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Abstract: The chain mapping of structured environments is a most powerful tool for the simulation
of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of
freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix
Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact
simulations of open quantum systems dynamics, chain mapping provides an unique perspective on
the environment: the interaction between the system and the environment creates perturbations that
travel along the one dimensional environment at a finite speed, thus providing a natural notion of
light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped
bosonic environment. In particular, we explore the relation between the environmental spectral
density shape, parameters and temperature, and the dynamics of excitations along the corresponding
linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the
environment evolution, such as localization, percolation and the onset of stationary currents.
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1. Introduction

The thorough understanding of transport of energy, heat, particle, or mass in complex quantum
systems is of utmost importance both from a fundamental and technological point of view. Such a
relevance is witnessed by the enormous efforts invested by the scientific community over the last
decades on the theoretical and experimental investigation of the unique features of transport at the
quantum regime.

A variety of different topics can be put under the umbrella of quantum transport, such as
efficient energy transfer and conversion in biological systems [1–5], transport in low dimensional
quantum systems [6–11], quantum thermodynamics [12,13], and quantum information processing and
transmission [14–17].

Open quantum systems (OQS) formalism [18,19] has been widely employed for the description of
quantum transport in the, often unavoidable, presence of additional and uncontrollable degrees of
freedom interacting with the system under study. The tools provided by open quantum system theory
led to the derivation of fundamental results allowing to understand and control, or at least mitigate,
environmental effects. Such control, for example, is of utmost importance to preserve the quantum
resources, as entanglement and coherence, that could enable the development of quantum devices
possibly outperforming their classical counterparts. On the other side, the analysis of certain open
quantum systems has unveiled the delicate interplay between coherence and sources of decoherence,
as in the paradigmatic case of energy transport in disordered lattices [2,3,16,20].

The simulation of open quantum systems, on the other hand, represents a formidable task.
Even when a microscopic description of the environment surrounding a quantum system is available,
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the derivation of the open quantum system dynamics requires the solution of a number of differential
equations that scales exponentially with the number of environmental degrees of freedom. Analytic
solutions are not available but for very few cases [21–27] and numerical integration is not feasible,
unless more or less severe approximations are used. Such approximations, however, may fail to capture
the effects of the interaction of open systems with environments that are either structured, or evolve
on time-scales comparable to those characteristic of the open system. Electronic excitation or electron
transport in a vibrational environment, ubiquitous in solid state environments and bio-molecular
systems [28–31], is just an example of this class of problems, which are of fundamental importance in a
broad range of fields including the emergent quantum technology.

Over the last two decades, a variety of numerically exact approaches for the simulation of open
quantum systems have been proposed [31]. These methods allow for the description of features
that were not accurately described by approximate methods, such as the Markov, Bloch-Redfield or
perturbative expansion techniques [18]. Among them we mention the hierarchical equations of motion
(HEOM) [32–34], path integral methods [35–37], Dissipation-Assisted Matrix Product Factorization [38],
and pseudo-modes related transformations [23,39,40].

Time Evolving Density operator with Orthogonal Polynomials (TEDOPA) [41,42] algorithm
is a method for the non perturbative simulation of OQS. TEDOPA has been employed to study
a variety of open quantum systems [4,41,43]. TEDOPA belongs to the class of chain-mapping
techniques [41,42,44–47], based on a unitary mapping of the environmental modes onto a chain
of harmonic oscillators with nearest-neighbor interactions. The main advantage of this mapping is the
more local entanglement structure which allows for a straightforward application of density matrix
renormalization group (DMRG) methods [48]. Moreover, the availability of bounds on the numerical
errors introduced by the DMRG parametrization allows to certify the accuracy of the results generated
by TEDOPA [49].

As we will show, starting from the next section, after the transformation of the environmental
degrees of freedom into a linear chain of bosonic modes, the open system interacts only with the first
site of the chain, where it dynamically creates (and destroys) excitations that subsequently propagate
along the linear chain. A deeper understanding of excitation transport on bosonic chains obtained via
the unitary chain mapping transformation of a bosonic environment can shed light on the mechanism
that allows a linear structure to induce on the system the same dynamics of the original environmental
configuration, where each oscillator was directly interacting with the system. The same linear structure,
moreover, offers a unique point of view on the perturbations induced on the environment by the
interaction with the system, since it naturally introduces a hierarchy of modes over which such
perturbation propagate, or light-cone.

The paper is organized as follows. In Section 2 we briefly introduce the TEDOPA chain mapping
and fix our notation. In Section 3 we discuss the dynamical features of transport on TEDOPA chain
associated, respectively, to Lorentzian and Ohmic spectral densities in the single excitation subspace.
In Section 4 we extend the analysis by including the interaction with the open system. Section 5 is
devoted to conclusion and outlook.

2. Tedopa

Here and in what follows we consider a system interacting with a bosonic environment.
The complete Hamiltonian reads (h̄ = 1):

H = HS + HE + HI (1)

HE =
∫

dωωa†
ωaω

HI = AS

∫
dωh(ω)Oω,
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where HS is the (arbitrary) free system Hamiltonian, HE describes the free evolution of the
bosonic environmental degrees of freedom, and HI is the bilinear system -environment interaction
Hamiltonian [50], and AS, Oω are self-adjoint operators. This last assumption is necessary for
the Thermalized-TEDOPA (T-TEDOPA) mapping [51], that we will introduce later in this section.
We assume that h(ω) has finite support [ωmin, ωmax], with ωmin < ωmax, and define the spectral
density (SD), namely the positive valued function J : [ωmin, ωmax]→ R+, as

J(ω) = h2(ω). (2)

As shown in References [41,42,46] the Hamiltonian (1) can be unitarily mapped into an equivalent
one through by defining a countably infinite set of new operators

b†
n =

∫ ωmax

ωmin

dωUn(ω)a†
ω (3)

bn =
∫ ωmax

ωmin

dωUn(ω)aω, (4)

where
Un(ω) = h(ω)pn(ω). (5)

The operators bn and b†
n satisfy the bosonic commutation relations [bn, b†

m] = δnm; moreover,
the polynomials pn(ω) are orthogonal with respect to the measure dµ = J(ω)dω and satisfy three-term
recursion relations [42,46]. Thanks to these properties, the Hamiltonian (1) is mapped into the one
dimensional Hamiltonian

HC = HS + κ0 As(b1 + b†
1)+ (6)

+∞

∑
n=1

ωnb†
nbn + κn(b†

n+1bn + b†
nbn+1)

= HS + HC
I + HC

E , (7)

where, for the sake of definiteness, we have specialized the operator Oω in (1) to Xω = aω + a†
ω.

After the mapping, the system interacts with the first site of a linear (infinite) chain of bosonic modes;
the system-chain interaction strength is given by [42,46]

κ2
0 =

∫ ωmax

ωmin

dω J(ω), (8)

whereas the frequency of the first TEDOPA chain oscillator is

ω1 =
∫ ωmax

ωmin

dωω
J(ω)

κ2
0

, (9)

namely the first moment of the normalized measure J(ω)/κ2
0dω on [ωmin, ωmax]. The remaining

coefficients ωn and κn are defined by the above mentioned three-terms recursion relations; while in
certain cases it is possible to analytically determine their value [42], a numerically stable procedure is
in general used [52,53].

For the following analysis, it is important to stress that the chain Hamiltonian HC
E is made

up of exchange terms bn−1b†
n + H.c. and therefore conserves the “number” operator, that is,

[N, HC
E ] = 0 where

N =
∞⊗

n=1

b†
nbn. (10)
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Excitations can therefore be added or subtracted from the chain because of the interaction with
the system.

The initial joint system-environment state is assumed factorized ρSE(0) = ρS(0) ⊗ ρE,β(0),
with ρE,β(0) a thermal state at inverse temperature β = 1/kBT, namely

ρE,β(0) =
⊗

ω

exp(−βωa†
ωaω)/Zω, (11)

with Zω = Tr[exp(−βωa†
ωaω)] the partition function. The initial state after the chain mapping is a

factorized state ρC
SE(0) = ρS(0)⊗ ρC

E,β(0) as well with

ρC
E,β = exp(−βHC

E )/ZC
E . (12)

If the environment is initially at zero temperature, its initial state is the vacuum state, and the initial
state of the chain is also a factorized vacuum state |0〉CE (i.e., bk |0〉CE = 0, k = 1, 2, . . .): the chain contains
therefore no excitations. This case provides us with the simplest setting where to analyze the transport
properties of the chain corresponding to some representative spectral densities. As recently shown in
Reference [51], however, by the spectral density transformation

Jβ(ω) =
J′(ω)

2

[
1 + coth

(
βω

2

)]
, (13)

with J′(ω) = sign(ω)J(|ω|), it is always possible to replace the thermal state of the original
environment with the vacuum state of an extended environment, comprising negative frequencies.
As the spectral density (13) is now temperature dependent, the TEDOPA chain coefficients ωn,β, κn,β
will be temperature dependent as well. In the following we will drop the β dependence wherever clear
from the context. From now on will therefore always consider the factorized vacuum state as the initial
chain state without loss of generality.

In our analysis we will consider, in particular, the Lorentzian spectral density

JL(ω) =
λ2

π

4γΩω

[γ2 + (ω + Ω)2] [γ2 + (ω−Ω)2]
, (14)

and Ohmic spectral densities

Js
O(ω) =

λ2

π

ωs

s!ωs−1
c

e−
ω
ωc , (15)

defining a very important class of environments entering in the study of many systems, such as
microscopic models leading to a Lindblad master equation for an harmonic oscillator in a weakly
coupled high temperature environment, or a particle undergoing quantum Brownian motion [18,54,55].
From now on frequencies will be in cm−1 and temperatures in Kelvin. We remark that, because of the
relation (8), if two spectral densities differ only for the overall coupling constant λ, their mappings
(i.e., all of the chain coefficients ωn, κn) will be identical, with the exception of κ0, namely the coupling
strength between the system ant the first TEDOPA chain mode. We also observe that the chain
coefficients ωn, kn, n ≥ 1 are independent of the specific system-environment interaction term, that is,
they are independent of the choice of AS, Oω of Equation (1). As customary for chain mappings,
in what follows, we will moreover impose a hard cutoff ωhc to the considered spectral densities,
thus limiting their support to the interval [0, ωhc] for T = 0 and to the interval [−ωhc, ωhc] for T > 0.
The value of ωhc is suitably chosen as to keep the neglected relative reorganization energy∫ ∞

ωhc
dω J(ω)/ω∫ ∞

0 dω J(ω)/ω
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in the order of 10−4 for all the considered instances.
If the considered spectral density belongs to the Szegö class, the asymptotic relations

ω∞ = lim
n→∞

ωn =
ωmax + ωmin

2
(16)

κ∞ = lim
n→∞

κn =
ωmax −ωmin

4

hold (see Theorem 47 of Woods et al. [46]). Clearly enough, in our setting ωmax (and, at finite
temperature, ωmin) depends on the imposed hard-cutoff ωhc so that both ω∞ and κ∞ are functions of
ωhc. For any suitably fixed ωhc, however, the relations (16) allow for the simple heuristic estimation
L = 2κ∞tmax of the maximal distance travelled within the time tmax by an excitation initially located at
the first TEDOPA chain site. For fixed time tmax, therefore, the effective environment is made up of L
oscillators within the “light-cone”. Interestingly enough, the width of such light cone depends only
on the “artificially” imposed hard cutoff and, as long as the choice ωhc is sensibly chosen, different
choices of the hard-cutoffs do not impact on the reduced dynamics of the system. On the other side,
different spectral densities with the same support will have the same asymptotic coefficients, and the
differences in the reduced dynamics of the system will be due to a (typically quite small) finite number
of modes, as we will see in the following sections.

3. Chain Dynamics

We start by analyzing the dynamics of a single excitation moving along the chain-mapped
environment produced by the (T-)TEDOPA mapping. To this end, we can disregard the system and
the interaction term HI , or equivalently set κ0 = 0, and restrict our attention to the single excitation
sector of the TEDOPA-chain Hilbert space. The set {|k〉 , k = 1, 2, ...}, where |k〉 indicates the Fock state
|n1 = 0, . . . , nk−1 = 0, nk = 1, nk+1 = 0, . . .〉 with the single excitation located at the k-th chain site, is a
basis for the considered single excitation subspace. In what follows we will assume that the excitation
is initially located at site 1, namely the initial state is |1〉.

3.1. Lorentzian Spectrum

The Lorentzian spectral density (14) provides a paradigmatic example. For γ/Ω � 1,
such spectrum well approximates that of an environment made up of a single harmonic oscillator with
frequency Ω and dissipating into the vacuum at rate γ [18,56]. In all the following examples a hard
cutoff frequency ωhc = 10Ω has been enforced.
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Figure 1. Lorentzian SD; in all frames ΩS = 10, T = 0; blue, green and red lines/marker refer
respectively to γ = 0.001, γ = 1 and γ = 10. (a) The chain parameters ωn (empty markers) and κn

(filled markers) for γ = 0.001 (blue circles), γ = 1 (green diamonds) and γ = 10 (red squares); the
couplings are shifted by 0.5 to the right to lie between n and n + 1. (b) The population p1(t) of the first
site as a function of time; the decay rates exp(−2γ) are shown as dashed lines as a guide to the eye.
(c) The population of px(t̄) at t̄ = 0.2 for x = 1, 2, . . . , 120.
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Frame (a) of Figure 1 shows the frequencies ωn and couplings coefficients κn at T = 0 for Ω = 100
and γ = 0.001, 1, 10 (see (14)). We first observe that, for all values of γ, the first and the second TEDOPA
chain modes are equally far detuned. The main difference between the three selected cases lies in the
coupling strength κ1 between the same two modes, which is directly proportional to γ. The effect
on the system dynamics is remarkable. As shown in Figure 1b the population of the first TEDOPA
chain is well approximated by p1(t) = exp(−2γt), namely the decay rate of an harmonic oscillator
damped into the vacuum at a rate γ. As frame (c) of the same figure shows, the portion of excitation
that propagates beyond the first site propagates on the TEDOPA chain at a speed which is independent
of γ: the chain coefficients are essentially equal to each other in the three cases for n ≥ 3, and their
value is determined by the hard cutoff frequency ωhc through (16).

We turn now our attention to the finite temperature case.
As exemplified in Figure 2a, after the thermalization procedure [51] the thermalized spectral

density (13) presents two peaks at ±Ω. The system will be thus effectively coupled to two damped
modes, with temperature dependent coupling strength proportional to 1 + nβ(Ω) resp. nβ(Ω).
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Figure 2. (a) The thermalized Lorentzian SD JL,β(ω) (see Equations (13) and (14)) for Ω = 100, γ = 10
at T = 0 (blue solid line), T = 77 (green dashed line) and T = 300 (red dotted line). In all the remaining
frames Ω = 10, γ = 0.001. (b) T = 77; the first (dashed blue line) and the second (magenta dashed
line) TEDOPA chain site populations p1,2(t) as a function of time. (c) Same quantities and line styles as
frame (b) at T = 300 (d–f): same quantities and styles as frames (a–c) of Figure 1 for T = 300.

It is thus not surprising that the chain dynamics for the case γ = 0.001 is essentially confined
to the first two chain modes, as frames (b) and (c) of Figure 2 show. Indeed, the same plots suggest
a clear relation between the temperature and the relative occupation of the modes: as T increase,
the difference between the maxima of the populations of the first and the second TEDOPA chain sites
decreases, and is expected to vanish as T → ∞, that is, when the thermalized spectral density becomes
symmetric with respect to the origin.

It is interesting to see that a mechanism very similar to the one discussed for the zero temperature
case is at play also at finite temperature. Frame (d) of Figure 2 shows the chain coefficients for
γ = 0.001, 1 and 10 at T = 300. This time the detuning between the first and the second TEDOPA
chain sites is relatively small and the coupling between the two sites is independent of γ. This time
it is the detuning between the second and the third chain site that is considerable, and the coupling
κ2 is monotone with γ. As shown in frame (e) of the same figure, the result is that the population of
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the first TEDOPA chain site presents damped beatings: the excitation moves forth and back between
the first two chain sites, and percolates toward the right part of the chain at a rate exp(−2γt). In the
zero temperature case, the “escaped” population travels toward the right part of the chain at a speed
which is independent of γ, and keeps trace of such beatings, as shown in Figure 2f, but this time
the propagation speed is twice that of the zero temperature case because of the enlarged support
[−ωhc, ωhc] (see (16)).

In order to provide an insight on how the chain dynamics depends on the temperature, in Figure 3
we show the population of the first TEDOPA chain site for different values of T. As already observed,
the decay rate and the frequency of the population oscillations are independent of T, which determines
instead the amplitude of such oscillations. This leads us to the conclusion that the oscillation frequency
must be determined by the parameter Ω, as expected.
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Figure 3. Lorentzian SD. The population p1(t) of the first TEDOPA chain as a function of time for
T = 0 (blue solid line), T = 77 (green dotted line) and T = 300 (red dashed line) for (a) γ = 0.001,
(b) γ = 1 and (c) γ = 10. In all plots exp(−2γt) is show as a black dot-dashed line as a guide to the eye.

3.2. Ohmic Spectrum

We now consider spectral densities belonging to the Ohmic family, defined as in Equation 15.
More in particular, we will study the chain dynamics on TEDOPA chains corresponding to the choice
s = 0.5, 1 and 2, representative, respectively, of sub-Ohmic, Ohmic, and super-Ohmic spectral densities.
In all the following examples we will set ωc = 100, and enforce a hard cutoff ωhc = 10ωc.

We start by the T = 0 case. Frames (a) and (b) of Figure 4 show Ohmic spectral densities for
the selected values of s and the corresponding chain coefficients. The chain dynamics shows that an
excitation leaves its initial location faster in the super-Ohmic case than in the Ohmic and sub-Ohmic
case (see Figure 4c). This can be justified by the higher coupling coefficient and smaller detuning
between the first sites of the TEDOPA chain in the s = 2 case with respect to the s = 0.5, 1 cases.
Moreover, even if the front of the excitation wavepacket travels at the same speed in the three cases,
the delocalization degree of the wavepacket is higher in the sub-Ohmic case, while it remains more
“compact” in the super-Ohmic case, as examplified by the inset of Figure 4c, showing the TEDOPA
chain site populations px(t) at t = 0.1. Considered that the chain coefficients for s = 0.5, 1, 2 are
very close to each other for n ≥ 4, this difference is explained by the first chain coefficients. Roughly
speaking, the higher coupling and smaller detuning between the first chain sites in the s = 2 case
allows for more compact evolution of the wavepacket in the momentum space.

In the high-temperature regime T = 300, the main features of the chain dynamics are preserved,
though with some differences. The decrease of population the first TEDOPA chain oscillator is still
slower in the sub-Ohmic case; for the Ohmic SD, the first site population decay is similar to the T = 0
case, whereas for the super-Ohmic SD such decay is faster than in the zero temperature scenario
(compare frames (c) and (f) of Figure 4). As already discussed before, this behaviour is mainly due
to the detuning |ω1 −ω2| and the coupling strength κ1 between the first and second TEDOPA chain
oscillators. Interestingly enough, for s = 0.5 part of the wavepacket remains localized at the first chain
site, as shown in the inset of Figure 4f and, as in the T=0 case discussed above, the wavepacket is more
delocalized in the sub-Ohmic case than in the super-Ohmic case, with the Ohmic case lying in between.
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As a last remark, we observe that, similarly to the finite temperature Lorentzian case, the propagation
speed of the wavepacket is about twice as large as in the zero temperature case; as already discussed,
this is due to the asymptotic relations (16).
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Figure 4. Ohmic SD. In all frames ωc = 100, and red markers/solid lines, blue markers/dashed lines,
green markers/dotted lines correspond, respectively, to the Ohmic (s = 1), sub-Ohmic (s = 0.5) and
super-Ohmic (s = 2) cases. (a) T = 0; the spectral density (15) for s = 0.5, 1, 2. (b) T = 0; the chain
coefficients ωn (empty markers), κn (filled markers). (c) The population of the first chain site as a
function of time; in the inset, the populations px(t̄) for t̄ = 0.1 as a function of x. (d) The thermalized
SD Js

O,β(ω) for s = 0.5, 1, 2 at T = 300. (e,f) Same quantities as frames (b,c) for T = 300.

Figure 5 provides more details. As we did for the Lorentzian SD case, we now inspect the
dynamics of the first TEDOPA chain population for the three considered spectral densities at different
temperatures. It clearly shows that, while for the Ohmic spectral density such population is only
slightly affected by the value of T, the temperature has opposite effects on super- and sub-Ohmic
SDs. As a matter of fact, whereas for the sub-Ohmic case, an increasing temperature leads to a
slower decrease of the first site population, in the for s = 2 the first site empties at a rate which is
directly proportional to the temperature. The snapshots on the populations px(t) for t = 0.02 in the
insets of frames (a)–(c) of the same figure, allows us to better appreciate the partial trapping at finite
temperature of the wavepacket at the first TEDOPA chain site and the more pronounced spreading of
the wavepacket in the s = 0.5 case.
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Figure 5. Ohmic SD. The population p1(t) of the first TEDOPA chain as a function of time for T = 0
(blue solid line), T = 77 (green dotted line) and T = 300 (red dashed line) for (a) s = 0.5, (b) s = 1 and
(c) s = 2. In the inset of all frames, the population px(t̄) at t̄ = 0.02.
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4. Full Dynamics

So far we focused our analysis on the dynamics of a single excitation moving along TEDOPA
chains. This allowed us to isolate the main features of such dynamics for representative spectral
densities and to investigate the dependence of the kinematic properties of TEDOPA chains on the
specific form of the SD and on the temperature. Clearly enough, the single excitation subspace
we restricted ourselves to is not suited to describe the chain dynamics in the presence of a system
interacting with the environment. As a matter of fact, the interaction with the system will dynamically
inject in (and subtract from) the chain excitation, at a rate that depends, among other things, on the
system-environment coupling strength.

In this section, therefore, we extend our analysis by considering a two-level system interacting
with a bosonic environment described by either Lorentzian or Ohmic spectral densities. Given the
spectral density, the spin-boson model is fully specified once the system and the system-environment
interaction Hamiltonian are fixed. In what follows, we specialize the Hamiltonian (1) to

HS = ∆σx (17)

AS =
1 + σz

2
(18)

Oω = Xω = (aω + a†
ω), (19)

with σx, σz Pauli matrices, describing, for example, an homo-dimer interacting with a vibronic
environment [57]. The resulting dynamics is therefore not a pure dephasing dynamics, and is
representative of the class of physical systems for which numerically exact approaches are required.
Considered that the interaction term does not change the system’s populations but affects only its
coherences, we will initialize the system to the state |+〉 = 1/

√
2(1, 1)T , namely the eigenstate of

σx belonging to the eigenvalue +1, representative of the maximally coherent states in the σz basis.
The initial state of the environment will be instead a thermal state (11) at temperature T. In the
following examples we will set ∆ = 70cm−1, and tune the parameter λ of Equations (14) and (15) so
that the system-TEDOPA chain coupling κ0 (see (8)) is the same at T = 0 for all the considered spectral
densities. More precisely, by definition, the k0 coefficient of the Ohmic spectral density is independent
of s so that, in the Ohmic cases, we set λ = 1; for Lorentzian spectral densities we set to λ = 60.

Before presenting our results it is important to remark that we are not so much interested in
the reduced dynamics of the system, but rather on the TEDOPA chain dynamics in the presence of
an interaction with the open system. In particular, we will try to understand which of the features
discussed in the preceding section persist in the presence of an interaction with the system. To this end
we will use the average occupation number

nk(t) = Tr(b†
k bkρC(t)) (20)

of the k-th chain oscillator where ρC(t) is the system+chain state at time t determined via
TEDOPA simulation.

We first discuss the chain dynamics for Lorentzian spectral densities. The γ = 0.001 case is still
paradigmatic. At T = 0 only the first TEDOPA chain oscillator is essentially involved in the dynamics.
By comparing the purple lines in frames (a) and (b) of Figure 6, we can clearly see the beatings between
the system and the first TEDOPA chain site. For T > 0 a the second TEDOPA chain mode enters into
play. The average occupation number n1,2(t) of the first two chain sites depend on the temperature.
Interestingly enough, in the high (T = 300) temperature regime the both n1(t) and n2(t) present small
and fast out of phase oscillations, imprinting on the system dynamics a much more erratic dynamics
than the T = 77 environment, for which such oscillations are slower and almost in phase.

Figure 7 shows instead the system and chain dynamics for γ = 10. Analogously to the γ = 0.001
the average occupation of the first two TEDOPA chain sites is temperature dependent. The larger
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value of γ implies that, loosely speaking, more environmental modes are interacting with the system.
While the first two sites are still the highest occupied ones, some excitations can percolate to the right
part of the chain, as we already observed in the chain dynamics analysis of the previous section (see
Figure 2f). Since the system-TEDOPA chain coupling is about the same for the two considered values
of γ, it is such percolation responsible for the faster relaxation of the system.
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- 0.2
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0.8

1.0
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(b) (c)

Figure 6. Lorentzian SD, full dynamics. γ = 0.001 (a) The expectation of σx as a function of time for
T = 0 (purple dotted line) T = 77 (orange dashed line) and T = 300 (solid red line). (b) The average
occupation number p1,2(t) of the first (solid lines) and the second (dashed line) TEDOPA chain sites for
T = 0 (purple) T = 77 (orange) and T = 300 (red). (c) The average occupation number of the chain
sites k, k = 1, 2, . . . , 20 as a function of time for T = 300.
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- 0.5

0.5
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1

2

3

4

(b) (c)

Figure 7. Lorentzian SD, full dynamics. Same quantities as in Figure 6 for γ = 10. (a) The expectation
of σx as a function of time for T = 0 (purple dotted line) T = 77 (orange dashed line) and T = 300
(solid red line). (b) The average occupation number p1,2(t) of the first (solid lines) and the second
(dashed line) TEDOPA chain sites for T = 0 (purple) T = 77 (orange) and T = 300 (red). (c) The
average occupation number of the chain sites k, k = 1, 2, . . . , 20 as a function of time for T = 300.

Now we turn our attention to Ohmic spectral densities. As it happens for the Lorentian case
discussed above, the main features of the excitations dynamics presented in Section 3 provides a
key to understanding the results. We observed (see Figure 4c,f) that an excitation located at the first
chain site will leave its initial location more slowly in the sub-Ohmic case than in the Ohmic and
super-Ohmic case. Moreover, the excitation wavepacket tends for s = 0.5 to be more spread over the
chain than for s = 2, with the case s = 1 showing an intermediate behaviour. This features translate
to the chain dynamics in the presence of an interaction with the system, as comparison between
Figures 8–10 shows.

In more detail, we observe that at T = 0 the excitations leave the first chain sites almost ballisticaly
for s = 2 (Figure 10b), whereas for s = 0.5 there is an accumulation of excitations in the very first part
of the chain (Figure 8b). The diagonal fringes appearing in the sub-Ohmic (and less pronounced in the
Ohmic) case at zero temperature are easily explained in therms of the (moving in time) population
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profile shown in the inset of Figure 4c. The inclination of the fringes, is instead related the the coupling
coefficients beteween the TEDOPA chain oscillators that, as already pointed out, do not depend on s
but only on the spectral density support.

At finite T the situation changes quite drastically. First of all we observe that for all the chosen
values of s vertical fringes appear in frames (c) of Figures 8–10. Such vertical fringes can be associated
to a the alternation of higher and lower average occupation number in nearest-neighbor sites, and
allow to appreciate the onset of a stationary current when the state of the system gets close to its
stationary state. A comparison between frames (a) of the same figures shows that in the sub-Ohmic the
average occupation of the first TEDOPA chain sites is much higher than in the Ohmic and super-Ohmic
cases. It must be noticed that, while the system-TEDOPA chain coupling κ0 is equal for T = 0 for all
values of s, at finite temperature such coupling is inversely proportional to s. The sub-Ohmic TEDOPA
chain is therefore more strongly coupled to the system, and this justifies the faster system dynamics at
short times.
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Figure 8. Sub-Ohmic SD (s = 0.5). (a) The expectation of σx at different temperatures as a function
of time (same line styles as in Figure 6a); in the inset, the average occupation number of the first and
the second TEDOPA chain oscillators (same line styles as in Figure 6b). (b) The average occupation
number of the chain sites k, for k = 1, 2, . . . , 20 as a function of time at T = 0. (c) Same quantities as in
frame (b) for T = 300.
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Figure 9. Ohmic SD (s = 1). Same quantities as in Figure 8. (a) The expectation of σx at different
temperatures as a function of time (same line styles as in Figure 6a); in the inset, the average occupation
number of the first and the second TEDOPA chain oscillators (same line styles as in Figure 6b). (b) The
average occupation number of the chain sites k, for k = 1, 2, . . . , 20 as a function of time at T = 0.
(c) Same quantities as in frame (b) for T = 300.



Entropy 2020, 22, 1320 12 of 15

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.5

1.0

(a) (b) (c)

Figure 10. Super -Ohmic SD (s = 2). Same quantities as in Figure 8. (a) The expectation of σx

at different temperatures as a function of time (same line styles as in Figure 6a); in the inset, the
average occupation number of the first and the second TEDOPA chain oscillators (same line styles as in
Figure 6b). (b) The average occupation number of the chain sites k, for k = 1, 2, . . . , 20 as a function of
time at T = 0. (c) Same quantities as in frame (b) for T = 300.

5. Conclusions and Outlook

While chain mapping has been recognized as a powerful tool for the efficient simulation of open
quantum system dynamics, the subtle role of excitation dynamics on the determination of such reduced
dynamics has never been investigated in detail. This work represents a first step in this direction.
While the single excitation dynamics is unable to capture the full complexity of the evolution of
TEDOPA chains put in interaction with the system, it provides a most useful key to understand such
evolutions, as in the case of the Lorentzian spectral density we considered. It moreover provides a
mean to sensibly set DMRG parameters, such as the chain truncation length and the local dimension of
the chain oscillators: for super-Ohmic SDs, for example, the local dimension of the first TEDOPA chain
oscillators must be set large enough as to host all the excitations that will accumulate in proximity
of the system because of localization, while in the super-Ohmic case the local dimension of the first
chain oscillators can be kept much smaller, since there is no signature of localization. While an
analysis along the same lines for a specific spectral density was already presented [51], in this work
we systematically compared and contrasted the features of the chain and full dynamics for a larger
and very representative class of spectral densities. This allowed for example to shed light on the
mechanisms allowing oscillators chain obtained by the T-TEDOPA procedure, and therefore starting
from the vacuum state, to mimic an environment in the thermal state. For the Lorentzian case study
such mechanism emerged quite clearly, and provided an key for the interpretation of the chain
dynamics for SDs belonging to the Ohmic family.

We moreover observed that, while the asymptotic values of the TEDOPA coefficients determine
the maximum distance reachable within a given time by an excitation initially located at the beginning
of the TEDOPA chain, or light-cone, the features of a specific spectral density are typically determined
by a very small number of coefficients. Indeed, as it happens in the γ = 0.001 Lorentzian SD case,
the propagation of excitations in the light-cone can be hindered by an “effective” decoupling of the
first sites of the chain from the remaining one. The analysis of the Ohmic SD instances, on the other
side, showed that different (s-dependent) chain coefficients in the very fist part of the chain lead to
quite different occupation probability profiles of the sites within the light-cone.

One of the, so far unexploited, advantages of chain mapping is the possibility of acquiring
information on the state of the environment, something not meaningful when effective dynamics of
Lindblad or Bloch-Redfield type are employed. While the number of chain modes perturbed by the
interaction with the system is, in general, increasing with time, at any finite time it is in line of principle
possible to make measurements on the oscillators in the light-cone. This could allow to understand,
for example, which environmental modes are more involved in the dynamics and properly select
the environmental reaction coordinates [58]. Moreover, in the presence of a fast convergence of the
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chain coefficients toward the asymptotic values, one expects a very small number of such coordinates.
This represents a possible line of future research.

There are features of the TEDOPA chain evolution that remained quite obscure. For example,
the fringes that appear in the Ohmic scenario at finite temperature are not present in the Lorentzian
case. Considered that, as already observed, for γ/Ω� 1 a Lorentzian environment can be assimilated
to a damped harmonic oscillator undergoing a Lindblad-type dynamics, an therefore incoherently
dissipating into an memoryless environment, one could read the lack of fringes as a signature of
incoherent dynamics. A further analysis is therefore needed to better qualify the coherence dynamics
in structured environments, and will be the focus of future work.
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