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Abstract: Previous researchers have considered sentiment analysis as a document classification
task, in which input documents are classified into predefined sentiment classes. Although there are
sentences in a document that support important evidences for sentiment analysis and sentences that
do not, they have treated the document as a bag of sentences. In other words, they have not considered
the importance of each sentence in the document. To effectively determine polarity of a document,
each sentence in the document should be dealt with different degrees of importance. To address
this problem, we propose a document-level sentence classification model based on deep neural
networks, in which the importance degrees of sentences in documents are automatically determined
through gate mechanisms. To verify our new sentiment analysis model, we conducted experiments
using the sentiment datasets in the four different domains such as movie reviews, hotel reviews,
restaurant reviews, and music reviews. In the experiments, the proposed model outperformed
previous state-of-the-art models that do not consider importance differences of sentences in a
document. The experimental results show that the importance of sentences should be considered in a
document-level sentiment classification task.
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1. Introduction

Sentiment analysis is a natural language processing (NLP) task in which a given text is classified
into predefined classes (e.g., positive, neutral, and negative). The initial models on sentiment analysis
use hand-made sentiment lexicons that contain sentiment words annotated with polarities [1–3].
In general, they extract sentiment words from sentences. Based on discrete information, such as
polarities and strengths of sentiment words, they classify sentences into sentiment classes with the
strongest polarities [2–4]. Although these lexicon-based models are simple and efficient, they suffer
from limitations. First, the manual construction of sentiment lexicons is a time-consuming and
labor-intensive job. To overcome these limitations, some models to automatically construct sentiment
lexicons have been proposed [5,6]. Second, a fixed polarity with strength should be assigned to
each sentiment word although it may have different polarities depending on application domains.
For example, “The air conditioner is so hot” expresses a negative opinion because “hot” here means
“having mechanical trouble.” By contrast, “The movie is so hot” expresses a positive opinion because
“hot” here means “popular.” To overcome these limitations, some models based on machine learning
(ML) have been proposed [7]; however, these ML-based models need a large amount of data annotated
with polarities for training. With the tremendous growth of user-generated corpus in rating scores,
such as movie and goods reviews, various models based on deep neural networks (DNNs) have been
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proposed [8–10]. Although these DNN-based models show good performances, most of them do not
consider the importance of each sentence in an input text; instead, they treat the input text as a bag
of sentences. However, while a human determines polarity of a document, he/she reads through the
whole document, removes ordinary sentences (i.e., unimpressive sentences), and determines the final
polarity based on some impressive sentences. Table 1 summarizes an example of sentiment analysis in
a movie review domain.

Table 1. Example of a movie review.

Sentence Polarity of a Sentence Polarity of a Document

“From my opinion, No Country for Old Men
isn’t the best weak Coen brothers film.” Weak negative

Strong positive“Josh Brolin is hunting in the desert.” Neutral

“But, that is not to say that it’s a bad film.” Positive

“It really is a solid piece of cinema.” Strong positive

As summarized in Table 1, although a document has only one polarity, each sentence in the
document has different polarities. The first sentence has a polarity opposite to that of the document,
and the second sentence does not have a biased polarity. The third and fourth sentences weakly
and strongly affected the polarity of the document, respectively. In other words, the third and
fourth sentences are strong evidences that support the polarity of the whole document. Therefore,
to effectively determine polarity of a document, each sentence in the document should be dealt with
different degrees of importance. To tackle this problem, we propose a DNN-based document-level
sentiment classification model to automatically reflect the sentence importance meaning on how much
each sentence supports polarity of a whole document. Then, we verify that considering sentence
importance contributes to improve performances of document-level sentiment classification through
experimental comparisons.

The remainder of this paper is organized as follows. In Section 2, we describe previous studies on
sentiment analysis. In Section 3, we present a DNN model for document-level sentiment classification.
In Section 4, we elaborate on the experimental setup and results. In Section 5, we discuss our
experimental results. Finally, in Section 6, we conclude the study.

2. Previous Work

Previous studies on sentiment analysis are divided into lexicon-based and ML-based models.
The lexicon-based models first define sentiment lexicons that contain sentiment words and their
attributes, such as polarities and their strengths [2,3]. Then, they predict the sentiment classes of given
texts using the number of sentiment words, total strength of the sentiment words, and maximum
strength of the sentiment words [2–4]. Taboada et al. [11] proposed a rule set for calculating the
polarities of input texts based on sentiment words and their surrounding linguistic clues, such as
amplifiers (e.g., very, extraordinary, and most), downtoners (e.g., slightly, somewhat, and pretty),
and negators (e.g., nobody, none, and nothing). The lexicon-based models have several advantages,
such as being simple, deterministic, and efficient. However, they suffer from the fixed polarity
problem as each word in a sentiment lexicon has a fixed polarity, although the polarities of words
can be changed depending on domains. To tackle this issue, ML-based models have been proposed.
These models predict the sentiment classes of given texts based on statistical or algebraic information
obtained from a large amount of training corpus. Kim [8] proposed a sentiment classification model
based on convolutional neural networks (CNNs) in which pre-trained word vectors for sentence
classification tasks are used as inputs. Ren et al. [12] proposed a CNN-based model for the sentiment
classification of texts in a social network service (SNS). To improve performances in an SNS domain,
they used contextualized features (e.g., conversation-based, author-based, and topic-based contexts
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about a target text) that are well designed for SNS texts. To well reflect the information of word
sequences in texts, some researchers [13–15] adopted recurrent neural networks (RNNs) that are
effective in capturing long dependencies between words. Teng et al. [13] proposed an RNN model
to automatically learn the rule set (i.e., sentiment strength, intensification, and negation of lexicon
sentiments) proposed by Taboada et al. [11]. Recently, BERT (a large-scale pre-trained language
model) showed the best performances in various downstream NLP tasks through fine-tuning [16].
Hoang et al. [17] showed that using the contextual word representations from BERT is effective in a
sentiment analysis task. To capture sentiment signals over hierarchical phrase structures, sentence
representation methods based on tree-structured RNNs were proposed [18,19]. Many previous
ML-based models are focused on sentence-level sentiment classification. In document-level sentiment
classification (i.e., sentiment classification on a document containing multiple sentences), they consider
the text as a bag of sentences without considering the importance of each sentence. Thongtan and
Phienthrakul [20] proposed a neural embedding model to obtain document embeddings using cosine
similarity instead of the dot product. Abdi et al. [21] investigated a method to effectively merge
multi-features such as word embedding, sentiment knowledge, sentiment shifter rules, and linguistic
knowledge in order to overcome flaws raised by flat concatenation of different features. However,
these approaches on document-level sentiment analysis cannot consider how much each sentence
contributes in determining the polarity of a given document. To overcome this limitation, we propose
a DNN-based sentiment classification model in which sentences in a document differently contribute
to document-level classification according to their importance.

3. Document-Level Sentiment Analysis Model

As shown in Figure 1, the proposed model consists of three submodules: A sentence encoder,
a document encoder, and a sentiment classifier.
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Figure 1. Overall architecture of the proposed model.

The sentence encoder generates the embeddings of each sentence in a given document using
ALBERT (a light version of BERT) [22]. Then, it enriches the sentence embeddings by adding the
embeddings of sentiment classes. The document encoder calculates the importance of each sentence
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through gate functions. Then, it generates a document embedding by weighted summing the sentences
according to the calculated importance. Subsequently, it enriches the document embedding by adding
the embeddings of sentiment classes. The enriched document embedding is used as an input of the
sentiment classifier. The sentiment classifier determines a sentiment class of the input document
through a fully connected neural network (FNN).

3.1. Sentence Encoder

The sentence encoder converts each input sentence into embedding vectors. To obtain sentence
embeddings, including contextual information, we adopt ALBERT, as shown in Figure 2.
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Figure 2. Architecture of the sentence encoder.

In Figure 2, si is the i-th sentence in which each word is represented as ALBERT embeddings.
Then, [CLS] and [SEPi] are the class token (i.e., a special token for classification tasks) and i-th separator
token (i.e., a special token for representing a sentence boundary between the i-th sentence and i +

1-th sentence), respectively. In language models, such as BERT and ALBERT, the output vector of the
class token generally conveys the task-oriented meaning of an input document (i.e., a sequence of all
input words). Accordingly, we assume that the output vectors of the separator tokens convey the
representations of each input sentence, as reported by Cohan et al. [23]. Therefore, the input sentences
s1, s2, . . . , sn in a document are converted into the sentence embeddings Es1 , Es2 , . . . , Esn , as shown in
the following equation:

Es1 , Es2 , . . . , Esn = ALBERT(s1, s2, . . . , sn), (1)

where Esi denotes an output vector of the i-th separator token. To supplement the sentence embeddings
with the domain knowledge of sentiment classes, we adopt a domain embedding scheme proposed
in [24], as shown in the following equation:

Csi = Wc · FNN(Esi), (2)

where FNN(Esi) denotes an FNN with rectified linear activation unit (ReLU) [25] output functions
for mapping the i-th sentence embedding Esi into the vector space of target classes (i.e., a positive
class and a negative class in a sentiment classification task), and Wc denotes a weight matrix that
consists of randomly initialized embeddings of target classes. Then, Csi denotes a class similarity
embedding containing inner product values between the i-th input sentence and each target class.
The class similarity embedding represents the degrees of association between an input sentence and
target classes. Finally, the sentence encoder generates a domain-specific sentence embedding E′si

of the
i-th sentence by concatenating the general sentence embedding Esi and the class similarity vector CsiCs,
as shown in the following equation:

E′si
= [Esi ; Csi ]. (3)
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3.2. Document Encoder

The document encoder calculates the importance degree of each sentence in resolving a given
sentiment classification problem. Then, it generates a document embedding based on the importance
degrees of each sentence through gated recurrent units (GRUs) [26] and an attention mechanism [27],
as shown in Figure 3.
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To calculate the importance degrees of each sentence, we adopt a gate mechanism, as shown in
the following equation:

gi = σ(Wg · E′si
)

E′′si
= gi · E′si

,
(4)

where Wg denotes a randomly initialized weight matrix, σ denotes a sigmoid function for calculating
the importance degree of E′si

, and E′′si
is a sentence embedding in which the importance degree is

reflected. Then, the document encoder encodes all the gated sentence embeddings using a GRU
encoder, as expressed by the following equation:

enci = GRU(E′′si
, enci−1), (5)

where enci denotes the i-th gated sentence embedding encoded by the forward state of the GRU. Then,
the document encoder generates a document embedding using a GRU decoder with Luong’s attention
mechanism [24], as shown in Figure 4.
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As shown in Figure 4, each attention weight ai is induced by inner products between each output
enci of the GRU encoder and the first hidden state dec0 of the RNN decoder. The attention weights
signify how much each output enci of the GRU encoder is associated with the first hidden state dec0

of the GRU decoder. Then, the context vector cnt is constructed by the weighted sum of ai and enci.



Entropy 2020, 22, 1336 6 of 11

Finally, the RNN decoder generates a document embedding Ed using the last hidden state encn of the
RNN encoder, start symbol < s >, and context vector cnt, as expressed by the following equation:

Ed = GRU(FNN(encn),< s >, cnt). (6)

3.3. Sentiment Classifier

To determine the sentiment class of an input document, the sentiment classifier uses the document
embedding and a class similarity embedding as inputs. The class similarity embedding is the same
as that in the sentence encoder except that the class similarity embedding represents the degrees of
association between the document embedding and target classes, as expressed by the following equation:

Cd = Wc · FNN(Ed), (7)

where FNN(Ed) denotes an FNN with ReLU output functions for mapping the document embedding
Ed into the vector space of target classes, and Wc is the same class embedding matrix as that in Equation
(2). In other words, the sentiment classifier shares the class embedding matrix with the sentence
encoder. Then, Cd denotes a class similarity embedding containing inner product values between the
document embedding and each target class. Finally, the sentiment classifier determines the sentiment
class of an input document through an FNN with sigmoid output functions, as expressed by the
following equation:

Sentiment(s1, s2, . . . , sn) = FNN([Ed; Cd]), (8)

where [Ed; Cd] denotes a concatenation of the document embedding Ed and class similarity
embedding Cd.

4. Results

4.1. Datasets and Experimental Settings

For our experiments, we used the IMDB dataset (135,669 documents) [28], the Yelp-hotel dataset
(34,961 documents) [29], the Yelp-rest dataset (178,239 documents) [29], and the Amazon dataset
(83,159 documents) [29]. The IMDB dataset is a movie review dataset annotated with 10-scale polarities.
Then, the Yelp-hotel dataset, the Yelp-rest dataset, and the Amazon dataset are a hotel review dataset,
a restaurant dataset, and a music review dataset that are annotated with 5-scale polarities, respectively.
Table 2 lists data statistics of the four datasets.

Table 2. Data statistics of experiment datasets. We show the number of documents in each split.

Dataset Train Development Test

IMDB 108,535 13,567 13,567
Yelp-hotel 20,975 6993 6993
Yelp-rest 106,943 35,648 35,648
Amazon 59,399 11,880 11,880

For fair comparison with the previous models, we encoded review scores of the Yelp-hotel dataset,
the Yelp-rest dataset, and the Amazon dataset into three discrete categories (score >3 as positive, =3 as
neutral, and <3 as negative) according to Huang and Paul’s experimental settings [29].

For sentence segmentation, we used NLTK [30], an open-source Python library for NLP. Then,
we evaluated the proposed model based on accuracy, as expressed by the following equation.

Accuracy =
# o f correct polarities

# o f polarities returned by a system
. (9)
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We implemented the proposed model using PyTorch [31]. The training and prediction were
performed on a per-document level. Table 3 lists the parameter settings for the model training.

Table 3. Optimal hyperparameters.

Parameter Value

Dimension of token embedding 128
Dimension of a hidden node in the class embedding 300
Dimension of q hidden nodes in the sentence encoder 768

Max sentence length 512
Max number of sentences 50

Batch size 64
Learning rate 0.00002

4.2. Experiments

The first experiment compared the performances of the proposed model with those of the
previous models. Table 4 lists the comparison results. In Table 4, Kim-CNN [8] is a sentence
classification model that shows good performances, although it uses simple CNNs. Adhikari-logistic
regression [28] and Adhikari-support vector machine [28] are text classification models based on logistic
regression and support vector machine, in which the term frequency and inversed document-frequency
scores are used as features, respectively. HAN [32] extracts meaningful features by modeling the
hierarchical structure of a document and classifies the document into predefined classes using two
levels of attention mechanisms: Word-level attentions and sentence-level attentions. LSTM-Reg [28]
is a sentiment classification model based on single-layer bidirectional long short-term memory
(BiLSTM). Knowledge distillation (KD)-LSTM [28] is a modified version of LSTM that uses the KD
scheme to increase performances using fine-tuned BERT-Large [16]. ALBERT-Base is our baseline
model, in which sentiment classification is performed using only ALBERT [22]. ALBERT showed
state-of-the-art performances in many downstream NLP tasks, such as span prediction, sequence
labeling, and text classification.

Table 4. Performance comparison with the previous models.

Model
IMDB Yelp-Hotel Yelp-Rest Amazon

Valid Test Valid Test Valid Test Valid Test

Kim-CNN [8] 0.429 0.427 0.794 0.775 0.805 0.806 0.853 0.817
Adhikari-support vector machine [28] 0.425 0.424 - - -

Adhikari-logistic regression [28] 0.431 0.434 - - -
HAN [32] 0.518 0.512 0.833 0.810 0.841 0.839 0.867 0.848

ALBERT-Base 0.520 0.519 0.827 0.827 0.871 0.874 0.870 0.858
LSTM-Reg [28] 0.534 0.528 0.813 0.796 0.837 0.840 0.863 0.837

Knowledge distillation-LSTM [28] 0.545 0.537 - - -
Proposed model 0.546 0.548 0.843 0.833 0.878 0.882 0.885 0.876

As summarized in Table 4, the proposed model outperformed all the previous sentiment
classification models in the experiments with all the datasets. To statistically validate the performance
differences, we performed t-tests between the proposed model and the comparison models using
the accuracies as the input values of the t-test. The p-values were 0.000311 between the proposed
model and Kim-CNN [8], 0.000164 between the proposed model and HAN [32], 0.000164 between the
proposed model and ALBERT-Base, and 0.001341 between the proposed model and LSTM-Reg [28],
respectively. This implies that the performances are statistically meaningful at a significance level
of 99%. These experimental results show that a well-formed neural network architecture has better
performances, effectively reflecting the importance of sentence and class information for document-level
sentiment classification.
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Second, we evaluated the effectiveness of each module in the proposed model at the architecture
level by using the IMDB dataset. The experimental results are summarized in Table 5.

Table 5. Performance comparison depending on changes in the architecture.

Model Accuracy
(Accuracy in the Valid. Dataset)

The whole model 0.548 (0.546)
- Class similarity embedding for a sentence 0.545 (0.545)

- Gated sentence embedding 0.543 (0.543)
- Class similarity embedding for a document 0.545 (0.548)

In Table 5, “The whole model” is our model, as shown in Figure 1. “Class similarity embedding
for a sentence” is a modified version of our model, in which is equal to, by excluding Equation (2),
and “Gate sentence embedding” is a modified version of our model, in which is equal to, by excluding
Equation (4). Then, “Class similarity embedding for a document” is a modified version of our model
in which Equation (7) is excluded. As summarized in Table 5, the modified versions showed inferior
performances, compared with the whole model. This fact reveals that the proposed embedding
methods (i.e., class similarity embedding and gated sentence embedding) contribute to improve the
performances of the document sentence classification. Moreover, “Gate sentence embedding” showed
the biggest performance drop in both the test dataset and the validation dataset. This fact reveals that
the importance of sentences should be considered in a document-level sentiment classification task.

5. Discussion

To check whether the importance of sentence is learned through the proposed neural network
architecture or not, we visualized the importance degrees (i.e., scores of the gate function in Equation
(4)) of each sentence in the test documents (i.e., documents in the test dataset) through two-dimensional
heat maps, as shown in Figure 5.
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Figure 5. Heat map for visualizing sentence importance.

In Figure 5, the sentences more associated with polarity of the given document were colored
in bluer. As shown in Figure 5, each sentence differently contributes to determine document-level
polarity. Then, we computed standard deviations of min-max normalized importance degrees in each
test document. Figure 6 shows the standard deviations sorted by ascending order.

As shown in Figure 6, the number of documents where the standard deviation was over 0.2 was
81.6%. Although the statistic was not computed from a gold standard dataset (i.e., dataset manually
annotated with importance scores of each sentence), we can indirectly find that sentences in a document
differently support polarity of the whole document.

When the proposed model returned incorrect polarity values, we checked the score differences
between predicted polarity values and correct polarity values. Figure 7 shows the number of incorrectly
predicted documents according to the score differences.
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As shown in Figure 7, the number of documents where the score difference is just one point was
66.5% of all wrong predictions (4078 ones among 6132 documents). Then, 89.5% of wrong predictions
(5490 ones among 6132 documents) showed the score differences within two points. In 10-scale polarity
prediction, we think that these small score differences often occur even in human prediction. Therefore,
various inter-coder agreement rates for IMDB dataset should be reported to measure reliability for
qualitative categorical items.

6. Conclusions

We propose an effective neural network model for document-level sentiment classification.
The proposed model automatically determines the importance degrees of sentences in documents
using gate functions learned from mass training data. Then, it classifies an input document into
predefined sentiment classes by differently considering the importance degrees of each sentence. In the
experiments with the four different datasets, the proposed model showed better performances than
previous state-of-the-art models. From the experimental results, we found that the importance of
sentences should be considered in a document-level sentiment classification task. Our future work will
focus on a more effective neural network architecture for reflecting sentence importance. In addition,
we will focus on a light document encoder for replacing large-scale language models.
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