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1. Introduction

The purpose of this work is to present the formulation of estimation theory in the framework of
C∗-algebras, with particular attention to differential geometric aspects. Although estimation theory is a
well-developed subject both in the classical case of probability distributions [1–4] and the quantum case
of density operators [5–12], and even if quantum estimation theory builds upon classical estimation
theory, there is no unifying picture for these subjects. By unifying picture, we mean a mathematical
framework in which estimation theory is placed in such a way that the classical and quantum cases
appear as particular instances of the general theory. We believe that such a formulation may be
helpful in obtaining a better understanding of the similarities and differences of classical and quantum
estimation theory. This idea may be considered as the driving force of this work.

Roughly speaking, the main problem estimation theory tries to address is to infer the value
of some parameters characterizing the state of the “physical system” under investigation by the
theoretical manipulation of the outcomes of experiments performed on such system.

In the classical case, the state of the system is described by a probability distribution on the space of
outcomes of the experiment, and the goal of estimation theory is to infer the value of some parameters
characterizing the true probability distribution describing the system (e.g., the mean and/or variance
for the case of Gaussian distributions) from the outcomes of the experiment. As such, estimation theory
is well developed both in its asymptotic and non-asymptotic regimes. Arguably, one little black spot
of the theory is that the parameter spaces characterizing the probability distributions under study
are usually taken to be homeomorphic to open subsets of some finite-dimensional Euclidean space.
Even if this assumption is justified in most of the models, it necessarily introduces some simplifications
related with the “nice” structure of the parameter spaces as smooth manifolds. As an example,
the existence of global coordinates often lead to the definition of objects that are coordinate-dependent
(see, for instance, in ([3] ch. 4), where it is clearly stated that the notion of unbiased estimator developed
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there is coordinate-dependent). We believe it is healthy to formulate the theory in order to avoid
these issues and better comprehend the coordinate-independent aspects of the theory. This geometric
attitude already proved itself useful in classical Newtonian, Lagrangian, and Hamiltonian mechanics [13–18],
in thermodynamics and statistical physics [19–22], and in quantum mechanics [23–26]. Clearly, there already
have been efforts to formulate classical estimation theory in this direction [27–30], and here we try to
encapsulate the spirit of these works in our formulation of estimation theory on C∗-algebras.

On the other hand, in the quantum case, the state of the system is no longer a probability
distribution, it is a density operator on the Hilbert space associated with the system. This adds, at the
same time, complexity and richness to the problem of estimation. A first layer of added complexity
refers to the need of a statistical interpretation of a given quantum state. Since the dawn of quantum
mechanics, the issue of the physical interpretation of Schrödinger’s wavefunction was recognized
to be a fundamental question. The idea of interpreting the square modulus of the wavefunction as
a probability distribution paved the way to the statistical interpretation of quantum states through
what is now called the Born rule [31]. Essentially, the Born rule describes a “procedure” to associate a
probability distribution on a suitable outcome space with a given quantum state. Clearly, this depends
on both the quantum state and the choice of the outcome space, and this means that there is more
than one way to associated probability distributions with quantum states. From the mathematical
point of view, the choice of the statistical interpretation is described by a positive operator-valued
measure (POVM) on the Hilbert space of the system [10,32]. Accordingly, in order to set up the
estimation problem for a given parametric model of quantum states, we need to operate a preliminary
choice concerning the POVM “inducing” the statistical interpretation. Of course, this choice influences
the estimation problem we set up, and different choices in general lead to different solutions of the
associated estimation problem. All this obviously adds a layer of complexity to the estimation problem,
but, simultaneously, it opens new possibilities to outperform classical limits of estimation because
of the peculiar features of quantum states (e.g., entanglement). Indeed, in the quantum case it is
possible to give a precise mathematical meaning to the assertion “measuring one copy N times is
less informative than measuring N copies one single time” [12,33–36]. This assertion relies on the
phenomenon of entanglement which is absent in the classical realm, and thus highlights an important
difference between the classical and quantum estimation theory.

As mentioned before, the goal of this article is to introduce a theoretical framework that
allows us to treat the classical and quantum case simultaneously. Specifically, our choice is to
consider the theory of C∗-algebras as the backbone of our construction because both probability
distributions and quantum states may be realized as linear functionals on suitable C∗-algebras.
In the case of probability distributions, this is basically the duality between probability measures and
functions given by the Riesz theorem. For quantum states, this comes directly from the axiomatic
structure of the theory. The main difference between the two cases is that the algebras involved
are commutative in the former case and non-commutative in the latter. In this general framework,
probability distributions and quantum states represent different realizations of the notion of state on a
C∗-algebra A . The space of states S is a convex subset of the dual space of A , and the study of its
differential geometry is a fascinating subject. The rich algebraic structure of C∗-algebras translates
into a rich geometrical structure for their spaces of states that is perfectly suited for the formulation of
parametric estimation theory.

The use of C∗-algebras as a theoretical framework to study the geometry of quantum states is not
new [37–56]. However, the focus was essentially always on the algebra of bounded linear operators on
the Hilbert space of the quantum system, and not on a generic C∗-algebra. While this restriction may
seem not particularly relevant for most practical purposes, it is certainly so from the theoretical point
of view. Indeed, some recent developments [57–62] point out the possibility of describing quantum
systems whose associated C∗-algebras are groupoid algebras, and thus are in principle more general
than the algebra of bounded linear operators. Consequently, a reformulation of the well-known results
for an arbitrary C∗-algebra appears to be useful.



Entropy 2020, 22, 1332 3 of 30

On the other hand, in the classical case, the explicit use of C∗-algebras to investigate the geometry
of probability distributions is essentially absent. To the best of our knowledge, the only (very nice)
exceptions are the works in [63–65]. However, the point of view of these works is different from
ours because they consider probability distributions as particular elements of a C∗-algebras, while we
consider them as particular linear functionals.

Another reason why we believe it would be useful to consider the framework of C∗-algebras
is that the space of states of a C∗-algebra is an example of space of states of general probabilistic
theories [66,67]. Therefore, the study of the differential geometry of the space of states of C∗-algebras,
and in particular the study of parametric estimation theory in this context, represents a first step
toward the study of these subjects in the more comprehensive framework of general probabilistic
theories. This intermediate step may be useful because states on C∗-algebras benefit from the rich
algebraic structure of the algebras they act upon, while states in general probabilistic theories do not
necessarily have such a rich algebraic background to rely on. Consequently, a first study of the richer
case may lead to results that can be later generalized to the less rich case once an appropriate and
judicious process of extrapolation is pursued.

We confine ourselves to the case of finite-dimensional C∗-algebras because, at this preliminary
stage, we want to avoid the technical difficulties with which the infinite-dimensional case is filled.
Indeed, we are now interested in exposing the basic aspects of the theory in order to have a solid
background on which future works can rely on. In the infinite-dimensional case, the technical
difficulties would often obscure the conceptual aspects, and this unavoidably leads to be less
communicative. Moreover, it is even not yet clear what are the geometrical players on the fields
when infinite dimensions are considered because there is no general consensus on which are the
most appropriate manifolds of states to consider in this case (see the works in [4,23,68–78] for
some examples).

Incidentally, the restriction to the finite-dimensional case seems to affect more the classical case,
rather than the quantum case. Indeed, classical estimation theory essentially deals with parametric
models of probability distributions on spaces which are neither discrete nor finite (think for instance to
normal distributions), and these cases are naturally associated with infinite-dimensional C∗-algebras.
The case of parametric models of probability distributions on discrete and finite spaces is usually less
studied because it seldom presents itself in applications. In the context of quantum information theory,
the situation is quite the opposite, and the vast majority of the models considered refer to quantum
system with a finite-dimensional Hilbert space, and thus with an associated finite-dimensional
C∗-algebra. The infinite-dimensional case usually deals only with pure-state models for which the
underlying manifold of states is rather friendly, being the Hilbert manifold of a complex projective
space associated with a separable, complex Hilbert space.

The content of this work builds on well-known and established results in the context of both
classical and quantum estimation theory. However, the presentation of these results in the unifying
framework of C∗-algebras is essentially new, as are the proofs of some results. We believe that this
attitude may be particularly useful in future research dealing with the infinite-dimensional case and
in dealing with the comparison of classical and quantum methods. Accordingly, this work should
be considered more as a first, preliminary step in a research program aimed at the understanding
of the unification of classical and quantum estimation theory rather than an exposition of a finite
theory, and the focus of the work is more on the discussion of general structures rather than on the
presentation of specific examples.

The article is structured as follows. In Section 2, some differential geometric aspects of
finite-dimensional C∗-algebras and of their spaces of states are recalled. In Section 3, the notion
of parametric model of states on a C∗-algebra A is introduced and the notion of Symmetric
Logarithmic Derivative used in quantum information theory is generalized to the C∗-algebraic setting.
In Section 4, the notion of parametric statistical model associated with a given parametric model of
states is introduced. This notion represents the bridge between the models of states on a possibly
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noncommutative C∗-algebra and the models of probability distributions used in classical estimation
theory. Moreover, the notion of multiple round model and its geometrical properties are briefly
discussed. In Section 5, the problem of estimation theory is formulated in the C∗-algebraic framework
and the notion of manifold-valued estimator is recalled. In Section 6, a proof of the Cramer–Rao bound
for manifold-valued estimators on finite outcome spaces is given following the work of Hendriks [29].
Finally, in Section 7, the generalization of the Helstrom bound used in quantum information theory to
the C∗-algebraic framework is given.

2. Differential Geometric Aspects of the Space of States

We start with a brief summary of C∗-algebras [79–82]. Let A be a complex algebra with identity I.
If there is an anti-linear map † : A→ A such that (a†)† = a for all a ∈ A, and such that (ab)† = b†a†

for all a, b ∈ A, then † is called an involution and (A, †) an involutive algebra. If there is a norm
‖ · ‖ on A turning it into a Banach space satisfying the additional relations ‖ab‖ ≤ ‖a‖ ‖b‖ and
‖aa†‖ ≤ ‖a‖2 for all a, b ∈ A, then (A, †, ‖ · ‖) is called a C∗-algebra, and, for the sake of notational
simplicity, it will be denoted simply by A .

An element a ∈ A is called self-adjoint if a = a†. The space of self-adjoint elements in A is
denoted as Asa. It is a real Banach space whose dual space is denoted as V , and there is a direct
sum decomposition

A = Asa ⊕ ı Asa, (1)

where ı is the imaginary unit.
An element b ∈ A is called positive if there exists a ∈ A such that b = a†a. Clearly, a positive

element b is self-adjoint, and it can be proved that there is a unique self-adjoint element s such
that b = s2.

An element g ∈ A is called invertible if there is another element written as g−1 such that
g g−1 = g−1 g = I. The set of invertible elements in A is denoted as G , and it is a real Banach–Lie
group; the Banach–Lie algebra of which is A endowed with the commutator [83,84]. An element
u ∈ G is called unitary if u−1 = u†. The set of unitary elements in A is denoted as U and it is a real
Banach–Lie subgroup of G , called the unitary group of A , whose Banach–Lie algebra is the subspace
ı Asa in the decomposition (1) endowed with the commutator inherited from A [83,84].

Let A ∗ be the complex Banach dual of A . An element ξ ∈ A ∗ is called a self-adjoint linear
functional if ξ(a†) = ξ(a). The set of self-adjoint linear functionals is precisely the real Banach dual
V of Asa. A self-adjoint linear functional ω is called positive if ω(a) ≥ 0 for every positive element
a ∈ A . A positive element ω is called faithful if ω(a) = 0 implies a = 0 for all positive elements in A .
The set of positive elements is denoted as P . A positive linear functional ρ is called a state if ρ(I) = 1.
The set of states is denoted as S .

In the following, we will focus only on finite-dimensional C∗-algebras. Given a self-adjoint
element a ∈ Asa, we write fa for the linear function on V given by

fa(ξ) = ξ(a) , (2)

as well as for its restrictions to the various submanifolds of V we will introduce below (with an evident
abuse of notation).

There is a group action of G on S given by [41,68]

ρg : ρg(c) =
ρ(g† c g)
ρ(g† g)

≡ Φ(g, ρ) ∀ c ∈ A , (3)

and the space of states S decomposes into the disjoint union of orbits of the G -action, and evidently,
each such orbit is a homogeneous space.
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Recalling that A endowed with the commutator is the Lie algebra of G , the fundamental vector
fields of Φ are labelled by elements of A . Recalling (1), we write an element in A as a + ıb where
a, b ∈ Asa, and ı is the imaginary unit. Accordingly, we write Γab for the fundamental vector field
associated with 1

2 (a + ıb). A direct computation shows that the tangent vector Γab(ρ), identified with
a self-adjoint linear functional in V because the orbit O is an immersed submanifold of V , is given by

(Γab fc) (ρ) = (Γab(ρ)) (c) = ρ({a, c})− ρ(a)ρ(c) + ρ([[b, c]]) ∀ c ∈ A , (4)

where {, } and [[, ]] denote, respectively, the Jordan product and the Lie product in A given by

{c, d} :=
1
2
(cd + dc)

[[c, d]] :=
1
2ı

(cd− dc) .
(5)

Note that {, } and [[, ]] preserve Asa, and actually turn it into a Jordan–Lie algebra [85,86].
We set

Ya := Γa0

Xb := Γ0b,
(6)

and we call Ya a gradient vector field (the origin of the name will be explained below) and Xb
a Hamiltonian vector field. It is not hard to show that the Hamiltonian vector fields give an
anti-representation of the Lie algebra of the group U ⊂ G of unitary element of G [41,68]. This Lie
algebra anti-representation integrates to a left action of U on O given by the restriction of Φ to U .

If we fix a basis {ej}j=1,...,N of self-adjoint elements in A (where dim(A ) = N), we may introduce

the structure constants djk
l and cjk

l of the Jordan and Lie products in Equation (5) by setting

{ej, ek} = djk
l el

[[ej, ek]] := cjk
l el .

(7)

Then, the gradient and Hamiltonian vector fields are easily seen to be given by

Ya =
(

djk
l akxl − fa xj

) ∂

∂xj

Xb := cjk
l bkxl ∂

∂xj ,
(8)

where {xj}j=1,...,N is the Cartesian coordinate system on V associated with the dual basis {ej}j=1,...,N
of {ej}j=1,...,N .

Example 1 (The probability simplex). If we endow C(Xn) with the involution given by complex conjugation,
and with the supremum norm, it is not hard to prove that it is a C∗-algebra. We denote this C∗-algebra as Cn.
Let ej ∈ Cn be the “delta function” at xj ∈ Xn (i.e., ej(xk) = δ

j
k), then {ej}j=1,..,n is clearly a basis for Cn

(seen as a vector space) made up of positive, self-adjoint elements, and we have

n

∑
j=1

ej = 1n, (9)

where 1n is the identity element in Cn (i.e., the identity function on Xn). Consequently, we can build the dual
basis {ej}j=1,..,n, and a state ρ on Cn is easily seen to be written as

ρ = pj ej, (10)
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where the real numbers pj = ρ(ej) are non-negative and are subject to the constraint

n

∑
j=1

pj = 1. (11)

From this, we conclude that the space of states S of Cn may be identified with the n-simplex ∆n. In the following,
whenever we deal with Cn, we will identify a state ρ on Cn with a probability distribution in ∆n and write p
instead of ρ.

Let Ik ⊆ Xn be a subset with k ≤ n elements, and let ρ be a state on Cn such that pj 6= 0 if and only if
xj ∈ Ik. Then, it is not hard to check that the orbitO of the group G of invertible elements in Cn (see Equation (3))
through ρ coincides with the set of all those states $ = qjej such that qj 6= 0 if and only if xj ∈ Ik. In particular,
the open interior ∆+

n of the n-simplex may be identified with the orbit of G through the state p with pj = 1
n for

all j = 1, ..., n.
As Cn is Abelian, it is not hard to see that the action of the unitary group U ⊂ G is trivial, and thus the

Hamiltonian vector fields vanish identically. On the other hand, a direct computation shows that the structure
constants djk

l of the Jordan product with respect to the basis {ej}j=1,..,n vanish unless j = k = l, in which case
they are 1.

Example 2 (The space of density matrices). Consider the complex algebra Mn :=Mn(C) of complex-valued,
(n× n) matrices. There is an involution † on Mn given by the composition of transposition with component-wise
complex conjugation. By exploiting the trace operation, it is possible to define a norm on Mn given by
‖a‖2 = Tr(a†a), and we obtain a C∗-algebra which will be denoted by Mn. Moreover, it is easily seen that
Mn is isomorphic to the algebra B(H) of bounded linear operators on an n-dimensional complex Hilbert space
H. This isomorphism depends on the choice of an orthonormal basis in H, but, in the context of quantum
information theory, this is in general not very limiting because a preferred choice of basis, called computational
basis [87], is often tied to the physics of the problem under investigation.

As Mn is finite-dimensional, it is isomorphic with its dual space, and an isomorphism is provided by the
trace operation. Specifically, a linear functional ξ on Mn is identified with an element ξ̂ ∈Mn by means of

ξ(a) := Tr(ξ̂ a). (12)

Then, it follows that a state ρ on Mn may be identified with a positive semi-definite matrix ρ̂ ∈Mn with unit
trace. Any such matrix is usually referred to as a density matrix.

It is not hard to prove that the orbits of G are classified by the rank of the associated density
matrices [38,40,45,68,88]. Specifically, every orbit O is made up of states the associated density matrices
of which have fixed rank. In particular, we have the orbit of states whose density matrices have unit rank which
is the orbit of pure states (the extremal points of the convex space of states) which is diffeomorphic to the complex
projective space CPn, and the orbit of states whose density matrices have full rank (invertible) which is the orbit
of faithful states. Note that the latter is an open subset of the affine space of self-adjoint linear functionals giving
1 when evaluated on the identity In of Mn.

If we introduce a basis {σj}j=0,...,n2−1 on Mn in such a way that σ0 coincides with the identity element
In ∈ Mn, and that σj is self-adjoint and satisfies Tr(σj) = 0 for all j 6= 0, we can build its dual basis
{σj}j=0,...,n2−1, and it follows that a state ρ may be written as

ρ =
1
n

(
σ0 + xj σj

)
, (13)

where j = 1, ..., n2 − 1 and xj ∈ R. Clearly, the fact that ρ must be a state imposes some constraints on the
values of xj depending on the fact that ρ(a†a) must be non-negative. There is no general closed formula to
express these constraints for arbitrary n > 2.
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For the case n = 2 (also known as the qubit), it is customary to select σ1, σ2, σ3 to be the so-called
Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −ı
ı 0

)
σ3 =

(
1 0
0 −1

)
, (14)

where ı is the imaginary unit. Then, ρ is a state if and only if

δjkxjxk ≤ 1 . (15)

This identifies a ball in the three-dimensional space spanned by the Pauli matrices which is known as the Bloch
ball. In this case, there are only two orbits of the group G of invertible elements in Mn, namely, the density
matrices lying on the surface sphere (the pure states) and the density matrices in the interior of the ball (the
faithful states).

According to the work in [41], the gradient vector fields provide an overcomplete basis of the
tangent space at each point in every orbit O. Furthermore, on every O we may define a Riemannian
metric tensor G given by

Gρ(Ya(ρ),Yb(ρ)) = ρ({a, b})− ρ(a)ρ(b) , (16)

and Ya is the gradient vector field associated with the smooth function fa (see Equation (2)) by means
of G. This metric tensor is invariant with respect to the action of the unitary group in the sense that

Φ∗UG = G ∀U ∈ U , (17)

where ΦU is the diffeomorphism given by

ΦU(ρ) := Φ(U, ρ) . (18)

However, G is not invariant under the action of all of G .
The metric tensor G turns out to be the C∗-algebraic version of some well-known and relevant

metric tensors when explicit cases are considered [41]. For instance, if A = Cn and O = ∆+
n , then G

coincides with the Fisher–Rao metric tensor. If A = B(H) and O ∼= CP(H) is the orbit of pure states),
then G coincides with the Fubini–Study metric tensor. If A = B(H) and O is the orbit of faithful
states, then G coincides with the Bures–Helstrom metric tensor.

According to the work in [41], the geodesic of G starting at ρ ∈ O with initial tangent vector
v ∈ TρO reads

νv
ρ (t) = cos2(|v|t) ρ +

sin2(|v|t)
|v|2 ρv +

sin(2|v|t)
2|v| ρ{v}, (19)

where

v = Ya(ρ) for some a ∈ Asa | ρ(a) = 0,

|v|2 = Gρ(v, v) = ρ
(

a2
)

,

ρv(b) := ρ (a b a) ∀ a ∈ Asa,

ρ{v}(b) := ρ ({a, b}) ∀ a ∈ Asa.

(20)

The geodesic νv
ρ (t) remains inside the space of states S for all t ∈ R, but it also exits and enters the

orbit O containing the initial state ρ at multiple times [41].
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3. Parametric Models of States on C∗-algebras

Motivated by the classical theory of parametric estimation, we will now introduce the notion of
a parametric model of states on a finite-dimensional C∗-algebra, and then reformulate the theory of
parametric estimation in this theoretical framework. This will allow for the simultaneous handling of
the classical and the quantum case.

Definition 1. A parametric model of states on a (finite-dimensional) C∗-algebra A is a triplet (M, j,O)
where M is a smooth manifold, O ⊂ S is a G -orbit in S (see Section 2), and j : M→ O is a smooth map. If j
is injective, we say that the model is identifiable.

Some comments are in order. First of all, we fix the codomain of j to be an orbit of statesO because,
as will be clear below, we want to exploit the differential geometric aspects of O itself. In practice,
a vast part of the models considered in the literature falls in this category. For instance, in quantum
information geometry, it is customary to deal with parametric models consisting only of pure states,
or only of invertible density operators. In principle, it would also be possible to consider a more
general case in which j is a smooth map of M into the Banach space V of self-adjoint linear functionals
in such a way that j(M) ⊂ S , and M intersects different orbits of states. This line of thought would
require a different way to handle geometrical properties of the space of states in relation with the
parameter manifold, based, for example, on the methodology introduced in [4,71] for the classical
case. This line of reasoning may be useful in the transition to the infinite-dimensional case where the
smooth structure of the orbits O is in general not guaranteed, and we plan to address this and related
questions in the future.

Concerning the identifiability of a model, it may seem at first glance reasonable to consider only
identifiable models, but we will show that there are well-known and “simple” parametric models
of quantum states (e.g., qubit models) for which either this assumption is not satisfied, or it leads to
difficulties with the statistical interpretation of the model.

Now, we turn our attention to the geometrical objects that M inherits by means of the smooth map
j. Indeed, once we have the smooth map j, a symmetric, covariant (0, 2) tensor is naturally obtained on
M by considering the Riemannian metric G on O introduced before and taking its pullback

GM := j∗G (21)

to M with respect to j. This gives a tensor on M which “feels” the possible non-commutativity of A

and gives the “correct” tensor in the classical case.
Indeed, if A is Abelian, thenO is diffeomorphic to the open interior of a suitable simplex, G is the

Fisher–Rao metric tensor [41], and GM is the pullback of the Fisher–Rao metric tensor to the manifold
M seen as a model of probability distributions [3].

On the other hand, if A is the algebra B(H) of bounded linear operators on a finite-dimensional,
complex Hilbert spaceH and O is the manifold of pure states, then O is diffeomorphic to the complex
projective space CP(H) associated withH, G is the Fubini–Study metric [41] on O = CP(H), and GM

is the quantum counterpart of the Fisher–Rao metric tensor on the manifold M seen as a model of pure
quantum states [89]. Moreover, if O is the manifold of faithful states, then G is the Bures–Helstrom
metric tensor [41], and GM may be read as a quantum counterpart of the Fisher–Rao metric tensor on
the manifold M seen as a model of faithful quantum states [90].

We will now introduce the C∗-algebraic version of the Symmetric Logarithmic Derivative (SLD)
introduced in quantum estimation theory by Helstrom in [6]. For this purpose, note that every tangent
vector at ρ ∈ O may be expressed in terms of gradient vector fields, that is, given ρ ∈ O, for every
tangent vector Vρ ∈ TρO there exists a self-adjoint element a ∈ Asa depending on Vρ such that

Vρ = Ya(ρ) . (22)
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Consequently, if we consider a tangent vector vm ∈ Tm M, it makes sense to ask for the gradient vector
field Ya on O such that

Tmj(vm) = Ya(ρm) , (23)

where ρm := ρ(j(m)). The gradient vector field Ya in general depends on both the point m ∈ M and
the tangent vector vm. The tangent vector Ya(ρm) satisfying Equation (23) is called the SLD of vm at ρm.

To appreciate the link with the standard definition of the SLD, let us consider a parametric model
(M, j,O) where A = B(H), O is the manifold of faithful states (invertible density operators), M is an
open submanifold of R, and j is a suitable smooth map. Setting vm = ∂t(m) where ∂t is the restriction
to M of the vector field generating the group structure of R, a direct computation shows that the
solution of Equation (23) coincides with the Symmetric Logarithmic Derivative (SLD) of the work
in [6]. Indeed, ∂t is the infinitesimal generator of mt = m + t, and considering an arbitrary function fb
on O, we have

〈d fb(ρm), Tmj(vm)〉 =
d
dt

(Tr (ρ̂mt b))t=0 = Tr
(

d
dt

(ρ̂mt)t=0 b
)
∀ b ∈ Asa (24)

so that Equation (23) may be alternatively written as

d
dt

(ρ̂mt)t=0 = {ρ̂m, am} =
1
2
(ρ̂m am + am ρ̂m) , (25)

where
am = a− ρ̂m(a) I, (26)

which is precisely the definition of the SLD (see also Equation (3) in [90] and Equations (3.4) and (3.14)
in [91] for the multiparametric case). This justifies the interpretation of Equation (23) as the C∗-algebraic
generalization of the SLD embracing also the multiparametric quantum and classical cases.

Example 3 (A pure state qubit model). Consider the algebra M2 of the qubit (see Example 2). Take the
one-parameter group of unitary elements generated by the element ıσ3 according to

uγ = e
ı
2 γσ3

, (27)

where γ ∈ R. Then, consider the orbit O ∼= CP2 of pure states on M2, set M = R, and consider the map
jR : M→ O given by

ργ ≡ jR(γ) := Φ(uγ, ρ), (28)

where Φ is the action of G ⊃ U given in Equation (3), and

ρ =
1
2
(σ0 + σ1) . (29)

A direct computation shows that

ργ =
1
2
(σ0 + cos(γ) σ1 − sin(γ) σ2) (30)

and that jR is smooth. Clearly, jR is not injective, and thus the parametric model (R, jR,CP2) is not
identifiable. However, the parametrization given in Equation (30) is useful in quantum estimation theory
when an experimental realization of the parametric model is constructed in terms of a spin interacting with
a magnetic field. In this case, γ = tB where t is the time parameter of the dynamical evolution and B is the
strenght of the magnetic field. Then, the fact that the model is not identifiable depends on the dynamical evolution
being periodic.
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Now, let us consider the vector field V on M = R generating translations. This vector field is complete,
and provide a basis of the tangent space Tγ M at each γ ∈ M. Moreover, V is the infinitesimal generator of the
action of the Abelian Lie group G = R on M = R given by

ψ(ζ, γ) := γ + ζ ∀ ζ ∈ G, γ ∈ M. (31)

The group G acts also on CP2 by means of

Ψ(ζ, ρ) := Φ(Uζ , ρ), (32)

where Φ is the action given in Equation (3). The fact that Ψ is a group action follows from the fact that the map
γ 7→ Uγ is a group homomorphism, that is, it satisfies

Uζ1 Uζ2 = Uζ1+ζ2 ∀ ζ1, ζ2 ∈ G. (33)

The actions ψ and Ψ have a particular relation to one another, indeed, a direct computation shows that they are
equivariant with respect to jR, which means that

jR (ψ(ζ, γ)) = Ψ (ζ, jR(γ)) . (34)

This property is quite strong because it implies that the fundamental vector fields of the action of G on M = R
are jR-related with the fundamental vector fields of the action of G on CP2, which means that [92]

TγjR(Vγ) = Wζ
ργ , (35)

where V is the fundamental vector field of ψ(ζ, γ) (i.e, the vector field generating the translation considered
above), while W is the fundamental vector field of Ψ(ζ, ρ) (recall that, in this case, the exponential map from the
Lie algebra of G to G itself is the identity). As

Ψ(ζ, ρ) = Φ(Uζ , ρ), (36)

the fundamental vector field W is easily seen to be the Hamiltonian vector field associated with σ3

(see Equation (6)). This means that

〈d fb, TγjR(Vγ)〉 = 〈d fb, Wργ〉 = ργ

(
[[σ3, b]]

)
. (37)

Consequently, regarding the SLD, Equation (23) leads us to look for the self-adjoint element a satisfying

ργ ({a, b})− ργ(a) ργ(b) = ργ

(
[[σ3, b]]

)
(38)

for all self-adjoint elements b ∈ M2. Passing from ργ to its density matrix ρ̂γ, we see that Equation (38) is
equivalent to

{ρ̂γ, a} − Tr(ρ̂γa) ρ̂ = [[ρ̂γ, σ3]]. (39)

We write
a = a0σ0 + a1σ1 + a2σ2 + a3σ3, (40)

where aj ∈ R for all j = 0, 1, 2, 3. A direct computation exploiting the properties of the Pauli matrices shows
that a0 is arbitrary (as it should be because of the very definition of gradient vector field), a3 = 0, while a1 and
a2 must satisfy

a1 sin(γ) + a2 cos(γ) = −1. (41)

Clearly, this means that a and thus the SLD are not uniquely defined.
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Concerning the covariant tensor GR, we have

GR = j∗RG (42)

by definition. As jR is an immersion and G is a Riemannian metric, then GR is a Riemannian metric (i.e., it is
positive and invertible). Moreover, setting

ψζ(γ) := ψ(ζ, γ)

Ψζ(ρ) := Ψ(ζ, ρ) = Φ(Uζ , ρ),
(43)

we immediately obtain

ψ∗ζ GR = ψ∗ζ j∗RG =
(
jR ◦ ψζ

)∗G =
(
Ψζ ◦ jR

)∗G = j∗R Ψ∗ζ G = j∗R Φ∗Uζ
G = jRG = GR (44)

where we used Equation (34) in the fourth equality, and Equation (17) in the sixth equality.
Therefore, we conclude that GR is invariant with respect to the action of the Lie group G = R on M = R given
by translation, and thus must be proportional to the Euclidean metric tensor.

Example 4 (A mixed state qubit model). Consider the algebra M2 of the qubit (see Example 2). Consider the
orbit O of faithful states, set M = R+ ×R+, and define the map jM as

ργ,ζ ≡ jM(γ, ζ) :=
1
2

(
σ0 + e−ζ γ (cos(γ) σ1 − sin(γ) σ2)

)
. (45)

A direct computation shows that this map is smooth. Quite interestingly, the parametric model (M, jM,O) has
a physical origin which is connected with the dynamics of open quantum systems. The dynamics of such systems
is governed by the so-called Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation [93–98]. In particular,
choosing the infinitesimal generator L of this linear equation to be the dephasing channel, the dynamical evolution
evolution generated by L is such that the initial (pure) state ρ given in Equation (29) evolves according to
the right-hand-side of Equation (45), where γ

2 plays the role of the time parameter while 2ζ is the dephasing
parameter ([40] ex. 2). Note that the initial pure state is evolved into a mixed (faithful) state as soon as the time
parameter is greater than 0.

This model has been recently considered in the context of quantum parameter estimation in the presence of
nuisance parameters [99].

Let us now consider the vector fields V and W on M generating the local one-parameter groups of
local diffeomorphisms

φt(γ, ζ) = (γ + t, ζ)

ψt(γ, ζ) = (γ, ζ + t).
(46)

Clearly, these vector fields are not complete on M; however, they provide a basis of tangent vectors at each point
of M. A direct computation shows that

〈d fb, Tγ,ζ jM(Vγ,ζ)〉 = −e−ζγ ((sin(γ) + ζ cos(γ)) b1 + (cos(γ)− ζ sin(γ)) b2)

〈d fb, Tγ,ζ jM(Wγ,ζ)〉 = −γe−ζγ (cos(γ) b1 − sin(γ) b2) ,
(47)

from which we conclude that jM is an immersion. Then, Equation (23) implies that the SLD YaV (ργ,ζ) and
YaW (ργ,ζ) of V and W at (γ, ζ), respectively, are found as the solutions of

〈d fb, Tγ,ζ jM(Vγ,ζ)〉 = 〈d fb, YaV (ργ,ζ)〉 = ργ,ζ

(
{aV , b}

)
− ργ,ζ

(
aV
)

ργ,ζ (b)

〈d fb, Tγ,ζ jM(Eγ,ζ)〉 = 〈d fb, YaW (ργ,ζ)〉 = ργ,ζ

(
{aW , b}

)
− ργ,ζ

(
aW
)

ργ,ζ (b)
(48)
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for all self-adjoint elements b ∈M2. A direct computation leads to

aV = aV
0 σ0 −

(
e−ζγ sin(γ) +

ζ cos(γ)
2 sinh(ζγ)

)
σ1 +

(
ζ sin(γ)

2 sinh(ζγ)
− e−ζγ cos(γ)

)
σ2

aW = aW
0 σ0 − γ

2 sinh(ζγ)

(
cos(γ)σ1 − sin(γ)σ2

)
.

(49)

Note that, apart from the coefficients aV
0 and aW

0 , which are arbitrary because they do not affect the expression of
the associated gradient vector field, the SLD associated with V and W are uniquely defined at each point of M.
This is due to the fact that the model is a model of faithful states. Moreover, note that [aV , aW ] 6= 0, and thus
there is no unital, Abelian C∗-subalgebra of M2 that contains both aV and aW . This will have an impact on the
attainability of the Helstrom bound.

As GM = j∗MG, we immediately obtain (see Equation (16))

GM
γ,ζ
(
Vγ,ζ , Vγζ

)
= Gργ,ζ

(
YaV (ργ,ζ),YaV (ργ,ζ)

)
= ργ,ζ

(
{aV , aV}

)
−
(

ργ,ζ

(
aV
))2

, (50)

and similarly for GM
γ,ζ
(
Vγ,ζ , Wγζ

)
and GM

γ,ζ
(
Wγ,ζ , Wγζ

)
. Then, as V and W provide a basis of tangent vectors

at each point in M, the tensor GM can be computed to be

GM =

(
e−2ζγ +

ζ2

e2ζγ − 1

)
dγ⊗ dγ +

(
ζγ

e2ζγ − 1

)
dγ⊗S dζ +

(
γ2

e2ζγ − 1

)
dζ ⊗ dζ. (51)

Example 5 (Lie group and Lie algebra parametric models). Motivated by the model in Example 3 and
by some of the models commonly used in the quantum context [5,100], we introduce the notion of a Lie group
parametric model and of a Lie algebra parametric model.

Let G be a Lie group which is realized as a Lie subgroup of the Lie group G of invertible elements in A ,
and let ρ0 be a state in S . Set M = G and define the map jG : M → O, where O is the orbit containing ρ0,
by means of

jG(g) := Φ(g, ρ0). (52)

This map is clearly smooth and we call (G, jG,O) a Lie group parametric model. If the fiducial state ρ0 is
such that

Φ(g, ρ0) = ρ0 ⇐⇒ g = I ∀g ∈ G , (53)

then the model is identifiable.
As G is a subgroup of G , the left action of G on itself is related with the action of G on O determined by the

restriction of Φ to G in the way expressed in Equation (34). Specifically, let ψ be the left action of G on itself.
Define an action Ψ of G on O given by

Ψ(g, ρ) := Φ(g(g), ρ), (54)

where g ∈ G and g(g) ∈ G is the realization of g as an element of G . Then, g 7→ g(g) is a group homomorphism,
that is, it satisfies

g(g1g2) = g(g1) g(g2), (55)

and thus it follows from Equations (52), (54), and (55) that

jG (ψ(g, h)) = Ψ (g(g), jG(h)) , (56)

which means that the actions ψ and Ψ are equivariant with respect to jG. This means that the fundamental
vector fields of ψ are jG-related with the fundamental vector fields of Ψ [92]. This instance may be helpful in
computing the SLD adapting the steps outlined in Example 3.



Entropy 2020, 22, 1332 13 of 30

If (G, jG,O) is a Lie group parametric model and we consider another parameter manifold which is a
smooth homogeneous space M = G/H of G admitting a global, smooth section η : M → G, then we can
immediately build another parametric model (M, jM,O) by setting jM := jG ◦ η. This may be helpful to obtain
identifiable models. Indeed, if ρ0 has a non-trivial isotropy group G0 ⊂ G, which is the set of all elements g ∈ G
such that Φ(g, ρ0) = ρ0, we have that M = G/G0 is a smooth manifold. Then, if there is a smooth section η for
M, the resulting parametric model will be identifiable. This is very similar to the notion of coherent state used in
quantum theory [101,102].

Another relevant parametric models is obtained when we consider the Lie algebra g of G. In this case, we have
the exponential map exp : g→ G that can be exploited to define a parametric model. Specifically, let (G, j,O)
be a Lie group parametric model. Then, defining jg := jG ◦ exp, we immediately obtain the parametric model
(g, jg,O) which is referred to as a Lie algebra parametric model. If the Lie algebra g is commutative, then the
exponential map is a group homomorphism when the Lie algebra is thought of as a group with respect to the
vector sum, and we obtain an equivariance relation with respect to jg between the left action ψ of g on itself and
its realization Ψ(v, ρ) = Φ(exp(v), ρ) as a group acting on O.

4. Parametric Statistical Models of States on C∗-algebras

When an experiment is performed on a system in a given state ρ, we obtain an outcome lying in
a given outcome space X which is associated with the measurement procedure. The state ρ is then
“transformed” into a probability distribution on X in the sense that different repetitions of the same
experimental procedure (i.e., preparation of the system in the state ρ followed by the measurement
procedure with outcome space X ) will produce in general different outcomes characterized by a
probability distribution which is associated with the state ρ and with the measurement procedure
adopted. In this work, we will always consider outcome spaces which are discrete and finite.

Given a discrete and finite outcome space Xn with n elements, the statistical interpretation of
the state ρ is encoded in a map m∗ : S −→ P(Xn) ≡ ∆n, which we will assume to be convex in order
to preserve one of the basic features of probabilities and states. From this, it follows that m∗ can be
extended to a linear map m∗ : A ∗ −→ S(Xn), where S(X ) is the vector space of signed measures on Xn.
From the C∗-algebraic perspective, S(Xn) is the space of self-adjoint linear functionals on the Abelian
C∗-algebra Cn := C(Xn) of complex-valued, continuous functions on Xn, and thus, as m∗ is continuous
because A ∗ and S(Xn) are finite-dimensional, we immediately obtain that there is a continuous linear
map m : Cn −→ A of which m∗ is the dual map. By construction, the map m must be such that its
dual map m∗ sends the space of states of A into the space of states of Cn. One way to implement this
condition is to require m : Cn −→ A to be a unital, positive map between C∗-algebras, that is, a linear
map preserving the identity and sending positive elements into positive elements (clearly, any such
map sends self-adjoint elements into self-adjoint elements).

Definition 2. A positive unital map m : Cn → A is defined to be a measurement procedure.

Specifically, given a finite and discrete outcome space Xn, we can always consider the basis
of Cn given by the elements {ej}j=1,...,n, where ej is the “delta function” at the j-th element of Xn.
The measurement procedure m amounts to define the elements

mj := m(ej) ∀ j = 1, ..., n, (57)

in such a way that they satisfy
n

∑
j=1

mj = I, (58)

and
mj ≥ 0 ∀ j = 1, ..., n. (59)
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Essentially, we are considering a (discrete) POVM in the C∗-algebraic framework. The probability
distribution m∗(ρ) associated with the state ρ is characterized by the numbers

pj := (m∗(ρ)) (ej) = ρ
(
m(ej)

)
= ρ(mj) . (60)

Once a parametric model (M, j,O) is chosen, we immediately have the map

jc := m∗ ◦ j : M −→ ∆n . (61)

We require this map to lie entirely in a given fixed orbit of states inside ∆n. Clearly, as every orbit in ∆n

is diffeomorphic to ∆+
k for some k 6= n (see Example 1), there is no loss of generality in requiring the

codomain of jc to lie entirely inside the manifold ∆+
n of faithful states on Cn. Indeed, if this is not the

case, it suffices to redefine Xn to be the subset Ik, exchange Cn with C(Ik), and relabel k as n.

Definition 3. Let (M, j,O) be a parametric model of states on a C∗-algebra A . A measurement procedure
m such that jc(M) := m∗ ◦ j(M) ⊆ ∆+

n is called regular for (M, j,O).

Once a regular measurement procedure m for (M, j,O) is chosen, we are ready to build a
parametric statistical model (in the sense of information geometry [2–4]) associated with the parametric
model (M, j,O).

Definition 4. Let (M, j,O) be a parametric model of states on a C∗-algebra A , and let m be a regular
measurement procedure for (M, j,O). Then, the triple (M, jc, ∆+

n ), with jc as in Equation (61), is defined to be
the parametric statistical model associated with the parametric model (M, j,O) by means of the measurement
procedure m.

The open interior of the simplex ∆+
n coincides with the space of faithful states on the

finite-dimensional, commutative C∗-algebra Cn of complex-valued continuous functions on the discrete
n-point space X n, and thus the Radon–Nikodym derivative of p ∈ ∆+

n with respect to the counting
measure on Xn is well defined as a function on Xn, and it is called the probability density function of
p. Clearly, being jc(M) ⊆ ∆+

n , every element m ∈ M may be uniquely associated with the probability
density function of pm = jc(m). Moreover, for every x ∈ Xn, the function p(m, x) = pm({x}) is a
smooth function on M because pm is a linear functional on Cn and jc is smooth, and its support does
not depend on the chosen x ∈ Xn because jc(M) ⊆ ∆+

n . These regularity properties are particularly
meaningful with respect to the Cramer–Rao bound discussed in Section 6.

Remark 1 (Classical statistical models). In the specific case when the algebra A is commutative, i.e., A = Cn

for some n ∈ N, a parametric model (M, j,O) of states on Cn is already a parametric statistical model
by itself. Indeed, according to Example 1, the orbit O is diffeomorphic to the open interior ∆+

k of a k-simplex
with k 6= n. Specifically, we have a subset Ik ⊆ Xn of k elements, the C∗-algebra Ck generated by the elements
ej ∈ Cn with j such that xj ∈ Ik, and O is diffeomorphic to the orbit of faithful states of Ck. Then, we have
a “natural” measurement procedure m : Ck → Cn at our disposal given by the natural identification ik map
of Ck in Cn, and the map jc = m∗ ◦ j = i∗k ◦ j gives rise to the statistical model (M, jc, ∆+

k ) associated with
(M, j,O). From this, it is clear that once we have the parametric model (M, j,O) we immediately have a
“natural” parametric statistical model (M, jc, ∆+

k ) associated with it. No additional choices must be made.

Exploiting the Riemannian geometry of ∆+
n , the parameter manifold M may be endowed with

another symmetric, covariant (0, 2) tensor which is in general different from the metric GM introduced
before. Indeed, we may consider the Fisher–Rao Riemannian metric GFR on ∆+

n , which is the
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Riemannian metric tensor G associated with the Jordan product of the self-adjoint part of Cn as
described in Section 2, and then take its pullback

GMc = (jc)∗GFR (62)

to M (the “c” stands for classical, or commutative). In this case, we obtain a symmetric covariant tensor
on M which, unlike GM given by Equation (21), cannot feel the possible non-commutativity of A ,
and which is the pullback of the Fisher–Rao metric tensor on M thought of as a parametric statistical
model in ∆+

n along the lines of classical information geometry.
To accommodate multiple runs, say N, of the same experimental procedure on N identical and

independent copies of the initial state, we introduce the parametric model (M, jN ,ON), where ON is
the manifold of states on the tensor product algebra

A ⊗N := A ⊗ · · · ⊗A (63)

containing the product states of the form ρ1 ⊗ · · · ⊗ ρN with ρj ∈ O for every j = 1, ..., N,
and jN : M −→ ON is given by

jN(m) := j(m) ⊗ · · · ⊗ j(m) ≡ ρm ⊗ · · · ⊗ ρm ≡ ρ⊗N
m . (64)

Clearly, we may endow M with the Riemannian metric GMN defined by

GMN := (jN)∗GN , (65)

where GN denotes the canonical Riemannian metric onON associated with the Jordan product on A ⊗N .
As the smooth embedding jN has been defined in terms of a “multiplicative object”, namely, the tensor
product, it is reasonable to expect that this multiplicative feature reflects also in the pullback metric.
Indeed, below we will prove that

GMN = NGM. (66)

Performing N runs of an experiment provides us with a list of N outcomes, and we consider the
outcome space

X N = X × · · · × X . (67)

At this point, we must choose a measurement procedure mN : C⊗N
n = C(X N) −→ A ⊗N so that,

setting jcN = mN ◦ jN , we can build a statistical model (M, jcN , ∆+
Nn) in the obvious way. We may

endow M with the Riemannian metric GMcN defined by

GMcN := N(jcN)∗GFR, (68)

where NGFR is the Fisher–Rao metric tensor on ∆+
nN (this either follows from standard arguments in

classical information geometry, or by Proposition 1 below applied to the case where A = Cn).

Proposition 1. With the notations introduced above, we have

GMN = NGM. (69)

Proof. We start proving that, if vm ∈ Tm M is such that

Tmj(vm) = Ya(ρm), (70)

then it holds
TmjN(vm) = YN

aN (ρ
⊗N
m ), (71)
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where YN
aN is the gradient vector field on ON associated with

aN = a ⊗ I ⊗ · · · ⊗ I+ I ⊗ a ⊗ I ⊗ · · · ⊗ I+ · · ·+ I ⊗ · · · ⊗ I ⊗ a. (72)

Recall that simple elements of the form b1 ⊗ · · · ⊗ bN generate A ⊗N , and thus, to prove Equation (71),
it is sufficient to compute

〈d fb1⊗···⊗bN (ρ
⊗N
m ), TmjN(vm)〉 = 〈d(jN)∗ fb1⊗···⊗bN (m), vm〉. (73)

Denoting by mt a smooth curve in M starting at m with initial tangent vector vm, we have

〈d(jN)∗ fb1⊗···⊗bN (m), vm〉 =
d
dt

(
ρ⊗N

mt (b1 ⊗ · · · ⊗ bN)
)

t=0
=

=
d
dt

(ρmt(b1) · · · ρmt(bN))t=0 ,
(74)

from which Equation (71) follows applying the Leibniz rule and recalling that Tmj(vm) = Ya(ρm).
We now take vm, wm ∈ Tm M such that

TmjN(vm) = YN
aN (ρ

⊗N
m )

TmjN(wm) = YN
bN (ρ

⊗N
m ),

(75)

with aN and bN as in Equation (72). Recalling that GMN = (jN)∗GN , and noting that

GN
ρ⊗N

m
(YN

aN (ρ
⊗N
m ), YN

bN (ρ
⊗N
m )) = ρ⊗N

m ({aN , bN})− ρ⊗N
m (aN) ρ⊗N

m (bN) (76)

because of Equation (16), we have

GMN
m (vm, wm) = GN

ρ⊗N
m

(YN
aN (ρ

⊗N
m ), YN

bN (ρ
⊗N
m ))

= ρ⊗N
m

(
{aN , bN}

)
− ρ⊗N

m (aN) ρ⊗N
m (bN) =

= (Nρm({a, b}) + N(N − 1) ρm(a) ρm(b))− N2 ρm(a) ρm(b) =

= N (ρm({a, b})− ρm(a) ρm(b)) =

= N GM
m (vm, wm)

(77)

as desired.

5. The Problem of Estimation Theory

The purpose of estimation theory is to manipulate the outcomes of experiments in such a way
to obtain an estimate of the “true state” on which the experiment has been performed. This is
done by means of a map E : Xn −→ M called estimator. In the following, we will always consider
non-constant estimators.

Clearly, we need to come up with a way of establishing optimality for estimators. For this purpose,
we introduce a smooth cost function C : M×M −→ R which is non-negative and vanishes only on
the diagonal. The choice of the cost function is essentially left to the ingenuity of the theoretician,
and it is difficult to outline a general selection methodology. However, in some cases, the choice of the
cost function is suggested by the context.

Starting with a cost function C, and writing Ej ≡ E(xj) for the value of the estimator at the j-th
element of the outcome space Xn, we introduce the function L : M×M −→ R given by

L(m1, m2) :=
n

∑
j=1

C(m1, Ej) pj(m2) =
n

∑
j=1

C(m1, Ej) ρm2(m
j), (78)
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where (p1(m2), · · · , pn(m2)) = jc(m2) = m∗(ρm2), and m is the measurement procedure “generating”
the statistical model (M, jc, ∆+

n ) associated with the parametric model (M, j,O) of states on A under
investigation. It is clear from Equation (78) that if the cost function C is constant, then L does
not actually depend on m2, and the problem of estimation theory as will be now developed will
lose meaning.

The function L may be seen as the expectation value of the real-valued, M-parametric random
variable C(m1, E(·)) on Xn with respect to the M-parametric probability distribution m(ρm2) on Xn.
Therefore, L measures how centered is the probability distribution generated by C(m1, E(·)).

Let m∗ ∈ M and denote by L∗ the function

L∗(m) := L(m, m∗). (79)

The estimator E is called stationary for the cost function C at m∗ if L∗ has an extremum at m = m∗,
that is, if

(VL∗) (m∗) = 0 (80)

for all vector fields V on M. The estimator E is called unbiased for the cost function C at m∗ ∈ M if the
function L∗ has a minimum at m = m∗, and it is called locally unbiased for the cost function C at m∗
if L∗ has a local minimum at m = m∗. In general, for a given cost function C, unbiased estimators need
not exist.

Now, we may define an M-parametric self-adjoint elementM in A setting

Mm1 :=
n

∑
j=1

C(m1, Ej)mj . (81)

This element clearly depends also on the estimator E and on the measurement procedure m.
Moreover, it allows us to write the function L as the expectation value ofMm1 with respect to the state
ρm2 according to

L(m1, m2) = ρm2 (Mm1) . (82)

The estimation problem may be approached from two different perspectives of
increasing difficulty:

• the regular measurement procedure m is fixed, and the unknown of the problem is the
estimator E , and

• both the regular measurement procedure m and the estimator E are considered unknown.

Clearly, the first case reduces to the classical problem of estimation, and may be faced relying
on well-known methods like the maximum likelihood estimator. The limit on the precision is then
governed by the Cramer–Rao bound (see Section 6). The second case is definitely more difficult to
address because the freedom in the choice of the regular measurement procedure adds another layer
of complexity. However, in this case, the precision is governed by the Helstrom bound (see Section 7),
and allows for a sharpening of the Cramer–Rao bound. Indeed, the freedom in choosing the
measurement procedure reflects in the possibility of consider different “classical scenarios”, and choose
the one with the lowest Cramer–Rao bound.

Unfortunately, for both forms of the problem, there is no algorithm to solve the problem in full
generality, and a case-by-case analysis is mandatory.

Remark 2 (Stationary estimators for Euclidean cost function). Suppose that M is explicitly realized as an
n-dimensional submanifold of RN for some positive N ∈ N with n ≤ N. In this context, a common choice in
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parameter estimation theory is to consider the cost function C which is the Euclidean distance on RN ×RN

restricted to M×M. Specifically, we have

C(m1, m2) :=
1
2
|m1 −m2|2 , (83)

so that the function L reads

L(m1, m2) :=
1
2

n

∑
j=1

∣∣m1 − Ej
∣∣2 pj(m2). (84)

This type of cost function is called a Euclidean cost function for obvious reasons. Clearly, the Euclidean
cost function C depends on the actual realization of the (a priori abstract) manifold M into a suitable RN .
In particular, because of Whitney’s embedding theorem, given a parameter manifold M we can always build a
Euclidean cost function. Of course, the actual usefulness of such a cost function is in principle not clear and
should be investigated case by case. However, it often happens in concrete models that the parameter manifold M
is “naturally” immersed in some given RN by construction, and thus the Euclidean cost function unavoidably
presents itself from the start.

If {θ1, ..., θn} is a local system of coordinates on M, it is easy to see that being stationary at m∗ is equivalent
to (see Equation (80))

mk
∗(θ) = Em∗(θ)[E

k] ∀k = 1, ..., N and ∀r = 1, ..., n, (85)

where mk
1 is the smooth function on M obtained by composing the canonical immersion of M in RN with the

canonical projection on the k-th factor, E k is the real-valued random variable on X obtained by composing E
with the canonical immersion of M in RN and with the canonical projection on the k-th factor, and where Em∗ [·]
denote the expectation value with respect to the M-parametric probability distribution pm∗ .

As C > 0 for all (m1, m2) ∈ M×M unless m1 = m2, in which case it vanishes, we see that a stationary
estimator at m ∈ M is also locally unbiased at m ∈ M.

When M is an open subset of RN and {θ1, ..., θN} is a system of Cartesian coordinates, and when
Equation (85) holds for all m ∈ M, we recover the standard definition of an unbiased estimator used in classical
and quantum estimation theory ([3] ch. 4).

6. The Cramer–Rao Bound

Here, we recall Hendrik’s derivation of the Cramer–Rao bound for estimators with values
in a manifold [29] when the underlying outcome space is discrete and finite. This gives a clear
geometric picture of the Cramer–Rao bound which does not depend on the existence of a privileged
coordinatization of the parameter space M as it is the case in most of the existing literature
(see, for instance, in ([3] ch. 4) where it is clearly stated that the notion of unbiased estimator developed
there is coordinate-dependent, as well as in [28–30])

Let (M, j, ∆+
n ) be a parametric statistical model. We refer to Definition 4 and the paragraph right

after it, as well as to Remark 1 for a discussion of the regularity properties satisfied by the model
(M, j, ∆+

n ). Recall that the metric GM determined by Equation (21) coincides with the Fisher–Rao
tensor on M as determined by standard methods of information geometry [1–3]. We assume that GM

is invertible.
In order to obtain the generalized Cramer–Rao bound for a stationary estimator, we need to

exploit the geometrical properties of the product structure of the manifold M×M. We will now recall
these geometrical properties following ([103] sec. 2), to which we refer for the explicit proofs.

First of all, we note that there are two projections πl and πr from M×M to M given by

πl(m1, m2) := m1

πr(m1, m2) := m2,
(86)
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and there is also the diagonal immersion id of M into M×M given by

id(m) := (m, m) . (87)

Given a vector field X on M, we may define its left and right lift to be the vector fields Xl and Xr on
M×M characterized by

Xl(π
∗
l f ) = π∗l (X( f ))

Xr(π
∗
r f ) = π∗r (X( f ))

(88)

for every smooth function f on M. It is possible to prove that every vector field X on M is id-related
with the vector field Xl + Xr on M×M ([103] sec. 2).

If E is a stationary estimator at m∗ ∈ M then L∗ has an extremum at m∗, and this is equivalent to

(id (Xl L))m=m∗ = 0 (89)

for all vector fields Xl on M×M. We assume that E is a stationary estimator for all m∗ ∈ M. This means
that the function L = id (Xl L) identically vanishes. Consequently, given an arbitrary vector field Y on
M, we also have

0 = Y (i∗dL) = Y (i∗d (Xl L)) = i∗d ((YlXl + YrXl)L) , (90)

which means
i∗d (YlXl L) = −i∗d (YrXl L) . (91)

As E is stationary at every m∗, it follows that the Hessian form H∗ of L∗ at m∗ is well defined and
we have

H∗(X(m∗), Y(m∗)) := (Y X L∗) (m∗). (92)

A moment of reflection shows that

(Y X L∗) (m∗) = (i∗d (YlXl L)) (m∗) (93)

so that
H∗(X(m∗), Y(m∗)) = − (i∗d (YrXl L)) (m∗) (94)

because of Equation (91). Set

CEj(m) := C(m, Ej) (95)

so that we have

L(m1, m2) :=
n

∑
j=1

CEj(m1) pj(m2) (96)

and we obtain

H∗(X(m∗), Y(m∗)) = −
n

∑
j=1

(
XlCEj

)
(m∗)

(
Yr pj

)
(m∗) . (97)

Introducing the real-valued random variables on the probability space (Xn, p(m∗)) given by

F∗X(xj) :=
(

XlCEj

)
(m∗)

G∗Y(xj) :=
(

Yr ln(pj)
)
(m∗),

(98)
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we can rewrite the right hand side of Equation (97) as

H∗(X(m∗), Y(m∗)) = −E∗ [F∗X G∗Y] , (99)

where E∗ [·] denotes the expectation value with respect to the probability measure p(m∗).
The expression

〈F, G〉∗ := E∗ [F G] (100)

is an inner product on the space of random variables on the probability space (Xn, p(m∗), and the
Cauchy–Schwarz inequality may be applied to obtain

(H∗(X(m∗), Y(m∗)))
2 ≤ E∗ [F∗X F∗X ] E∗ [G∗Y G∗Y] . (101)

Then, a direct computation shows that

E∗ [G∗Y G∗Y] =
n

∑
j=1

(
Yr ln(pj)

)
(m∗)

(
Yr ln(pj)

)
(m∗) pj(m∗) =

= GM(Y(m∗), Y(m∗)).

(102)

Next, we introduce the expression

C(X(m∗), Y(m∗)) := E∗ [F∗X F∗Y] , (103)

which according to (98) implicitly contains the cost function C, so that we can write Equation (97) as

(H∗(X(m∗), Y(m∗)))
2 ≤ C(X(m∗), X(m∗)) GM(Y(m∗), Y(m∗)) . (104)

Clearly, C depends on the cost function C and the estimator E .
Now, fix Xm∗ ∈ Tm∗M, and define the function H : Tm∗M −→ R given by

Y(m∗) ≡ Ym∗ 7→ H(Ym∗) := H∗(Xm∗ , Ym∗). (105)

This function admits a maximum on the unit sphere determined by the Fisher–Rao metric.
Indeed, the Fisher–Rao unit sphere in Tm∗M is compact because the Fisher–Rao metric is a Riemannian
metric (positive). Let Y0

m∗ be a point on which H is maximum. Then, we may always find a real number
λ such that

H(Ym∗) = λ GM(Y0
m∗ , Ym∗) , (106)

so that
H(Y0

m∗) = λ GM(Y0
m∗ , Y0

m∗) = λ (107)

because Y0
m∗ lies on the Fisher–Rao unit sphere.

With an evident abuse of notation, we denote by H∗(Xm∗) the covector in T∗m∗M acting as

〈H∗(Xm∗), Zm∗〉 := H∗(Zm∗ , Xm∗) ∀ Zm∗ ∈ Tm∗M, (108)

and by GM (Y0
m∗
)

the covector in T∗m∗M given by

〈GM
(

Y0
m∗

)
, Zm∗〉 := GM

(
Y0

m∗ , Zm∗

)
∀ Zm∗ ∈ Tm∗M . (109)

Then, comparing Equation (105) with Equations (106), (108), and (109) allows us to conclude that

H∗(Xm∗) = GM
(

λ Y0
m∗

)
, (110)
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which, assuming GM to be invertible, is equivalent to

(GM)−1 (H∗(Xm∗), αm∗) = 〈αm∗ , λ Y0
m∗〉 (111)

for all covectors αm∗ ∈ T∗m∗M. In particular, setting αm∗ = H∗(Xm∗) we get

(GM)−1 (H∗(Xm∗), H∗(Xm∗)) = 〈H∗(Xm∗), λ Y0
m∗〉 = λ H(Y0

m∗) (112)

because of Equations (108) and (105). Now, Equation (105) together with Equations (107) and (112)
imply that (

H∗(Y0
m∗ , Xm∗)

)2
=
(

H(Y0
m∗)
)2

= λ H(Y0
m∗) =

=
(

GM
)−1

(Hm∗(Xm∗), Hm∗(Xm∗)) .
(113)

Eventually, recalling that Y0
m∗ lies on the Fisher–Rao unit sphere, Equations (104) and (113) lead us to

the generalized Cramer–Rao bound

C(Xm∗ , Xm∗) ≥
(

GM
)−1

(H∗(Xm∗), H∗(Xm∗)) . (114)

If the Hessian form of L∗ at m∗ is invertible, we define the covariance bivector Cov as

Cov(ξm∗ , ηm∗) := C
(

H−1
∗ (ξm∗), H−1

∗ (ηm∗)
)

, (115)

where ξm∗ , ηm∗ ∈ T∗m∗M. We may then rewrite the generalized Cramer–Rao bound in terms of covectors.
We proved the following.

Proposition 2. Let (M, j, ∆+
n ) be a parametric statistical model for which GM is invertible. Let C be a cost

function and let E be a stationary estimator for C at m∗. If the Hessian form of L∗ at m∗ is invertible, then we
have the generalized Cramer–Rao bound

Cov(ξm∗ , ξm∗) ≥
(

GM
)−1

(ξm∗ , ξm∗) (116)

for all ξm∗ ∈ T∗m∗M.

Let us stress that, because of the regularity properties satisfied by the model (M, j, ∆+
n )

(see Definition 4, the paragraph right after it, and Remark 1) and because of the assumed invertibility
of GM, the formulation of the Cramer–Rao bound given in Proposition 2 refers to the case in which the
support of the considered probability distributions does not depend on the element m in the parameter
manifold M. It is worth noting that in the literature, when the support of the considered probability
density functions may depend on the parameter, there is still a version of the Cramer–Rao bound,
the so-called Cramer–Rao–Leibniz bound, see, for instance, in [104].

A stationary estimator E which saturates the Cramer–Rao bound for every vm is called efficient.
The Cramer–Rao bound is related to the cost function C and to the estimator E ; however, it is expressed
in terms of the (inverse of the) Fisher–Rao metric tensor on M which is a geometrical object on M,
which is completely independent of the cost function and the estimator. Note, however, that the
expression (115) is invariant under rescaling the cost function C, because the expression C by (103)
contains such a scaling factor quadratically, and this is canceled because the inverse of the Hessian
enters quadratically into (115).
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Remark 3 (The Cramer–Rao bound for Euclidean cost functions). The “standard form” of the Cramer–Rao
inequality used in classical information geometry is obtained when we M and the cost function C are as in
Remark 2. In this case, a direct computation shows that, in local coordinates around m∗, the components Hessian
form of L∗ at every stationary point are given by

(H∗)jk =

(
δrs

∂mr

∂θ j
∂ms

∂θk

)
(m∗). (117)

Assuming that M is open in the ambient manifold RN , and taking {θ1, ..., θN} to be the Cartesian
coordinates associated with the canonical projections of RN on R we immediately see that

(H∗)jk = δjk. (118)

Therefore, writing
(Cov(m∗))

jk ≡ Cov(dθ j(m∗), dθk(m∗)), (119)

a direct computation shows that the covariance matrix (Cov(m∗))
jk at the point m∗ for which E is a stationary

estimator reads

(Cov(m∗))
jk = Ep∗

[(
E j − Ep∗

[
E j
]) (
E k − Ep∗

[
E k
])]

, (120)

which is essentially the form usually found in standard textbooks on estimation theory in statistics. The “standard
form” of the Cramer–Rao bound follows immediately.

7. The Helstrom Bound

The Cramer–Rao bound found in Section 6 applies to parametric statistical models. As such,
it depends only on the Fisher–Rao metric on M, which, in turn, depends on the properties of
the Abelian algebra underlying the parametric statistical model. Accordingly, if (M, jc, ∆+

n ) is the
parametric statistical model associated with a parametric model of states (M, j,O) on the possibly
noncommutative C∗-algebra A , the Cramer–Rao bound for (M, jc, ∆+

n ) “does not feel” the possible
noncommutativity of the algebra A . However, it is possible to formulate a bound which “feels” the
possible non-commutativity of A , and this bound is related with the metric tensor GM and its relation
with GMc. This bound is essentially the C∗-algebraic formulation of the Helstrom bound used in
quantum information theory, and the content of the following proposition will be the key point to
formulate the Helstrom bound in the C∗-algebraic framework.

Proposition 3. Let (M, j,O) be a parametric model of states on the finite-dimensional C∗-algebra A , and let
GM be the symmetric covariant tensor on M defined by Equation (21). Let (M, jc, ∆+

n ) be a parametric statistical
model associated with (M, j,O), and let GMc be the symmetric covariant tensor on M defined by Equation (62).
Then, we have

GM
m (vm, vm) ≥ GMc

m (vm, vm) (121)

for every m ∈ M and every vm ∈ Tm M.

Proof. According to the definition of the SLD given in Equation (23), given an arbitrary tangent vector
vm ∈ Tm M, there is a gradient vector field Ya on O such that

Tmj(vm) = Ya(ρm). (122)

Consequently, we have (recalling (16))

GM
m (vm, vm) = Gρm(Ya(ρm),Ya(ρm)) = ρm(a2)− (ρm(a))

2 . (123)
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On the other hand, by definition, we have

GMc = (jc)∗GFR = (m∗ ◦ j)∗GFR = j∗ ((m∗)∗GFR) , (124)

which means
GMc

m (vm, vm) = ((m∗)∗GFR)ρm
(Ya(ρm),Ya(ρm)) , (125)

and thus we have to prove that

((m∗)∗GFR)ρm
(Ya(ρm),Ya(ρm)) ≤ ρm(a2)− (ρm(a))

2 (126)

to prove the proposition.
We note that, with any fixed ρ ∈ O and given an arbitrary non-zero gradient tangent vector

Ya(ρ), there is an element ac ∈ Cn ≡ C(Xn) and a gradient tangent vector Yac(m
∗(ρ)) at m∗(ρ) ∈ Oc

such that
Tρm

∗(Ya(ρ)) = Yac(m
∗(ρ)), (127)

and a direct computation shows that ac is characterized by the property

ρ({a,m(bc)})− ρ(a) ρ(m(bc)) = ρ(m(ac bc))− ρ(m(ac)) ρ(m(bc)) (128)

for all bc ∈ Cn. Therefore, we have

((m∗)∗GFR)ρ (Ya(ρ),Ya(ρ)) = (GFR)m∗(ρ)
(
Tρm

∗(Ya(ρ)), Tρm
∗(Ya(ρ))

)
=

= (GFR)m∗(ρ) (Yac(m
∗(ρ)), Yac(m

∗(ρ))) =

= ρ(m(a2
c ))− (ρ(m(ac)))

2 .

(129)

Recalling Equation (126), we see that if the inequality

ρ(m(a2
c ))− (ρ(m(ac)))

2 ≤ ρ(a2)− (ρ(a))2 (130)

holds for all ρ, a, ac and m satisfying Equation (127), then the proposition is proved.
Next, by means of Equation (128), we write

ρ(m(a2
c ))− (ρ(m(ac)))

2 = ρ({a,m(ac)})− ρ(a) ρ(m(ac)) , (131)

and since ρ({·, ·})− ρ(·) ρ(·) is an inner product on the space of self-adjoint elements of A , we may
apply the Cauchy–Schwarz inequality to obtain(

ρ(m(a2
c ))− (ρ(m(ac)))

2
)2
≤
(

ρ(a2)− (ρ(a))2
) (

ρ(m(ac)m(ac))− (ρ(m(ac)))
2
)

. (132)

Now, m is a positive unital map, and thus it satisfies Kadison’s inequality

m(a2
c ) ≥ m(ac)m(ac), (133)

from which it follows that
ρ(m(a2

c )) ≥ ρ(m(ac)m(ac)) . (134)

Consequently, assuming that ρ(m(a2
c ))− (ρ(m(ac)))

2 6= 0, we have

ρ(m(ac)m(ac))− (ρ(m(ac)))
2

ρ(m(a2
c ))− (ρ(m(ac)))

2 ≤ 1 (135)
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and thus

ρ(m(a2
c ))− (ρ(m(ac)))

2 ≤ ρ(a2)− (ρ(a))2 , (136)

and the proposition is proved.

From the proof of Proposition 3, we easily obtain the following corollary.

Corollary 1. Let (M, j,O) be a parametric model of states on the C∗-algebra A . Suppose there is a unital,
Abelian C∗-subalgebra C ⊆ A such that, for all vm ∈ Tm M, the SLD Ya(ρm) of vm at ρm = j(m) given by

Tmj(vm) = Ya(ρm) (137)

is such that a ∈ C . Suppose also that the measurement procedure m := iC given by the natural inclusion of C

in A gives rise to a parametric statistical model (M, jc, ∆+
n ) associated with (M, j,O). Then, it holds

GM
m (vm, vm) = GMc

m (vm, vm). (138)

Now, let (M, j,O) be a parametric model of states on the C∗-algebra A , and let (M, jc, ∆+
n ) be a

parametric statistical model associated with (M, j,O). Assume (M, j,O) and (M, jc, ∆+
n ) to be such that

GM and GMc are invertible. Let C be a cost function and E an estimator as in Section 5. Assume E is a
stationary estimator at m∗, and let CEj : M→ R be the smooth function given by CEj(m) := C(m, Ej),
where Ej ≡ E(xj) with xj ∈ Xn.

According to the results of Section 6 (see Equations (98), (103), and (114)), given vm∗ , wm∗ ∈ Tm∗M,
the bilinear form

C(vm∗ , wm∗) :=
n

∑
j=1

vm∗(CEj)wm∗(CEj) pj(m∗), (139)

where vm∗(CEj) is the derivative of CEj in the direction of vm∗ evaluated at m∗ ∈ M (and similarly for
wm∗(CEj)), satisfies the Cramer–Rao bound given by

C(vm∗ , vm∗) ≥
(

GMc
m∗

)−1
(Hm∗(vm∗), Hm∗(vm∗)) , (140)

where GMc is the Fisher–Rao metric on M seen as a parametric statistical model in ∆+
n , and Hm∗ is

the Hessian form of the function Lm∗ : M → R given by Lm∗(m1) := L(m1, m∗) at the point m1 = m∗
(see Equation (78)).

Then, Proposition 3 states that

GM
m (wm, wm) ≥ GMc

m (wm, wm) (141)

for every wm ∈ Tm M. Consequently, we also obtain that(
GM

m

)−1
(αm, αm) ≤

(
GMc

m

)−1
(αm, αm) (142)

for every αm ∈ T∗m M (see ([105] Ex. 1.2.12)), and the Cramer–Rao bound in Equation (116) allows us to
state that

C(vm∗ , vm∗) ≥
(

GMc
m∗

)−1
(Hm∗(vm∗), Hm∗(vm∗)) ≥

(
GM

m∗

)−1
(Hm∗(vm∗), Hm∗(vm∗)) . (143)

We proved the following.
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Proposition 4. Let (M, jc, ∆+
n ) be the parametric statistical model associated with a parametric model of states

(M, j,O). Assume that both GM and GMc are invertible. Let C be a cost function and let E be a stationary
estimator for C at m. If the Hessian form of Lm∗ at m∗ is invertible, then we have the generalized Helstrom bound

Cov(ξm∗ , ξm∗) ≥
(

GMc
m∗

)−1
(ξm∗ , ξm∗) ≥

(
GM

m∗

)−1
(ξm∗ , ξm∗) (144)

for all ξm∗ ∈ T∗m∗M.

This is the Helstrom bound for parametric models of states on a C∗-algebra. Indeed, when A

is the algebra B(H) of bounded operators on the Hilbert space H of a finite-level quantum system,
O is the orbit of faithful density operators on H, M is an open subset of some Rk with k ∈ N.
Then, in accordance with Remark 2, the cost function C may be taken to be the Euclidean distance on
Rk ×Rk pulled back on M×M, and a direct computation shows that Equation (143) reduces to the
so-called Helstrom bound used in quantum estimation theory or quantum metrology [6–8,90].

Remark 4 (Helstrom bound for multiple-round models). If we consider multiple rounds as in the end of
Section 4, that is, we set X = YN , then Proposition 1 implies that the Helstrom bound can be written as

C(vm, vm) ≥
(

GMcN
m

)−1
(Hm(vm), Hm(vm))

≥
(

GMN
m

)−1
(Hm(vm), Hm(vm))

≥ 1
N

(
GM

m

)−1
(Hm(vm), Hm(vm)) ,

(145)

and this equation allows for the asymptotic analysis of the bound.

The Helstrom bound is a universal bound for all the possible parametric statistical models
associated with a given parametric model of states on a given C∗-algebra. This makes it quite a
remarkable bound.

It is clear that, independently of the cost function and of the estimator we may choose,
the Helstrom bound may be saturated if and only if

GM
m (vm, vm) = GMc

m (vm, vm). (146)

Then, Corollary 1 shows that this is in principle always true for one-dimensional models because we
can always take the unital, Abelian C∗-subalgebra generated by the self-adjoint element a associated
with the SLD of a given vm at ρm, and we are in the hypothesis of the corollary. However, it is also
clear that for higher-dimensional models like the one in Example 4, this strategy may not be available.

8. Conclusions

We presented a preliminary account of the formulation of estimation theory in the context
of parametric models of states on finite-dimensional C∗-algebras. The aim is to set the stage
for the development of a mathematical formulation of estimation theory that can deal with the
classical and quantum case “at the same time” by simply switching between commutative and
noncommutative algebras.

After reviewing the differential geometric properties of the space of states S of an arbitrary
finite-dimensional C∗-algebra A , we introduced the notion of parametric model of states on A .
Then, following what is done in quantum information theory using POVMs, we considered how the
explicit choice of a positive linear map from A to a suitable commutative C∗-algebra C gives rise to
the notion of parametric statistical model of states associated with the starting parametric model of
states on A . This parametric statistical model may be viewed as a classical-like snapshot of the given
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parametric model of states on the possibly noncommutative algebra A , and the Cramer–Rao bound
for manifold-valued estimators is available for this model.

The fact that when A is noncommutative there is more than one such classical-like snapshot
means that there is a Cramer–Rao bound for every classical-like snapshot of a given parametric model
of states on A . This instance leads us to reformulate the so-called Helstrom bound to the case of a
parametric model of states on a generic C∗-algebra and not just the algebra of bounded linear operators
on a Hilbert space as it is customarily done in quantum information theory. The Helstrom bound gives
a lower bound for all the possible Cramer–Rao bounds associated with the classical-like snapshots
of a given parametric model of states on A . The possibility of considering also multiple-round
models is briefly discussed, and the Helstrom bound derived in this context will be the starting point
for the asymptotic theory of estimation theory in the C∗-algebraic framework we will deal with in
future works.

As already remarked in the introduction, this work should be interpreted as a preliminary
step toward a more general understanding of classical and quantum estimation theory.
Accordingly, there are different instances that are left open for further developments. For instance,
it is necessary to understand the general conditions for the attainability of the Helstrom bound for
parametric models of states of dimension greater or equal than 2. It is also necessary to understand
how to formulate other relevant bounds like the RLD-bound and the Holevo bound used in quantum
information theory in the C∗-algebraic framework, as well as to understand how to perform the
transition to the infinite dimensional case. From another point of view, it would be interesting to
understand a suitable C∗-algebraic counterpart of the Amari–Cencov 3-tensor and the affine geometry
it encodes in order generalize to the quantum case the understanding of the role of Frobenius manifolds
recently investigated in the classical case [106,107]. We plan to address these issues in future works.
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