both decrease with the increase in wMDEA. Figure 3 presents the effect of w[N1111][Arg]

on the SS and HS. For a given wMDEA, the HS values of the solutions decrease slightly with the increase
in w[N1111][Arg], whereas the SS values increase with the increase in w[N1111][Arg]. The decrease in HS

indicates that less energy is required when the surface area increases. The increase in SS after adding
[N1111][Arg] may be because its molecules are more likely to be distributed on the surface; after the
molecules migrate to the surface, the intermolecular forces decrease, which leads to the decrease in the
order degree of molecular arrangement.

3.2. Viscosity and the Model

The viscosity data of MDEA-[N1111][Arg] solutions were measured and results are shown in
Table 3. Measuring all viscosity data is a highly expensive, time-consuming, and difficult process.
An alternative means is to use an equation that can correlate the viscosities correctly. Numerous
different equations have been proposed to correlate and predict the viscosity data of solutions [41–44].
Of these, the Weiland equation [44], which is a semi-empirical equation, can describe the dependence of
solute composition and temperature on viscosity simultaneously. Thus, it is used for the correlation of
viscosity data in this study [33,45]. For MDEA-[N1111][Arg] aqueous solutions, it can be expressed as:

ηmix =
wMDEA

wMDEA + w[N1111][Arg]
η1 +

w[N1111][Arg]

wMDEA + w[N1111][Arg]
η2 (11)

where ηmix represents the viscosity of MDEA-[N1111][Arg] solution, and η1 and η2 are expressed as:

ηi = ηwater × exp
{
[(aiw + bi)T + (ciw + di)]w

T2

}
(12)

where ηwater represents the viscosity of pure water, w = wMDEA + w[N1111][Arg], ai, bi, ci, di are
adjustable parameters. In this work, the parameters for MDEA were calculated by fitting to the
viscosity data of MDEA aqueous solutions: (a1 = −0.1863, b1 = 0.3844, c1 = 879.8408, d1 = 2889.61).
The parameters for [N1111][Arg] (a2, b2, c2 and d2) can also be calculated from a [N1111][Arg]-water
system. However, when the model parameters of both MDEA and [N1111][Arg] are given, there are no
adjustable parameters in the Weiland equation and the deviation between experiments and calculations
will be significant. Thus, in this work the model parameters of [N1111][Arg] were regressed by fitting
to the experiments of MDEA-[N1111][Arg] aqueous solutions. The optimized values are a2 = 0.2391,
b2 = 0.8127, c2 = −0.5879, d2 = −0.7844. The ARD is 2.23%.

Table 3. Viscosities (η) of MDEA-[N1111][Arg] aqueous solutions under different mass fractions of
MDEA (wMDEA), [N1111][Arg] (w[N1111][Arg]) and temperature a.

wMDEA w[N1111][Arg]
η/(mPa·s)

T = 303.2 K T = 313.2 K T = 323.2 K

0.300 0.025 3.10 2.35 1.87
0.050 3.49 2.61 2.02
0.075 4.03 2.96 2.26

0.400 0.025 5.15 3.74 2.82
0.050 5.68 4.06 3.05
0.075 7.01 4.87 3.53

0.500 0.025 9.52 6.50 4.71
0.050 10.80 7.26 5.10
0.075 12.90 8.47 5.89

a standard uncertainties u are u(T) = 0.1 K; u(wMDEA) = 0.011; u(w[N1111][Arg]) = 0.002; and relative uncertainty
ur(η) = 2%.
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Figure 4 presents the influence of w[N1111][Arg] on the viscosity of MDEA-[N1111][Arg] aqueous
solutions. It can be found that at a given wMDEA and temperature, with the increase in w[N1111][Arg],
the viscosity gradually increases and the amplitude of this increase gradually becomes larger.
This may be caused by the larger molecular structure of [N1111][Arg], which affects the flow of
the surrounding liquid. Therefore, although the w[N1111][Arg] is low, it has a significant impact on
viscosity. Figure 5 presents the influence of temperature on the viscosity of MDEA-[N1111][Arg]
aqueous solutions, and shows that the viscosity decreases with increasing temperature at given wMDEA

and w[N1111][Arg]. This phenomenon may be explained by the expansion of the liquid with increasing
temperature, which causes an increase in the molecular distance and a decrease in viscosity.Entropy 2020, 22, x FOR PEER REVIEW 9 of 15 
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Symbols: Experimental values. Lines: Calculated values.

The viscosity activation energies (Ea) indicate the difficulty of material flow and can also reflect the
sensitivity of viscosity to temperature changes. In this work, it was calculated by fitting the viscosity
data using the following equation [46,47]:

η = η∞exp(−Ea/RT) (13)

where η∞ is the viscosity at infinite temperature, R is the gas constant. Equation (14) was used to
linearly fit the viscosity data shown in Table 3. Then the Ea values can be obtained by the slope of the
fitted line:

ln(η) =
−Ea
RT

+ ln(η∞) (14)

The Ea value shown in Table 4 increased from 20.6 to 32.0 kJ·mol−1 with the increasing wMDEA and
w[N1111][Arg]. This implies that the higher the viscosity of the solution, the higher the viscosity activation
energy. Although higher w[N1111][Arg] can improve the absorption capacity of H2S, it also weakens the
mass transfer. The calculated Ea value in this study is larger than that of water (Eawater = 17.0 kJ·mol−1),
but smaller than those of some common imidazolium-based ILs (e.g., Ea[bmim][PF6] = 34.1 kJ·mol−1) [48].
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Table 4. Fitted Arrhenius parameters of MDEA-[N1111][Arg] aqueous solution under different mass
fractions of MDEA (wMDEA) and [N1111][Arg] (w[N1111][Arg]) a.

wMDEA w[N1111][Arg] Ea/(kJ·mol−1)

0.300 0.025 20.6
0.050 22.3
0.075 23.6

0.400 0.025 24.5
0.050 25.3
0.075 28.0

0.500 0.025 28.7
0.050 30.6
0.075 32.0

a Standard uncertainties u are u(wMDEA) = 0.011; u(w[N1111][Arg]) = 0.002; and relative uncertainty ur(Ea) = 2%.

In the process of absorbing H2S, the diffusion coefficient is also a significant parameter, and is
highly important for the study of the gas–liquid mass transfer process. The Stokes–Einstein equation
can express the relationship between diffusion coefficient and temperature and viscosity. It is
generally accepted that the diffusion coefficient of a gas is inversely proportional to the viscosity of the
solution [49].

Geert et al. [50] proposed a modified Stokes–Einstein relationship when studying the diffusion
coefficient of N2O:

(DN2Oη
0.8)solu = constant = (DN2Oη

0.8)water (15)

Portugal et al. [49] proposed that the ratio of the diffusivity of a gas in an electrolyte solution to
the diffusivity of the same gas in water does not vary significantly with the nature of the diffusant.
Therefore, it is reasonable to use the so-called N2O analogy to estimate the diffusion coefficient of H2S
in solutions:

DN2O, solu

DN2O,w
=

DH2S, solu

DH2S,w
(16)

Combined with the above two equations, it can be obtained that [49,51]:

DH2S, solu = DH2S,w

(
ηwater

ηsolu

)0.8

(17)

where ηsolu is the viscosity of MDEA-[N1111][Arg] solution. DH2S,w is the diffusivity of H2S in water.
It can be fitted as a function of temperature according to the method of Versteeg et al. [51] using data
from published studies by Haimour et al. [52] and Tamimi et al. [53]:

Dw = 6.04× 10−7 exp(−1714/T) m2
·s−1 (18)

The results are shown in Table 5. It can be seen that DH2S decreases with the increase in wMDEA

and w[N1111][Arg] at a given temperature, and at a given mass fraction, it increases with the increase
in temperature. This indicates that lower mass fraction and higher temperature are favorable for the
diffusion of H2S in MDEA-[N1111][Arg] solution.
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Table 5. Diffusion coefficient of H2S in MDEA-[N1111][Arg] solutions under different mass fraction of
MDEA (wMDEA) and [N1111][Arg] (w[N1111][Arg]) a.

wMDEA w[N1111][Arg]
DH2S/(×10−9m2

·s−1)

T = 303.2 K T = 313.2 K T = 323.2 K

0.300 0.025 0.72 0.91 1.13
0.050 0.65 0.84 1.06
0.075 0.58 0.76 0.97

0.400 0.025 0.48 0.63 0.81
0.050 0.44 0.59 0.76
0.075 0.37 0.51 0.68

0.500 0.025 0.29 0.41 0.54
0.050 0.26 0.37 0.51
0.075 0.23 0.33 0.45

a Standard uncertainties u are u(wMDEA) = 0.011; u(w[N1111][Arg]) = 0.002; and relative uncertainty ur(DH2S) = 2%.

4. Conclusions

In the present study, the viscosity and surface tension values of MDEA-[N1111][Arg] aqueous
solutions were measured, and thermodynamic models were used to fit the experimental data.
The experimental results and models were used to explore the effects of the solution mass fraction and
temperature on the viscosity and surface tension. Furthermore, the SS and HS values of the solutions
were obtained using the fitted model of the surface tension. The viscosity activation energy and the
diffusion coefficient of H2S were calculated based on the measurement of viscosity. The main findings
were as follows:

1. The surface tension decreased with the increase in solution mass fraction and temperature.
The viscosity increased with the increase in solution mass fraction and decreased with the increase
in temperature.

2. The thermodynamic models accurately reflected the effects of the solution mass fraction and
temperature on the surface tension and viscosity.

3. With the increase in wMDEA, both the SS and HS decreased, whereas the SS increased and the HS

decreased with the increase in w[N1111][Arg].
4. The increase in solution mass fraction can result in the increase in Ea and decrease in DH2S,solu.
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