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Abstract: Acquiring knowledge about users’ opinion and what they say regarding specific features
within an app, constitutes a solid steppingstone for understanding their needs and concerns.
App review utilization helps project management teams to identify threads and opportunities for app
software maintenance, optimization and strategic marketing purposes. Nevertheless, app user review
classification for identifying valuable gems of information for app software improvement, is a complex
and multidimensional issue. It requires foresight and multiple combinations of sophisticated text
pre-processing, feature extraction and machine learning methods to efficiently classify app reviews
into specific topics. Against this backdrop, we propose a novel feature engineering classification
schema that is capable to identify more efficiently and earlier terms-words within reviews that could
be classified into specific topics. For this reason, we present a novel feature extraction method,
the DEVMAX.DF combined with different machine learning algorithms to propose a solution in app
review classification problems. One step further, a simulation of a real case scenario takes place to
validate the effectiveness of the proposed classification schema into different apps. After multiple
experiments, results indicate that the proposed schema outperforms other term extraction methods
such as TF.IDF and χ2 to classify app reviews into topics. To this end, the paper contributes to the
knowledge expansion of research and practitioners with the purpose to reinforce their decision-making
process within the realm of app reviews utilization.

Keywords: app reviews; topics extraction; reviews classification; feature extraction methods; machine
learning methods; text classification; text analysis; app business strategy

1. Introduction

Over the last 10 years, mobile apps have tended to be the extension of capabilities that people have
for completing their daily tasks and activities. Within this context, as the global number of smartphones
increases, the number of app downloads from app-related stores is expanded and increased as well.
According to Statista, in 2016 there were over 140.68 billions of mobile apps downloads, while at the
end of 2019 downloads reached over 204 billion [1]. That is, a 45% increase among the examined years.
This kind of rapid growth in digital economy is related with the intention of many enterprises to offer
their products and services to their customers through mobile apps [2].

Mobile apps are distributed through platforms such as Apple Store and Google Play, while users
can leave text reviews regarding their satisfaction from the apps. On the other hand, enterprises pay
high attention to app reviews as a valuable source of information and feedback that could be analyzed
and hence, develop potential actionable knowledge for apps optimization. This information is valuable
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to all the different operational dimensions within an organization [3]. Negative ratings and reviews can
be exploited by the development team of an organization to fix several features such as bugs, interface
issues, privacy, and security concerns, or even requests and ideas for potential app functionalities.
Positive ratings and reviews could be exploited by a marketing team to include the strong functional
points of an app within the next marketing strategy and its implementation. In addition, neutral
ratings and reviews could be exploited by the whole project management team, diving into deeper
corpus analyses, highlighting and tracking app issues, or supporting decision making in requirements
for the prioritization process [4].

Nevertheless, app user review classification for identifying valuable gems of information for app
software optimization is a complex and multidimensional issue. It requires sophisticated combinations
of text pre-processing, feature extraction and machine learning methods with the purpose to classify
app reviews into specific topics. Beforehand, a manual-reading approach of each one review separately
is not a feasible solution [4–6]. That is, the more popular an app becomes, the more the reviews and
hence the higher the complexity to analyze the reviews. Several prior efforts indicate automated
feature engineering schemas that are capable to classify reviews per ratings or per general topics [4–8].
These efforts yielded significant indications, but they do not propose a feature engineering schema that
is able to reduce the volume of reviews that app developers have to deal with, reinforcing in this way
faster and more well-informed decision making [8]. Against this backdrop, we propose a novel one
combination of feature engineering methods that classify with efficiency the examined dataset of app
reviews into 12 specific topics. For this reason, we propose a novel feature extraction method, namely
the DEVMAX.DF. This method is capable to detect earlier in smaller vector size of words within a
review, a sufficient correlation importance for the topic that the review belongs to.

At the initial stage, pre-processing steps are taking place through the examined app reviews dataset
such as tokenization, punctuation and stopwords removal and words stemming. After pre-processing,
we use three different feature extraction methods. TF.IDF, χ2 (Chi2) and the proposed novel one
DEVMAX.DF are involved, while examining a comparative analysis among them. Sequentially,
multiple machine learning classification methods were deployed such as Naïve Bayes Multinomial,
Logistic, SMO, IBk (kNN), J48 and Random Forest to identify the best possible combination of a feature
engineering schema to classify efficiently app reviews into specific topics. One step further, to ensure
the validity of the proposed classification schema, we proceed into the development of a real-case
scenario, while examining 10 apps in order to classify their reviews into specific topics based on the
proposed novel one schema.

To this end, the paper is organized as follows: In the next section, the importance of app reviews
utilization and the related research efforts are unfolded within the realm of app reviews classification.
The contribution of the paper is also explained furtherly while defining some research gaps. In Section 3,
we describe the materials and methods that we use in this study. This contains the description of the
dataset and its visualization, the text handling and word stemming, the different feature extraction
methods that had been used, and lastly the deployed machine learning classification methods. Section 4
includes the proposed methodology while developing a practical problem statement that can be
solved based on our proposed feature engineering schema. The process of schema selection and the
evaluation criteria are unfolded into this section. Lastly, in Section 4, we describe how the simulation
of the real-case scenario in classifying reviews of 10 apps into topics will take place. In Section 5,
the results of our experiments are taking place. Finally, the Section 6 discusses the results and the
practical contribution of the paper, while setting future research directions.

2. Related Background

2.1. Importance of App Reviews

Acquiring knowledge about users’ opinion and what they say regarding specific features within
an app constitutes an initial and solid steppingstone for understanding their needs and concerns [3,5].
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From an operational point of view, the engineering team is capable of understanding and comparing
the frequency of each request that appears within the corpus of reviews; for how long each request
on specific features appears; and if the frequency of the requests increases or decreases. This gives a
practical evaluation of app performance while supporting engineers to monitor users’ satisfaction and
apps’ health conditions in specific periods of time [6].

Furthermore, marketing efforts regarding the app’s promotion are stimulated and reinforced.
That is, the utilization of app reviews is able to eavesdrop users’ request and ideas and thereafter
provide more personalized marketing strategies to them through apps’ content [7]. In addition, in terms
of app monetization, text reviews hide meaningful information regarding possible ads irrelevancy
that unfortunately increases the users’ complaints, causing uninstallations and churns, and thus, apps’
retention decrease.

Generally, app reviews analysis and classification into specific features signalizes a contribution to
the well-informed decision-making processes within the business context. As such, the app maintenance,
optimization, and evolution [8]; the development of a roadmap to prioritize users’ requests [9]; and of
course, the increase of apps’ retention within the users’ smartphones. This is a vital point, as app
downloads from app stores might have increased rapidly, however, app retention rate never increased
more than 39% from 2012 until 2019 [10].

2.2. Prior Efforts and Research Gap

Prior research approaches indicate a significant contribution into the realm of app reviews
utilization with the purpose to extract useful knowledge in requirements engineering and for apps
optimization. The paper [11] proposed MARA (Mobile App Review Analyzer) that extracts users
requests from reviews through linguistic rules using Latent Dirichlet Allocation in order to identify
feature requests and support prioritization strategy of app improvement.

In a similar vein to the linguistic-based approach, Johann et al. proposed the SAFE (Simple Approach
for Feature Extraction) schema for extracting both app features from reviews and app descriptions
for potential comparison purposes [12]. Maalej and Nabil proposed a novel schema of app reviews
analysis based on probabilistic techniques in terms of classification [13]. They classified through their
examined dataset four main categories, namely the bug reports, the feature requests, the ratings, and
the user experiences. They used a binary approach while adopting supervised ML methods such as
Naïve Bayes, Decision Trees and MaxEnt.

Relying on keyword-based approaches, MARK (Mining and Analyzing Reviews by Keywords) [14]
proposed a semi-automated context that extracts keywords and associates them with negative reviews
through a vector-based semantic representation. In the same line, Vu and colleagues [15] extract
phrases from app reviews that are related with a negative sentiment and, thereafter, proceed into the
visualization of sentiments and how they change over time. In an integrated approach from initial
pre-processing through the end-to-end evaluation of the proposed conceptual model and involvement
of developers in testing, SURF (Summarizer of User Reviews Feedback) proposes sophisticated
summarization techniques for the sake of requirements engineering process including several topics
for improvement [16].

Guzman and colleagues proposed an ensemble framework of algorithms and techniques for app
reviews classification into categories for potential software optimization [17]. The results showed that
the ensembles outperformed individual classifiers with an average precision of 74% and recall up to
59%. Subsequently, the researchers of the work [8] used deduced taxonomies to classify app reviews
that are relevant with app maintenance and evolution. Following a merged approach of NLP, text and
sentiment analysis, they achieved significant results of 74% in terms of precision and 73% of recall
respectively. Within the realm of tweet classification, the study [18] relied on tree-ensemble methods of
Random Forest (RF) and Adaboost Classifier (AC) while achieving notable accuracy results of 78.9%
and 79.1% with two different feature extraction techniques, namely the Voting Classifier and TF.IDF
respectively. This result is furtherly reinforced by recent notable findings of the same team referring
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that tree-based ensemble models perform well on text data and hence to the process of categorization
app reviews [19].

Although these are noteworthy research findings and practical suggestions for the related
community, to the best of our knowledge there is no a prior feature engineering method that is capable
of identifying more efficiently and earlier terms/words within reviews that could be classified into
specific topics. More specifically, there is major need to propose a novel feature engineering schema
that is able to identify into smaller vector-sizes of words a sufficient correlation importance for the
topic that a potential app review might belong to. That will practically help app administrators not to
drop-out reviews that are not composed of too many words, and thus, exclude them from their app
reviews datasets and experiments.

In addition, it is noted that even though there are significant results in app review classification
per topic, the majority of them proceed into a broader approach while classifying reviews into
major categories [13,20–22]. Broader classification approaches entail risks in their utilization such
as the increase of the volume of the reviews that the project management team has to deal with;
even they have already been classified. This kind of situation would increase the complexity in app
requirements prioritization, delaying the decision-making process and probably reducing its quality [8].
Against this backdrop, we deploy and validate the proposed feature engineering schema into multiple
sub-classes/topics that app reviews might address to. This will help practically to handle in a more
explicit way the emerging technical issues and hence monitor apps’ health condition and maintenance
more efficiently [12].

In continuation of the aforementioned research gap, it is noted that prior efforts focus on a
triangular evaluation approach to identify the performance of their proposed feature engineering
methods through the metrics of Precision, Recall and F-score (F1) [13,17–21]. However, it needs be
mentioned that a further sensitiveness could be assigned into the evaluation metric of Precision,
ensuring in this way that the examined app reviews are assigned properly into specific topics.
Controversially, if the appropriate attention is not paid to the Precision rates, then this fact will lead
unfortunately to reviews classification into wrong topics. In this respect, apart from well-established
F1, we deploy another complementary evaluation metric, which is the product of Precision and F1.
The purpose behind that choice is to cover the emerging research need of setting extra attention to the
importance of Precision within the realm of app reviews classification.

In the next chapters, we propose the material, methods and methodology to tackle the
addressed issues.

3. Materials and Methods

3.1. Dataset Description and Pre-Processing

The dataset that was used in our research obtained from GitHub and it was firstly deployed in a
prior research effort at the same topic of app reviews utilization [23,24]. The whole dataset consisted of
7753 total reviews with multiple different variables/fields (7754–1 record in the “A Comic Viewer” app,
which was completely empty). These include the review’s id, the name of the app, the app version,
the text of the review, review’s author, review’s date, ratings from 1 to 5, the pre-classes, and sub-classes
that corresponded to the topic of each review. We excluded some variables as they could not give
a practical value to the research purpose of the paper. These variables are the review’s id, the app
version, the review’s author, and the review’s date. We finally selected and elaborated the variables of
the name of the app, the text of the review, the rating of each review, and the sub-classes that each
review belongs to. Hereinafter, the subclass’ labels of the dataset are referred to as topics.

Some reviews do not belong in a sub-class, that is, they do not have a topic. It is notable that
the number of reviews without a topic were more than the number of reviews with topics (Figure 1).
However, we decided to include both of them with the purpose to test and evaluate our proposed
feature extraction schema under a noisy context of dataset. The involved sub-classes related with
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different and specific issues that users face when using the app. We selected the sub-classes and not the
pre-classes of the whole dataset. The sub-classes could give more precise information to the owners of
the app regarding its potential improvement. This also gives the opportunity to test the efficiency of
the proposed feature extraction schema while having thousands of reviews that need to be classified
into multiple specific topics.

Figure 1. Number of reviews with topics and number of reviews without topics, respectively, derived
from the total number of 7753 reviews. As can be seen, there are 4040 reviews without topics and 3713
with topics respectively.

It is noted that at this situation there is already given information regarding the name of the
app, the review text of the app, the review rating, and the already classified review in a specific topic.
Nevertheless, if a user submits a new review, then the topic of the review will be missing information.
In the next table (Table 1), a sample of the dataset and the involved variables are presented. The grey
color within the sub-class/topic column indicates the potential missing information that needs to be
classified when new reviews will arrive. In the next sub-chapter, the visualization of the dataset
takes place.

Table 1. Sample of dataset regarding a random app name, text reviews, ratings, and the topic that it
belongs to. The last grey column denotes the potential missing information in case of a new review.

App_Name Review Text Review Rating Sub-Class/Topic
Good application it will be better if you make your
app more smooth and add previews for each pics

when locate the pages
4 User Interface

It just shuts down without any warning! I use
Android lollipop and everytime I open up anything

it would just close down instantly. If it fix this
problem I probably pay for the premium version.

1 Android Version
AND Licensing

ACDisplay

Not for marshmallow Can’t access SD card
for marshmallow. 2 Hardware

3.2. Dataset Visualization

This sub-chapter represents the examined dataset graphically. To begin with, the whole dataset is
composed of 7753 reviews. Some of these reviews have topics, while others do not. Figure 1 represents
the number of reviews that have topics and those that do not have. Focusing on the reviews that have
topics, one review might have one or more topic (one-to-many relationship). We depict the number of
reviews per topic in Figure 2.
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Figure 2. Number of reviews per topic. The whole examined dataset consists of 12 different topics
and each one of them is related to a specific amount of reviews. Some topics include a higher number
of reviews rather than others. User Interface (UI) topic yields the highest number of reviews (1934),
App Usability articulates up to 733 reviews, Performance topic up to 590, and so on.

Moreover, the reviews correspond to specific applications. In this respect, we depict in Figure 3
the allocation of reviews per app. Lastly, in Figure 4, the number of assigned topics per app are taking
place. This is derived as follows: we take into consideration for each app the number of reviews that
are related to this one app, and subsequently, for these reviews we have counted all the topics that are
related to them.

Figure 3. Number of Reviews per App. There are totally 39 different apps among the examined dataset.
Each one of them has a different number of reviews.
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Figure 4. Number of assigned topics per app. As can be seen, some apps include more topics within
their reviews rather than others.

3.3. Text Handling and Word Stemming

Preventing garbage-in garbage-out phenomena and trying to minimize the noise, we implemented
further pre-processing for cleaning the app reviews. We adopt the techniques of tokenization,
punctuation removal, upper-case conversion, and stop words removal. In addition, we applied
stemming for reducing the words to their stem by eliminating the affixes [25–28]. The initial
pre-processing was performed based on a text-handler [26] that is capable to perform transformations
of app reviews texts into a suitable schema for the application itself. This achieves:

(A) the identification of textual units using trivial delimiters such as stops, spaces, question marks,
etc. and

(B) the identification of extra-linguist elements such as abbreviations, list enumerators, numbers,
dates, and so on.

After initial words pre-processing and identification, the stemming was performed. In this
phase, the text-handler encapsulates the different morphological variations of words included within
the app reviews. Subsequently, the word spotting process was implemented into two stages. First,
the process of reducing the search space took place, and hence, optimized the performance of the
text-handler. Based on statistical information, a small-size set of similar words has been extracted and
grouped together under a common representative word. Secondly, an even more detailed procedure
is implemented as the text-handler ranks the located words and outputs a complete “short-list” for
each of the candidate words of the input text. Following prior research contribution [28], the score
mechanism is based on a similarity estimator as can be seen below (Equation (1)):

Similarity (W1,W2) = Common Position Trigrams (Left (W1,L), Left (W2,L))/L (1)

where L = (Length (W1) + Length(W2))/2, L ∈ N
This estimator is designed to assign higher scores to morphological variations of the same root

form using common position of trigrams. Based on prior research efforts, efficient grouping of words
is articulated with a similarity score of 66.6% [28,29].
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3.4. Feature Engineering Methods

Feature engineering constitutes one of the most important steps within the data preparation
process. It leads to more efficient training of machine learning algorithms and therefore to an improved
predictive performance [30,31]. In simplicity, feature engineering is the process of extracting new
features that are derived from a raw dataset. In this paper, we use three different feature extraction
techniques, the TF.IDF, the χ2 (Chi2 or Chi-square) and the proposed one of DEVMAX.DF.

a. TF.IDF

Term Frequency-Inverse Document Frequency (TF.IDF) constitutes one of the most classical
feature extraction techniques in text analysis [32,33]. In simplicity, the TF.IDF assigns a weight to
each term within a document based on its term frequency and inverse document frequency. In this
way, the terms with higher frequency tend to be considered more important rather than others [31,32].
TF.IDF estimates the weight of each term by the above one equation (Equation (2)):

TF.IDF = tf ∗ log
D

DF
(2)

tf is the frequency of term/feature f within the dataset, D is the total number of reviews and DF is the
number of reviews containing the term/feature f.

b. χ2

The χ2 is another of the most-used feature extraction methods for text data analysis. It computes
the probability of independence between the terms within a category [31]. Prior efforts indicate
significant results regarding χ2 efficacy in text classification [34]. In a similar vein to [19], we test this
feature extraction method to understand whether the occurrence of a specific term and the occurrence
of a specific class are independent while analyzing the corpus. Therefore, we examine the dataset
corpus of app reviews for each term, ranking them by their score following the equation (Equation (3)):

χ2 =
∑c

i=1

(Oi− Ei)2

Ei
(3)

where Oi = DFi and Ei =
DF
c

Definitions of DFi, DF and c are presented in the following section.

c. DEVMAX.DF

In this section, we introduce a novel one text classification method, the DEVMAX.DF (Maximum
Deviation). The core value of this method is to foster term-words that appear in one or more classes
but not entirely [28,29]. The main purpose of the method is to promote the term/words in app reviews
that have the maximum deviation in appearances, or alternatively, the minimum appearances in
other classes from the basic class (max), that is, the class in which they mostly appear. In other
words, DEVMAX.DF tries to promote term-words that are related mainly in one or more class (topic)
and hence, articulate a sufficient correlation importance for the topic that the app review addresses.
In order to promote the high appearance of term/words, the formula is articulated with a logarithm
of the DF which is the number of reviews that include the term/word F (borrowed from TF.IDF).
The DEVMAX.DF is described in the next equation (Equation (4)).

DEVMAX.DF =

√
1

c−1
∑c

i=1

(DFi
Di
−max

)2

max
∗ log(DF) (4)

where max = maximumc
i=1

DFi
Di

DFi is the number of app reviews that contain the term/feature F in class/topic i. Subsequently,
Di constitutes the number of app reviews in class/topic i, and c is the number of classes/topics.

We provide a comparison among the selected feature extraction methods in the following chapters
(V. Results), in a detailed manner.
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3.5. Machine Learning Methods for Classification

Machine learning (ML) algorithms are commonly used within the context of classification
problems [32]. In this study, we proceed into the adoption of six different binary ML algorithms to
classify the app reviews into specific topics. The WEKA software was deployed for text classification.
Written in Java, WEKA is a data mining and knowledge discovery software that is utilized both for
practical business purposes and for research-related issues [3,35–38]. Among the selected ML methods,
we used one Bayesian classifier, the Naïve Multinomial, two Function classifiers, the Logistic and the
Sequential Minimal Optimization (SMO/SVM), one Lazy classifier, the IBk (kNN), and two classifiers
from Decision Trees, namely the J48 and the Random Forest.

4. Methodology

At the initial stage of this section, we propose a practical problem statement. Thereafter, we unfold
a proposed methodological approach to deal with the problem statement itself.

4.1. Practical Problem Statement

Company A owns an app in Google Play Store and help its users to cover their needs or to solve
daily tasks and activities through this app. Google Play Store allows users to submit ratings and
reviews for the app. These ratings and reviews are valuable sources of feedback for the company to
understand issues that make users unsatisfied in terms of app usage and hence, setting priorities for
improvement and optimization in specific features. In addition, the company wants to know and
utilize the good ratings and reviews with the purpose to integrate them into the strategic marketing
plan of the app and generally for promotional concerns. To this end, the company performs a text
analysis into these reviews to find hidden valuable gems of information for improving the overall
business strategy of the app and thus increase profit and recognition of its usefulness. To start with,
the initial aim is to develop a methodological schema that is capable to classify the reviews into specific
topics. That is, information about reviews and their ratings is available, however, the classification
of app reviews into topics indicates the missing information. To solve this practical problem of app
reviews utilization for business purposes, we combine the feature engineering methods that were
proposed in Section 3.

4.2. Proposed Methodology

In this paper, we use the combination of the aforementioned techniques that are described in
Section 3. The purpose is to utilize the app reviews under a business-oriented context that was described
in the practical problem statement. Figure 5 unfolds the proposed methodology.

4.3. Schema Selection Process

At the initial stage, we try to find through multiple experiments the most efficient feature
engineering method to classify the app reviews of the examined dataset. In this phase, we do not take
into consideration the apps particularly. This happens as the basic scope is to find the most accurate
feature engineering schema to classify app reviews into specific topics.

First, pre-processing and text handling took place. Subsequently, we performed multiple
experiments in different vector-sizes of term-words samples that consisted of 50, 100, 150, 200,
250, 300, 350, and 400 term-words in each feature extraction method, namely the TF.IDF, the χ2 and the
DEVMAX.DF. The main purpose here is to understand which is the most efficient feature extraction
method in text representation based on a specific range of vector-sizes of term-words.

It is also crucial to make comprehensible which ML classification method has the highest
performance rating in classifying app reviews into topics. The 10 fold cross-validation method was
used in all the ML classification schemas [20,29,39]. Binary representation of text vector space of the
app reviews was used as a more efficient way rather than term-frequency representation for better
performance of the examined ML classifiers [3,29,40].
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Figure 5. Methodology Flow Diagram.

4.4. Evaluation Criteria

In order to make comprehensible which feature schema has the highest performance, we used
two evaluation parameters. The F1 (F-score) and the product of the Precision and the F1 (Precision*F1).
The product of Precision and F1 was used as we are extra sensitive in the exactness of the proposed
classification schema. For instance, if errors are detected in terms of app reviews classification into
wrong topics, then wrong decision making could be taken by a potential project management team.
Therefore, the product that derives from Precision and F1 is deployed for extra evaluation of the
proposed classification schema. In addition, it is noted that we adopt the weighted mean of Precision
(wP), F1 (wF1) and P*F1 product (wP*wF1). This derives and is calculated via the mean of Precision
and F1 within the 12 topics, and it is weighted based on the population (number of appearances) of
each topic in review. That is, the more the population of each topic, the more the weight and vice-versa.

4.5. Validation of the Selected Classification Schema

After the identification of the most efficient classification schema to classify app reviews into
particular topics, we proceed into the validation process of the selected classifier at a specific app and its
reviews among the rest dataset. The rest of the apps and their reviews were used for training purposes.
At this point, someone could assume that the best app for classification of topics among the others is the
one which has the highest number of reviews. However, as the basic scope of the proposed classification
schema is to predict with efficiency the classification of a review into specific topics, then the emphasis
was given for making experiments into apps that have the highest number of topics. That is, the highest
population of topics to assign weights and not the highest population of reviews. As can be seen, this
assumption is reinforced furtherly while taking into consideration the previous Figures 2 and 4, namely
the number of reviews per app and the number of assigned topics per app.

It is also worth noting that this approach constitutes a practical simulation of a real case scenario.
That is, first we develop an efficient classification schema based on the analysis of an already existing
corpus of app reviews. Therefore, if there is a “new” app with a new batch of reviews, then we deploy
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the classification schema into the new reviews as a test set and the rest of the already-existing apps
reviews for training purposes. In this case, there is no practical value to predefine the percentages
of training and testing such as 70% and 30% or 80% and 20%. In the next chapter, the results of our
proposed methodology are unfolded.

5. Research Results

In this chapter, we present and discuss the results of our experiments. Different feature extraction
and ML methods were used to make comprehensible, which is the most efficient classification schema
for classifying app reviews into specific topics. First, performance results of selected feature extraction
methods take place. Thereafter, we highlight the results of the most efficient classification schema in
classifying app reviews into topics. Subsequently, results are presented regarding the efficiency of
the selected classification schema into specific apps that are included within the dataset as practical
use cases.

In the next three tables (Tables 2–4), we present the results of each feature extraction method that
was deployed. The vector size of the words is depicted horizontally, while the efficiency of each ML
classifier is presented vertically. For space-saving reasons, we present the vector-sizes per 100 words,
that is 100, 200, 300, and 400. However, for greater exactness, in the next figures (Figures 6 and 7),
the vector-size of words is presented per 50 words. The results are depicted through wP (weighted
Precision) and wF1 (weighted F1) based on the appearances of topics in the reviews. That is, the weight
is calculated based on the population of topics, which means how many times the topic appeared in
reviews. More details and related results will be seen in Table 5.

Table 2. Feature Extraction Results with TF.IDF.

Vector Size

100 Words 200 Words 300 Words 400 Words

ML Classifiers wP wF1 wP*wF1 wP wF1 wP*wF1 wP wF1 wP*wF1 wP wF1 wP*wF1

NBMultinomial 0.670 0.417 0.279 0.781 0.625 0.488 0.788 0.691 0.544 0.779 0.710 0.553
Logistic 0.628 0.440 0.276 0.749 0.651 0.488 0.733 0.694 0.508 0.698 0.693 0.484

SMO 0.536 0.427 0.229 0.771 0.678 0.523 0.811 0.746 0.605 0.832 0.778 0.647
IBk 0.466 0.218 0.102 0.628 0.235 0.148 0.701 0.230 0.161 0.740 0.227 0.168
J48 0.606 0.434 0.263 0.790 0.672 0.531 0.831 0.758 0.631 0.857 0.798 0.684

RandomForest 0.606 0.409 0.248 0.825 0.590 0.487 0.869 0.620 0.539 0.919 0.595 0.547

Table 3. Feature Extraction Results with χ2.

Vector Size

100 Words 200 Words 300 Words 400 Words

ML Classifiers wP wF1 wP*wF1 wP wF1 wP*wF1 wP wF1 wP*wF1 wP wF1 wP*wF1

NBMultinomial 0.873 0.706 0.617 0.845 0.749 0.633 0.825 0.750 0.619 0.806 0.749 0.604
Logistic 0.847 0.747 0.632 0.816 0.780 0.637 0.766 0.759 0.582 0.706 0.723 0.511

SMO 0.851 0.761 0.648 0.858 0.819 0.703 0.850 0.825 0.701 0.838 0.818 0.686
IBk 0.715 0.305 0.218 0.794 0.265 0.210 0.829 0.245 0.203 0.835 0.230 0.192
J48 0.868 0.755 0.655 0.863 0.812 0.701 0.857 0.821 0.704 0.855 0.822 0.703

RandomForest 0.865 0.718 0.621 0.910 0.723 0.658 0.921 0.690 0.636 0.934 0.644 0.601

Table 4. Feature Extraction Results with DEVMAX.DF.

Vector Size

100 Words 200 Words 300 Words 400 Words

ML Classifiers wP wF1 wP*wF1 wP wF1 wP*wF1 wP wF1 wP*wF1 wP wF1 wP*wF1

NBMultinomial 0.890 0.723 0.644 0.865 0.761 0.658 0.841 0.762 0.641 0.818 0.753 0.616
Logistic 0.851 0.780 0.663 0.823 0.788 0.648 0.762 0.752 0.573 0.714 0.722 0.515

SMO 0.855 0.801 0.685 0.858 0.833 0.715 0.855 0.830 0.710 0.851 0.827 0.704
IBk 0.848 0.585 0.496 0.855 0.486 0.415 0.861 0.443 0.382 0.855 0.378 0.323
J48 0.873 0.793 0.692 0.870 0.821 0.714 0.862 0.825 0.711 0.864 0.823 0.712

RandomForest 0.863 0.781 0.674 0.896 0.787 0.705 0.901 0.759 0.684 0.910 0.715 0.651
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Figure 6. wF1 rates among the different feature extraction methods based on the most efficient classifier,
the SMO, through different vector sizes of words.

Figure 7. wP*wF1 product rates between the χ2 and the DEVMAX.DF feature extraction methods
based on the most efficient classifier, the SMO, through different vector sizes of words.

The results of the experimental comparisons among the involved feature extraction methods and
the deployed ML classifiers indicated that the best average values of wF1 and wP*wF1 product are
met in DEVMAX.DF with SMO as a ML classifier. This schema extracts the highest performance gain
of 85.8% in wP, 83.3% in wF1 and 71.5% at wP*wF1 product at the specific vector size of 200 words.
Subsequently, Decision Tree J48 algorithm follows up in the same vector size of 200 words with
DEVMAX.DF, reaching 87% in wP, 82.1% in wF1 and 71.4% in wP*wF1 product.

In terms of smaller vector sizes such as 100 words, results indicate once more that the feature
extraction method of DEVMAX.DF performs better in most of the ML classifiers at classifying app
reviews into specific topics. In addition, taking into consideration Tables 2 and 3, TF.IDF and χ2

extracted lower performance rates especially in smaller vector sizes. This means practically that
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DEVMAX.DF, as a proposed feature extraction method, performs better in smaller-length reviews to
identify words within them that represent a specific topic. We visualize these results in Figures 6 and 7
where an even smaller vector size of 50 words depicts the greater efficiency of DEVMAX.DF compared
to the TF.IDF and χ2.

Table 5. Results of the Most Efficient Classification Schema.

DEVMAX.DF-200W-SMO TN FN TP FP Precision F1 Number of
Reviews per Topic

1-Privacy 7563 50 128 12 0.914 0.805 178
2-Hardware 7396 84 189 84 0.692 0.692 273

3-Device 7170 106 407 70 0.853 0.822 513
4-Performance 7099 56 534 64 0.893 0.899 590

5-Battery 7608 3 138 4 0.972 0.975 141
6-Price 7395 42 248 68 0.785 0.818 290

7-App_Usability 6911 168 565 109 0.838 0.803 733
8-Android_Version 7478 119 135 21 0.865 0.659 254

9-User_Inteface 5625 312 1622 194 0.893 0.865 1934
10-Licensing 7426 85 176 66 0.727 0.700 261
11-Memory 7565 11 155 22 0.876 0.904 166
12-Security 7093 62 512 86 0.856 0.874 574

Weighted Mean: wP 0.858 wF1 0.833 Total: 5907

At the same line, through most of the ML classifiers, DEVMAX.DF outperformed both TF.IDF and
χ2 in bigger rangers of vector sizes such as 300 and 400 words. Controversially, there are very few
occasions that χ2 barely outperforms DEVMAX.DF. Such as the vector size of 300 words, where χ2

with the Logistic classifier articulates a performance rate of wF1 with 75.9%, while DEVMAX.DF at the
same instance resulted in a 75.2% wF1 rate.

Relying on the visualized results of Figures 6 and 7, it is noted that in a smaller vector size of
50 words, the DEVMAX.DF manages efficiently to detect the best words for terms representation at
an earlier phase rather than χ2 and TF.IDF respectively. For example, in Figure 7, χ2 yields a 49.4%
wP*wF1 product value, while the DEVMAX.DF a 60.4% respectively. In other words, this highlights a
significant improvement in smaller vector size of words of 22% while comparing χ2 and DEVMAX.DF
as feature extraction methods. DEVMAX.DF achieves better results, 68.5%, also in 100 words with a
percentage of improvement at 6%, while χ2 achieves 64.8%. These results are capable to cover recent
research indications of applying the DEVMAX.DF into smaller texts [29].

Moreover, in Figures 8 and 9, the performance of machine learning classifiers is presented in
the three different feature extraction methods based on the 200-vector size of words. Additionally,
in Figure 10, we present the wF1 solution space in terms of the local maxima that are yielded to the best
performances, as represented in Tables 2–4. It is noted that in all the occasions of applying different
ML classifiers, the DEVMAX.DF outperformed both TF.IDF and χ2.

As it was previously mentioned, based on the 200-vector size of words, the SMO algorithm in
DEVMAX.DF has the greatest performance among the others with rates of wF1 and wP*wF1 product at
83.3% and 71.5% respectively. J48 follows up with 82.1% wF1 and 71.4% in wP*wF1 product. Random
Forest constitutes the third best classifier with a performance rate of wF1 at 78.7% and wP*wF1 product
at 70.5%. Naïve Bayes Multinomial, Logistic and IBk yielded lower performance rates, while the last
one (IBk) indicated the lowest performance in classification schemas combinations.

Figure 10 is displaying the solution space of all the examined classification schemas and their wF1
rates on the 10-folds cross-validation technique. The best schemas (local maxima) are marked with light
blue colour. In addition, this figure provides all the sets of the tested schemas’ combinations, and at the
same time, the best performances of these tests. This also gives very useful information to upcoming
researchers for re-examining their findings through these classification schemas, or preventing the
examination in some of them if their corpus dataset is related with the purpose of this paper.
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Figure 8. Machine learning classifiers and their performance in wF1 into the three different feature
extraction methods based on the specific vector size of 200 W.

Figure 9. Machine learning classifiers and their wP*wF1 product performance rates between the χ2

and the DEVMAX.DF feature extraction methods based on the specific vector size of 200 W.

Figure 10. wF1 Solution Space for Classification Schemas.
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Therefore, based on the extracted results among the different combinations of feature extraction
methods and the deployment of multiple ML classifiers, we select the most efficient classification
schema, which is the DEVMAX.DF, in 200 vector size of words with SMO. In the next table (Table 5),
the results of the most efficient classification schema in classifying reviews into topics are presented.
In the left column, the 12 topics are depicted. Right next to this column, True Negatives (TN),
False Negatives (FN), True Positives (TP), and False Positives (FP) are presented.

To evaluate the efficiency of the selected classification schema in classifying app reviews into
specific topics, Precision and F1 are involved. The number of reviews per topic are presented in the
last right column. It is noted that each topic articulates different sizes of reviews, and hence, different
weightiness in topics classification efficiency. For this reason, the weighted means of Precision and F1
are presented in the last row of the table.

Till now, the greatest classification schema has been selected based on its performance in classifying
app reviews in specific topics compared to the other schemas. Based on the proposed methodological
approach, the next step is the practical testing and validation of the selected classification schema
at specific apps. That is, we investigate the performance of the selected classification schema when
classifying reviews in particular topics per app. In Tables 6–8, the results of three different apps are
presented. The representation of these specific apps (“AcDisplay”, “A Comic Viewer” and “MultiPicture
Live Wallpaper”) was selected based on their high population of topics compared to the rest of the
apps, with lesser populations of topics within the examined dataset.

Table 6. Performance of the selected classification schema in classifying reviews into specific topics on
the selected app, namely the AcDisplay.

App: AcDisplay TN FN TP FP Precision F1 Number of
Reviews per Topic

1-Privacy 740 2 9 1 0.900 0.857 11
2-Hardware 685 42 15 10 0.600 0.366 57

3-Device 665 22 56 9 0.862 0.783 78
4-Performance 679 9 54 10 0.844 0.850 63

5-Battery 723 2 27 0 1.000 0.964 29
6-Price 733 1 8 10 0.444 0.593 9

7-App_Usability 686 14 35 17 0.673 0.693 49
8-Android_Version 718 14 20 0 1.000 0.741 34

9-User_Inteface 374 32 341 5 0.986 0.949 373
10-Licensing 744 1 1 6 0.143 0.222 2
11-Memory 744 0 5 3 0.625 0.769 5
12-Security 466 45 207 34 0.859 0.840 252

Weighted Mean: wP 88.56% wF1 83.90% Total: 962

Table 7. Performance of the selected classification schema in classifying reviews into specific topics on
the selected app, namely the A Comic Viewer.

App: A Comic Viewer TN FN TP FP Precision F1 Number of
Reviews per Topic

1-Privacy 505 0 0 1 0.000 0.000 0
2-Hardware 458 18 21 9 0.700 0.609 39

3-Device 451 6 41 8 0.837 0.854 47
4-Performance 387 4 114 1 0.991 0.979 118

5-Battery 505 0 1 0 1.000 1.000 1
6-Price 491 7 7 1 0.875 0.636 14

7-App_Usability 436 14 51 5 0.911 0.843 65
8-Android_Version 491 8 7 0 1.000 0.636 15

9-User_Inteface 345 33 87 41 0.680 0.702 120
10-Licensing 491 5 7 3 0.700 0.636 12
11-Memory 407 64 34 1 0.971 0.511 98
12-Security 504 0 1 1 0.500 0.667 1

Weighted Mean: wP 86.17% wF1 74.76% Total: 530
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Table 8. Performance of the selected classification schema in classifying reviews into specific topics on
the selected app, namely the MultiPicture Live Wallpaper.

App: MultiPicture
Live Wallpaper TN FN TP FP Precision F1 Number of

Reviews per Topic

1-Privacy 511 0 0 1 0.000 0.000 0
2-Hardware 501 4 6 1 0.857 0.706 10

3-Device 410 19 79 4 0.952 0.873 98
4-Performance 490 2 18 2 0.900 0.900 20

5-Battery 503 0 9 0 1.000 1.000 9
6-Price 504 0 6 2 0.750 0.857 6

7-App_Usability 472 17 19 4 0.826 0.644 36
8-Android_Version 484 11 17 0 1.000 0.756 28

9-User_Inteface 342 31 127 12 0.914 0.855 158
10-Licensing 507 2 3 0 1.000 0.750 5
11-Memory 505 0 6 1 0.857 0.923 6
12-Security 497 1 11 3 0.786 0.846 12

Weighted Mean: wP 91.50% wF1 83.42% Total: 388

It needs to be mentioned that the current practical problem statement of classifying app reviews
into certain topics, pays high attention to the Precision of each one classification result. As it was
previously mentioned in Section 4, if there is no high attention in Precision as an evaluation criterion to
correctly assign reviews into specific topics, then a project management team could lead to complexity
of which reviews belong to specific topics. This will lead to setting wrong prioritizations in optimizing
the app itself. Therefore, Precision is adopted once more as an evaluation metric in the next tables.

On the top left side of Tables 6–8, the name of the app is presented. At the same left column,
the 12 topics take place. True Negatives (TN), False Negatives (FN), True Positives (TP), and False
Positives (FP) are presented. Their sum is related with the total number of reviews in this specific
app (see also in Figure 3). Weighted mean of Precision (wP) and weighted mean of F1 (wF1) rates are
presented at the last row of the table. This happens as the populations of some topics in the reviews
are bigger than others, and thus, their weightiness to the total weighted means.

Apart from the three apps that were presented with the purpose to prove the efficiency of the
proposed classification schema into a real-case scenario, the last one table (Table 9) represents the top
10 apps with the highest population of topics among the examined dataset. In the last-right column of
Table 9, the number of topics per app are depicted. At the last row of this column, the total number of
topics per app for the first top 10 most populated apps is aggregated, that is 3680 (see also in Figure 4).
It is notable that in most of the cases, there are very high rates of wP and wF1, indicating in this way
that the proposed classification schema performs sufficiently in classifying app reviews into specific
topics in a wider number of examined apps.

Table 9. Performance of the selected classification schema in classifying app reviews in specific topics
for the top 10 examined apps with the highest population of topics in their reviews.

Apps wP wF1 Number of Topics per App

AcDisplay 88.56% 83.90% 962
A Comic Viewer 86.17% 74.76% 530

MultiPicture Live Wallpaper 91.50% 83.42% 388
Signal Private Messenger 85.88% 85.46% 352

Financius-Expense Manager 87.07% 77.30% 294
Amaze File Manager 90.96% 81.89% 247

Muzei Live Wallpaper 84.97% 85.03% 244
Pixel Dungeon 75.69% 78.25% 239

Terminal Emulator for Android 80.79% 76.60% 225
BatteryBot Battery Indicator 92.60% 90.24% 199

Weighted Mean: 86.98% 81.62% Total: 3680
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For instance, the Signal Private Messenger yielded a wP up to 85.88% and wF1 85.46% in classifying
app reviews into topics. In almost the same line, Muzei Live Wallpaper articulates a wP up to 84.97%
and a wF1 85.03% respectively. Lastly, the deployment of the selected classification schema into the
app of the BatteryBot Baterry Indicator resulted in a wP of 92.60% and wF1 90.24%. These results are
capable to verify the overall weighted mean of wP and wF1 among the examined apps, as it is depicted
at the last row of Table 9.

Lastly, in the next figure (Figure 11), we adopt the 5-point moving average, which is weighted by
the number of assigned topics per app, hereinafter mentioned as wMA(5). This constitutes an indicator
to visualize the performance of the selected classification schema in terms of the wP and the wF1
rates. The wMA(5) calculations are deployed to ensure statistical smoothness of the results among the
different selected apps’ performance on topics classification.

Figure 11. Weighted moving averages of wP and wF1 among five apps.

Point 1 on Figure 11 indicates the weighted results of five apps starting from the first row of
Table 9 (“AcDisplay” to “Financius-Expense Manager”); point 2 indicates the weighted results of five
apps starting from the second row of Table 9 (“A Comic Viewer” to “Amaze File Manager”), etc. As can
be seen in Figure 11, both two lines of wMA(5)-wP and wMA(5)-wF1 confirm the results of Table 9 in
terms of the weighted means.

6. Discussions and Future Work

In this paper, we tried to classify app reviews into specific several topics based on a novel one feature
extraction method, the DEVMAX.DF. Through multiple subsequent experiments and comparisons
among the extracted results, we concluded that the best feature engineering and classification schema
is articulated while using DEVMAX.DF with SMO machine learning algorithm in 200-vector size
words. This combination resulted in the highest performance among the others, with up to 85.8% wP
and 83.3% wF1, in terms of classifying app reviews into 12 different topics.

The proposed classification schema was tested under a noisy context of data as more than half
of the whole dataset of app reviews were not labelled with topics (Figure 1). Against this backdrop,
the proposed classification schema finally indicated a sufficient durability in terms of its discriminant
capacity while performing efficiently in a fuzzy context of dataset. Therefore, we recommend this
schema to be adopted in some already established theoretical attempts that ought to be evaluated
for their practical accuracy within the realm of app reviews classification [3]. We also encourage
other research approaches with significant results and indications to replicate their experiments while
including the proposed novel one feature extraction method compared with others such as TF-IDF, χ2,
Bag of Words, and so on [19,35].
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Another significant and practical contribution of the proposed attempt is that the selected
classification schema achieved better performance of reviews classification into smaller vector sizes of
words. This means that if an app has multiple reviews but their length is limited with not enough vector
sizes of words, then the proposed classification schema constitutes a reliable toolbox to classify app
reviews into specific topics; even these reviews are lesser than 100 words, such as 50. More specifically,
comparing the wP*wF1 product values of χ2 (49.4%) and DEVMAX.DF (60.4%) at the vector size of
50 words, an improvement of 22% with DEVMAX.DF is yielded in the process of classifying app
reviews into topics (Figure 7). In other words, the proposed schema is capable to classify earlier in
which topic a review should be assigned without waiting to have bigger-sized reviews such as 100, 150
or 200 words. This also prevents potential attempts that might exclude reviews from a dataset due to
their low vector-size words. In this respect, to the best of our knowledge, there is no prior effort that
proceeds the experiments and comparisons of different feature engineering schemas in the app reviews
classification problem to earlier highlight the topic that a review belongs to; even if this review has
smaller vector sizes of words. Of course, it is noted that in bigger vector sizes of words, the probability
to have appropriate words in representation is increased, and therefore, the differences among the
performance rates of the examined feature extraction methods are minimized. This assumption was
proved and depicted in Figure 6, where both χ2 and DEVMAX.DF performed very closely to their
rates in 250 w, 300 w, 350 w, and 400 w, while even the lowest-performed TF.IDF indicates increased
rates in bigger vector sizes.

In addition, it was our choice to select and involve the sub-classes and not the pre-classes of the
examined dataset. The purpose behind that choice is related to the effort to find a practical and specific
solution for app developers to know more explicitly and not so broadly the potential technical issues
of their apps, segmenting them into particular topics [13,20–22]. This will give a further advantage
of knowing exactly what the problem is of an app, monitoring more constructively apps’ health
condition [6], their maintenance [8], and setting more well-informed prioritization in terms of feature
requirements [5,12].

Furthermore, the proposed attempt focused on the identification and development of a solution
under a real-case scenario of classifying app reviews into topics for a set of multiple apps. The proposed
classification schema was effectively able to classify reviews into specific topics for each of the examined
apps individually (Tables 6–9). For the sake of developing and implementing a real-case situation,
we did not set a pre-defined approach of training and testing percentages such as 70–30% or 80–20%
respectively. Controversially, we selected one app per experiment for testing the proposed classification
schema, and the rest of the apps for training purposes. That is, under a practical business environment,
if a team is assigned to solve an app review classification problem in an upcoming app of a new client,
the reviews of the new app will be supplied to the concluded classification schema to categorize them
into topics. The rest of the already existing app reviews datasets that the team has from prior app
reviews classification problems will be set for training purposes. Based on the examined cases of this
paper, the average training set was about 93% of the whole dataset, and the test set was about 7%.

It is also notable that in this paper we focused on the development and identification of an
efficient classification schema, and we did not proceed into topics exploitation based on ratings. As it
was mentioned within the practical problem statement, bad ratings of reviews could be assigned for
optimizing the apps and good ratings could be utilized by a marketing team to enrich the strategic
promotion of an app. Nevertheless, if there is no reliable, valid and consistent feature engineering
schema at an initial stage that classifies the reviews into topics with accurate efficiency, then the rest
of the sequential operational steps will be implemented in the wrong way. Wrong reviews will be
assigned to wrong topics and complexity will be increased in terms of the frequency that they re-appear
after rectifying users’ requests. For this reason, we demonstrated an extra sensitiveness at the Precision
as an evaluation metric to ensure in this way that app reviews of the examined dataset are assigned
properly into specific topics. More specifically, apart from the well-established F1 that is adopted
in prior significant contributions in the app reviews classification realm [13,17–21], we involved a
complementary evaluation metric, namely the Precision * F1 product. This will furtherly reinforce the
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effectiveness and the exactness of the proposed classification schema in classifying app reviews into
topics, and hence, prevent the phenomena of assigning app reviews into wrong topics.

Regarding our future research efforts, until now, an efficient schema in app reviews classification
problem has been developed and specified. We will start working sequentially on ratings classification.
Till now, even our method indicated an analogous efficiency; we need to dive deeper into more methods
and experiments. This will ensure the proper classification of topics based on their ratings for assigning
them correctly within a project management team for app software optimization, feature requests
of users, and/or marketing purposes. Furthermore, we will try to establish an even more integrated
approach while including developers’ opinions [16] regarding the usefulness level of our proposed
feature engineering schema. The involvement of app analytics metrics such as crashlytics occasions,
retention percentages and downloads improvement, or time spent within the apps, would be practical
supportive indicators to make comprehensible the efficiency level of the proposed classification
schema [41]. Besides, this will help developers to foster a user-centred app life cycle, utilizing in this
way the reviews by the users, for the users. That is, to reinforce the strategy of indirectly involving
users in app optimization, and hence, positively impact the app success as a system [42].

Additionally, further research is needed to deploy the proposed schema into other realms of text
representation and analytics. Sectors such as e-learning environments and learners reviews [43] or
product reviews in online shopping industry [44] constitute another research domain that needs to be
explored. Lastly, we need to state that the proposed novel feature extraction method of DEVMAX.DF is
strengthened further based on the results of this paper, but also from prior research approaches [28,29].
However, even though there is a piece of research road that already has been travelled, more experiments
through different datasets are needed in order to expand both the efficiency and reliability of our method.
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3. Dąbrowski, J.; Letier, E.; Perini, A.; Susi, A. Finding and analyzing app reviews related to specific features:
A research preview. In Proceedings of the International Working Conference on Requirements Engineering:
Foundation for Software Quality, Essen, Germany, 18–21 March 2019; Springer: Cham, Germany, 2019;
pp. 183–189.
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