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Abstract: Here, I discuss entropy and its use as a tool in fields of biology such as bioenergetics, ecology,
and evolutionary biology. Statistical entropy concepts including Shannon’s diversity, configurational
entropy, and informational entropy are discussed in connection to their use in describing the diversity,
heterogeneity, and spatial patterning of biological systems. The use of entropy as a measure of
biological complexity is also discussed, and I explore the extension of thermodynamic entropy
principles to open, nonequilibrium systems operating in finite time. I conclude with suggestions
for use of caliber, a metric similar to entropy but for time-dependent trajectories rather than static
distributions, and propose the complementary notion of path information.
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1. Introduction

Entropy principles have been used to describe biological patterns and processes at a range of
scales [1]. Perhaps the most well-known use of entropy in biology stems from the use of Shannon’s
entropy (H) [2] to describe the diversity of an ecological community. Entropy has also been used
in ecology to describe spatial patterning [3] and interconnectedness of organisms in systems [4].
In evolutionary biology, entropy principles have been used to describe the irreversible change
of systems through time [5] and to quantify the organization and complexity of populations and
communities [6,7]. Other uses include quantifying the thermal efficiency of organismal metabolism [8,9]
and creating orientors for in silico models [10,11]. Herein, I review the general uses and misuses of
entropy methods in biology and discuss other, more process-focused methods such as caliber and
path information.

2. Uses of Entropy in Biology

In classical thermodynamics, entropy (S) is an extensive state variable (i.e., a state variable
that changes proportionally as the size of the system changes, and is thus additive for subsystems,)
which describes the relationship between the heat flow (δQ) and the temperature (T) of a system.
Mathematically denoted, the relationship is dS = δQ/T. This formalism of entropy and Clausius’s
statement of the second law of thermodynamics led to the interpretation of entropy as a measure
of unavailability (i.e., entropy as a measure of the energy dispersed as heat, which cannot perform
work at a given temperature). It is also this formalism which has allowed for entropy production as a
measure of spontaneity, unidirectionality, and dissipation. This formalism has proven particularly
useful in biology for measuring the energy dissipation and thermodynamic efficiency in biological
systems including cells, organisms, and ecosystems [8,9,12,13].

The direct relationship of entropy to temperature and heat allows for the precise calculations of
entropy production in systems via calorimetry and spectroscopy. These methods have proven
quite valuable as a means to collect data on energetics and entropy production in biological
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systems, and improvements in resolution and accuracy in both technologies continue to advance
bioenergetics research.

2.1. Statistical Entropy

The thermodynamic entropy function proposed by Clausius was extended to the field of statistical
mechanics by Boltzmann with the introduction of statistical entropy [14]. In Boltzmann’s formalism,
entropy is a measure of the number of possible microscopic states (or microstates) of a system in
thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties (or macrostate).
Thus, the popular expression of entropy as S = kBlnΩ, where Ω is the number of microstates consistent
with the equilibrium macrostate and kB is a constant, which serves to keep entropy in the units of heat
capacity (i.e., Joules·Kelvin−1). Gibbs extended Boltzmann’s analysis of a single multiparticle system
to the analysis of an ensemble of infinitely many copies of the same system, demonstrating that the
entropy of a system is related to the probability of being in a given microstate during the system’s
fluctuations (pi), and resulting in the well-known Gibbs entropy equation:

S = −kB

∑
i

pi ln pi (1)

It is notable that the Gibbs entropy less the Boltzmann constant is identical to the Shannon entropy
(H) where

H = −
n∑

i=1

pi log pi (2)

As the Gibbs entropy approaches the Clausius entropy in the thermodynamic limit, this interesting
link between Shannon’s entropy and thermodynamic entropy has often led to misinterpretations
of the second law of thermodynamics in biological systems (e.g., the postulation of macroscopic
second laws acting at the scale of organisms and ecosystems). However, it is this same link that
has made possible the idea of information engines (e.g., [15,16]) and has allowed for use of entropy
concepts in many systems far removed from the heat engine (e.g., chemical systems, electrical systems,
biological systems).

In biology, perhaps the most well-known application of entropy is the use of Shannon’s entropy
as a measure of diversity [17,18]. More precisely, the Shannon entropy of a biological community
describes the distribution of individuals (these could be individual biomolecules, genes, cells, organism,
or populations) into distinct states (these states could be different types of molecules, types of cells,
species of organism, etc.). The Shannon entropy normalized by the richness (i.e., the number of states)
yields another diversity metric known as evenness [19–21], which is typically interpreted as a measure
of how similar the abundances of different states are.

Beyond allowing for the calculation of diversity, entropy concepts have also been quite useful
as a metric to quantify the organization, complexity, and order of biological systems. Often,
this is accomplished by comparing the entropy of the system to the system’s maximum entropy
(i.e., the entropy of the system without the informational constraints of history) to estimate its departure
from maximum homogeneity and randomness [7]. By extending entropy-based biodiversity and
complexity measures into spatially explicit landscapes, the field of landscape ecology has made
particular use of entropy methods to describe spatial and topological patterning at different scales.
Recent advances in the field have made use of more generalized statistical entropy formulations such
as Renyi’s entropy [22] and generalized Boltzmann entropy for landscape mosaics and landscape
gradients [23,24]. See Entropy Special Issue: Entropy in Landscape Ecology for other uses of entropy in
this field [25].

2.2. Information

In the post-Shannon age, information (I) has been conceptualized as a form of negative
entropy—that is to say that entropy is the information missing about a system, which would
allow that same system to do work at a given temperature. To state it more explicitly, I = −S.
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This relationship has allowed for many interesting applications of entropy methods to the informational
content of biological systems (e.g., informational content in a single biomolecule, a genome,
a metagenome). Several biologists have applied these information theoretic approaches to model
ecological and evolutionary systems. Of particular note are the infodynamic formalisms proposed
by Jeff Wicken [26–28], Stanley Salthe [29–31], and Robert Ulanowicz’s concept of ascendency for the
development and succession of ecological systems [32].

3. Abuse of Entropy in Biology

3.1. Entropy and Order

Despite the numerous uses of entropy concepts in biology, there has also been some confusion
concerning entropy and its applications in the life sciences. One such issue is the interpretation of
entropy as the disorder of a system. While entropy has often been taught in college chemistry and
physics classes as synonymous with disorder, this is not actually the case. In fact, in many systems,
order increases as a direct result of increasing entropy (e.g., [7]). This is because both order and disorder
are functions of entropy [33]. The mathematical relationship between entropy (S) and disorder (D) is
D = S/Smax. This leads to the complementary notion of order (O), where O = 1− S/Smax, where Smax

is the maximum entropy (i.e., the entropy the system would have if it were free of informational
constraints). The misinterpretation of entropy as disorder has led some authors to assert that the
increase in biological order observed through time in many systems is a violation of the second law of
thermodynamics, which is simply wrong. This relationship between entropy and maximum entropy
has been useful in the areas of complexity science and autopoiesis (the study of systems capable of
maintaining and reproducing themselves) [34,35]. It should be noted that the relationship of entropy to
notions of order, organization, and complexity all transform the extensivity of entropy into an intensive
quantity by normalizing to some other variable. This emphasizes that these metrics, although derived
from entropy, are not synonymous with entropy itself.

3.2. Entropy-Driven Systems

Another abuse of entropy in biology is the claim that biological systems are driven by entropy
(or entropy production). This notion may have begun with Schrödinger’s statement that life feeds off

negative entropy [36]. However, just because entropy increases in spontaneous processes does not
mean that entropy (or its production) is the ultimate thermodynamic driving force. In fact, only in the
case of isolated systems does entropy alone determine the direction of thermodynamic equilibrium.
For non-isolated systems such as biological systems, where there are flows of matter, energy, and
entropy into and out of the systems, the movement of the system toward equilibrium is determined
by both the maximization of entropy and the minimization of free energy. Only in isolated systems
where internal energy (U) is held constant will entropy reach its maximum [37]. In the thermodynamic
limit where systems undergo isentropic change (i.e., they change without production of entropy),
equilibrium is only determined by the minimization of free energy. Thus, it is seen that non-isolated
systems are driven by free energy flux or, more precisely, exergy flux. (Note: For those not familiar with
exergy, it is the work that could be extracted in a process that reversibly brings a system to equilibrium
with the environment. At constant environmental temperature and pressure, exergy change is equal to
the change in free energy.) It is noted that biological systems increase the global entropy and dissipation
by using free energy to create local entropy minima (i.e., building up local information and order).
However, this increase in universal entropy (∆SU) is not the driving force in biological processes but is
merely a requisite of the system operating in finite time. Thus, for biological systems, just as for heat
engines, the entropy production is simply a byproduct due to dissipative processes such as friction and
turbulence, which should be minimized insofar as the constraints of finite time and resources allow.
Consequently, it is seen that biological systems are not selected to maximize dissipation and entropy
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production, as is often claimed (e.g., [38]), but rather to minimize these quantities to perform work to
ultimately survive and reproduce.

3.3. Mischaracterization of Biological Systems

Much of the confusion concerning the entropy-driven nature of biological systems stems from the
mischaracterization of biological systems as isolated or closed systems (i.e., a system with no exchange
of matter and/or energy). However, biological systems are not closed systems; rather, they are open
to the exchange of both matter and energy. This means that they can create and maintain localized
decreases in entropy by using exogenous sources of free energy and matter. It is by maintaining their
localized entropy at lower levels than the surrounding environment that biological systems are able to
build up information and order. This highlights the fact that biological systems must dissipate entropy
into the surrounding environment to build up local order. Incorporating the role of the environment
into thermodynamic studies emphasizes the ecological nature (i.e., the interconnectedness of multiple
systems and subsystems to each other and to their physical surroundings) of biological systems and
allows for a more complete systems view of biology.

Similar to the mischaracterization of biological systems as closed systems is the mischaracterization
of biological systems as being at equilibrium. Almost by definition, living systems are not at equilibrium.
Of course, some degrees of freedom may be at or near equilibrium; however, many degrees of
freedom are actually quite far from thermodynamic equilibrium. The formalization of nonequilibrium
approaches to open thermodynamic systems has allowed for better use of entropy principles in
biology [39–42]. However, thermodynamic entropy (e.g., Clausius, Gibbs, and Boltzmann) is undefined
in nonequilibrium states, as there is no well-defined temperature. This can be overcome with the use
of von Neumann entropy, an extension of classical entropy to quantum mechanics. The von Neumann
entropy can be calculated for any quantum state, equilibrium or otherwise, as S = −tr(ρ lnρ), where ρ
is the density matrix describing the quantum state and tr is the trace of this matrix. Although von
Neumann’s formulation allows for the calculation of nonequilibrium entropy, it is still a state function.
Thus, one can only infer the change in entropy in a system by comparing the difference in entropy
between states. This serves to highlight that thermodynamics is not really dynamics at all; rather, it is a
form of comparative statics (i.e., comparing the difference between states). However, many biologists
are not interested in merely comparing states, but instead aim to understand the underlying dynamics
of biological processes.

4. Caliber

To begin to shift biological thermodynamics from a state-focused form of comparative statics
to process-focused dynamics, I propose the use of caliber concepts and methodologies. Caliber (C),
also known as path entropy (a notion similar to Feynman’s path integral formulation [43]), is a
thermodynamic quantity that defines the distribution of flows over pathways in dynamical processes.
Mathematically, this amounts to an entropy-like equation: C = −

∑
i pilnpi, where the pis here are

the relative populations of flow paths [44]. This is contrary to the formulation of entropy where the
pis are relative populations of states, whereas for caliber the probabilities represent the distributions
of dynamical trajectories between states. Thus, caliber is to dynamics as entropy is to comparative
statics. Another way to say this is that while entropy provides a state-focused, equilibrium approach
to problems, caliber provides a process-focused, nonequilibrium approach. As biological systems are
inherently nonequilibrium dynamical systems, caliber provides a function, which may be better suited
to accurately describe the processes occurring in cells, organisms, populations and ecosystems.

Maximum caliber approaches have been used to accurately predict dynamical distribution
functions that characterize the relative probabilities of different microtrajectories, including so-called
“bad actors” that contribute net motion in the direction opposite to the macroflux predicted by the second
law of thermodynamics [45]. Furthermore, caliber approaches have been shown to be particularly
useful in systems with a small number of individuals, where maximum caliber methods have been
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used to successfully model autoactivation in single-gene circuits [46]. Caliber approaches have also
been shown to work well in systems involving feedback mechanisms, such as the feedback produced
by the changing fitness landscape topologies arising from ecological interactions in evolutionary
systems [47]. In addition to being a more informative and accurate method for predicting trajectories in
changing biological systems, maximum caliber methodologies are also more parsimonious than other
methods involving master equations and mass action laws, as maximum caliber requires fewer model
assumptions and parameters. Thus, generalizable stochastic models utilizing caliber may be the best
approach to model biological processes, such as evolution and succession, based on thermodynamic
principles. For more on caliber methods and their use in biology, see the review by Ghosh et al. [48]

5. Discussion

5.1. Connecting Caliber to Other Thermodynamic Quantities

Despite the seeming advantages of caliber approaches over entropy to describe nonequilibrium
dynamical systems, there are still some advantages of using entropy for certain problems. One of
the major advantages to entropy methods is the strong fundamental connection between entropy
and other thermodynamic metrics such as heat, free energy, work, and efficiency. The relationship
between these metrics and caliber is less well-defined in the existing literature and offers an area rich
for further research.

5.2. Informed Pathways

The link between information and entropy demonstrates that local decreases in entropy essentially
amount to local increases in information. These local accumulations of information represent constraints
on specific degrees of freedom which allow for control of a system as it relaxes toward equilibrium.
As the approach to equilibrium is inherently a dynamical process, I propose a complementary notion to
caliber which I call path information. Path information serves to quantify the informational constraints,
which limit the possible flow paths, and ultimately allow a system to extract work from flows of free
energy through these informed pathways.

This is precisely how many biological systems function: they use free energy to locally decrease
entropy (i.e., create informational constraints on the flow of free energy through the system) in order
to perform work. In the case of organisms, these informational constraints include the information
encoded in DNA sequences and complex biochemical modifications (e.g., methylation, ubiquitination,
phosphorylation). At the biochemical level, these informed pathways can be seen in the form of
enzymes and molecular motors which carefully control biochemical processes. It should be noted
here that the flow of free energy through informed pathways to do work does not necessarily lead to
entropy production; instead, it is the thermalization of free energy which causes entropy production.
This highlights a major difference between the biological mechanism of energy use and many other
technologies, such as the heat engine. Rather than converting chemical energy—“food”—to heat and
then using that heat to do work as it flows to a cooler subsystem, biological pathways extract work in a
nonthermal manner by carefully choregraphing molecular motions to better maximize their efficiency.
The buildup of path information is what allows biology to extract work from flows of free energy in
this manner and ultimately what determines the thermodynamic efficiency of biological processes.
This emphasizes the fact that the efficiency of living systems—that is, the degree to which they can
approach the thermodynamic limits—is a matter of engineering-informed energy flux pathways, not a
matter of the available free energy quantity or quality.

The formulation of path information, much like entropy and caliber, has the potential to
be used in both a physical, thermodynamic sense and in a macroscopic, descriptive manner.
For example, path information can be used to define the relative flows of molecules through specific
biochemical pathways and quantify how this relates to metabolic efficiency. At the macroscopic
scale, path information could be useful to describe dynamical processes such as organismal migration,
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epidemiological spread of pathogens, evolutionary gene flow, and trophic cascades. Other areas where
path information formulations may prove particularly useful include hydrology, hydrodynamics,
aerodynamics, and economics.

5.3. Ergodicity

Many authors have asserted that biological systems are ergodic (e.g., [49–51]). A system is ergodic
if its dynamics sample phase space such that, in the long run, time averages over a single trajectory
and ensemble averages over many independent trajectories yield the same result. Thus, it follows
that in ergodic systems all accessible microstates are equiprobable over a long period of time and that
long-term behaviors are essentially independent of initial conditions. However, this is most certainly
not a characteristic of biological systems, which typically have strong signatures of history and initial
conditions [52]. Furthermore, one cannot exchange space and time averages in biological systems.
For one illustrative example at the microscopic scale, consider a circular, unidirectional process such
as A→B→C→A in steady state. Many biochemical processes are exactly of this circular type—e.g.,
the buildup and breakdown of glycogen. Since this cycling of glycogen costs ATP for every cycle,
there is no energetic equiprobability among the states, even though their numbers (concentrations)
may remain constant. Thus, these systems are not an equilibrium ensemble and are not ergodic.
This becomes even more blatantly obvious at the macroscale where ecological and evolutionary
systems typically evolve to different forms over long time periods. Take, for example, the death
of an organism. Once the organism has died, there is no chance of it spontaneously returning to
the previous state of being alive. It should be noted here that, despite the claim of some authors,
death is not synonymous with reaching equilibrium; although the organism’s metabolism has stopped,
the macromolecules contained in the biomass still have a relatively high energetic potential and will
continue to be oxidized to lower and lower energetic states before being recycled and assimilated
into new forms. Throughout all the stages of life, death, and decomposition, there is extraordinarily
little chance of spontaneously returning to the previous phase space. The non-ergodicity of biological
systems is even more conspicuous in the process of mass death, or extinction, in which whole groups of
organisms are lost, and although similar organisms may eventually evolve, the return to the previous
biological phase space is nearly infinitesimal (especially without energetic inputs). Therefore, it is
noted that biological systems are strongly constrained by history and the arrow of time, which by
definition makes them non-ergodic.

Some subset of ecological and evolutionary systems may explore only a small portion of their phase
space over relatively short timescales, and in this sense may have local ergodic periods characterized
by macroscopic stationary states. However, over long timescales, these systems typically evolve
to search a new, small area of phase space. Thus, it is seen that biological systems at all scales are
largely non-ergodic.

6. Conclusions

The applications of thermodynamics to biological systems have been largely focused on state
functions (e.g., entropy). However, this approach does not allow for the observation of process
dynamics that occur in biological systems. Thus, the dynamics are only inferred from comparative
statics. To move forward, the field needs to shift from a state-based science to a process-based discipline.
This will necessitate the explicit incorporation of time and rate dependency, which will require the
integration of other branches of physics such as statistical mechanics and kinetics. Furthermore,
the type of biological data collected will need to explicitly include time as a variable. Although some
authors approach biological systems as ergodic [49–51], allowing for the exchange of space averages
for time averages or vice versa, living systems are not actually ergodic. This means that temporally
resolved data is needed to address path dependency and process functions. Utilizing nonequilibrium,
process-focused metrics such as caliber and path information will allow better modeling of biological
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processes and will give biologists a more complete and realistic understanding of the dynamics of
living systems.
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