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Abstract: Polarization adjusted convolutional (PAC) codes are a class of codes that combine
channel polarization with convolutional coding. PAC codes are of interest for their high
performance. This paper presents a systematic encoding and shortening method for PAC codes.
Systematic encoding is important for lowering the bit-error rate (BER) of PAC codes. Shortening is
important for adjusting the block length of PAC codes. It is shown that systematic encoding and
shortening of PAC codes can be carried out in a unified framework.
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1. Introduction

PAC codes are a class of linear block codes designed to improve the performance of polar codes
by combining channel polarization with convolutional coding [1]. It has been shown that PAC codes
can perform better than polar codes [1], in some instances performing close to the theoretical limits for
finite-length codes.

Given the potential of PAC codes for applications requiring extreme reliability at short
block-lengths, it is of interest to investigate various aspects of PAC codes that may be important
in practice. In this paper, we study systematic encoding and shortening of PAC codes.
Systematic encoding is of interest mainly because it provides a better bit error rate (BER) performance
compared to non-systematic encoding. Code shortening is important as a means of providing flexibility
is choosing the code length. The BER advantage of systematic coding is illustrated in Figure 1 for a
PAC code of length N = 128 and rate R = 1/2 on an additive Gaussian noise channel with binary
modulation. A better BER performance is important in concatenation schemes where an outer code
corrects the bit errors left over by an inner PAC code.

In Section 2, we give a definition of PAC codes and their non-systematic encoding. In Section 3,
we develop a method for systematic encoding of PAC codes. In Section 4, we indicate how the
systematic encoding method of Section 3 can be used for shortening PAC codes.

Throughout, we restrict attention to PAC codes over the binary field F; = {0,1}. All algebraic
operations are over vector spaces over Fp. FY will denote row vectors of length N over F, and
Fé\] *M will denote matrices with N rows and M columns. For any v = (vy,...,05) € FY and
A c {1,2,...,N}, let v 4 denote the subvector (v; : i € A). Forany G € ]FZZVXM, Ac{1,2...,N},
and B C {1,2,...,M}, let G 4,8 denote the matrix obtained after deleting the rows of G not in A and
columns of G not in B. The notation 0 denotes a vector or matrix all of whose elements are 0 and I
denotes an identity matrix.
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Figure 1. BER comparison for systematic and non-systematic PAC codes.

2. PAC Codes

A PAC code over F, is a linear block code parametrized by (N, K, A, £, g) where N is a
code block length, K is a code dimension, A is a data index set, f € IFQ] —K'is a frozen word,
and g = (80,81,--.,gm) € F3™ is a convolution impulse response with g9 = 1, g = 1, with g;
subject to design for 0 < i < m. The data index set A is a subset of {1,2,..., N} with size | A| = K.
The parameter (1 + m) will be called the span of the impulse response g. The span of any impulse
response g that we consider here will be bounded by the block length N. Sometimes, when the span
cannot or need not be shown explicitly, we will write g = (g0, 81,--.,¢n-1) to denote an impulse
response, with the understanding that g; = 0 for i greater than or equal to the span of g.

An encoder for a PAC code encodes data words d € FX into codewords x € FY by computing a
convolution followed by a polar transform. In the convolution step, a convolution input word v € FY
is prepared by setting v 4, = d and v 4. = £, and a convolution u = v * g is applied to v to obtain a
polar transform input word u € F}'. (A° denotes the complement of A in {1,2,...,N}.) In the polar
transform step, the codeword x € F is obtained by computing x = uL, where L = F*" is the polar
transform matrix, defined as the nth Kronecker power of a kernel matrix F = [19].
The convolution step u = v * g involves the computation

m
Mi:ZZJi,]‘gj, fori:1,2,---,N, (1)
j=0

where v;_; is interpreted as 0 if i — j < 0. In the following analysis, we will represent the convolution
alternatively as a linear transformation u = vT where T € Fé\[ *N is an upper-triangular Toeplitz
matrix of the form
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The first row of T is determined by g and the rows that follow are shifted versions of the first row.
Please note that if m = 0 then T becomes the identity matrix and PAC codes contain polar codes as a
special case. To exclude this possibility, PAC codes are often defined with the condition that m > 1.
However, for purposes of the present paper, there is no need to place such a restriction on m.

The encoding operation for PAC codes can be defined more compactly by defining a generator
matrix G = TL. Then, the encoder implements the mapping x = vG after preparing the vector v in the
same way as above. A direct implementation of the transform x = vG, without exploiting the structure
in G, has complexity O(N?), while the two-step encoder described above has complexity O (mN) for
the convolution operation and O(Nlog N) for the polar transform. Since PAC codes typically have
m < N, the complexity of implementing x = vG using the triangular factorization G = TL results in
significant cost savings. Below, as we develop a systematic PAC encoder, we will exploit this triangular
factorization for reducing complexity.

3. Systematic Encoding

The above encoder for a PAC code is non-systematic in the sense that the data word d does not
appear transparently as part of the codeword x. The goal in this paper is to give a systematic encoding
method so that there is a subset of coordinates A such that x4 = d.

We will consider instances of the systematic encoding problem for PAC codes that are
characterized by a collection of parameters (T,L, A, B,f,d) where T € Fé\’ xN
FY*N is the polar transform matrix (which is an

is an invertible
upper-triangular Toeplitz matrix, L €
invertible lower-triangular matrix), .4 and B are subsets of {1,2,..., N} with sizes K and N — K,
respectively, f € Fé\] ~Kis a fixed vector, and d € FX is a data word. Given such an instance, a systematic
encoder seeks a solution to the set of equations

x=vIL, vg=1f xy=d. 3)

More specifically, a systematic PAC encoder seeks to determine the missing part x 4c of the
codeword x subject to the conditions (3). To analyze this problem, rewrite x = vTL in terms of
G =TLas

XA =vVBGp A+ VEGpe s Xao =VEGE A + VB Gpe ac 4

where A° and B¢ denote the complements of Aand Bin {1,2,..., N}, respectively. Substituting x4 = d
and vg = f into (4), and solving for x 4., we obtain a formal solution as

xac =d(Gpea) " Gpeac +1£ [GB,AC ~Gp,4(Gpe,a) ' GBC,AE] , (@)

which is valid if and only if the matrix Gpc 4 is invertible. (Please note that Gpc, 4 is a square matrix
since the size of B¢ equals the size of A by definition.) One way to ensure that G, 4 is invertible is
to choose A and B as complementary sets so that Ggc 4 becomes a principal submatrix G 4 4 of G.
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(Since G is the product of two invertible matrices, it is invertible; hence, all its principal submatrices
are invertible.) We summarize this result as follows.

Proposition 1. The systematic encoding problem (3) for PAC codes has a solution whenever B¢ = A, and the
solution is given by

xue =d(Gaa) " Guue +£|Guea — G a(Gaa) GA,AC} : (6)

Thus, in principle, we have already provided a solution to the systematic encoding problem for
any PAC code. However, the complexity of solving the systematic encoding problem by computing x 4
using (6) involves O((N — K)?) arithmetic operations (additions and multiplications in IF,), which may
be prohibitively complex for many applications.

In the rest of this section, we develop a low-complexity systematic encoder for PAC codes under
the assumption that the data index set A is chosen so that L 4c 4 = 0 is satisfied. This condition is not
as restrictive as it may appear since it is satisfied by the preferred choices for the data index set A,
such as when A is chosen according to a polar coding design rule or a Reed-Muller design rule [1].

For clarity, we restate the systematic encoding problem considered in the rest of this section as
follows. Given a data word d € IFé( and a data index set A for which L 4c 4 = 0, find a codeword
x € FY so that

x=vVIL, v =1£f xy=4d (7)

Proposition 2. The systematic encoding problem (7) can be solved by a method consisting of the following
three steps. (i) Generate an auxiliary word ¢ € FX by computing ¢ = d (L, )L (i) Compute a convolution
input-output pair (v, u) so that

u=vl, uy=c¢ vy ==~ (8)

(iii) Obtain the systematic codeword by computing the polar transform x = uL.

Proof. The second and third steps ensure that x = vIL, with v 4c = f. Therefore, x is a codeword in
the PAC code. Moreover, we have

X.A:uALA,A+uACLAC,A:CLA,A:d/

sinceLyc 4 =0,uy =c,andc =d(Ly A)_l. Thus, x4 = d is also satisfied, confirming that the
encoding method is systematic. []

The above systematic encoding method calculates v 4 although systematic encoding does not
explicitly call for the calculation of v 4. On the other hand, the calculation of v 4 proves (implicitly)
that a solution to the systematic encoding problem exists.

Next, we examine the complexity of each step of the systematic encoding method of Proposition 2.

Proposition 3. The first and third steps of the method in Proposition 2 each have complexity O(N log N).

Proof. The third step x = uL = uF®" is a polar transform operation, which is known to have
complexity O(N log N) [2] thanks to the recursive structure of the polar transform. As for the first
step, a direct computation of ¢ = d(L4 4)~! (without exploiting the special structure of the polar
transform) has complexity O(K?). A better method is to embed the calculation ¢ = d(L4 4) ! ina
polar transform operation, as in systematic encoding of polar codes [3-5]. To that end, we recall that
the inverse of the polar transform L = F®" is itself, i.e., L~! = L. This, combined with the condition
that L gc 4 = 0, implies that (L 4, A)il = L4 4. To see this last point, note that for any two matrices
A € FY*Nand B € FY*N,

(AB) g4 = AqaB a4+ AguBaca,
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and let A = Land B = L~! = L. Therefore, we have ¢ = d(L4 4) "' = dL4 4. Now, prepare a vector
x' € FY by setting x/; = d and X4 = 0, apply a polar transform u’ = x'L, and extract ¢ from u’ by
setting ¢ = u’,. This yields the desired result since

u;‘ = XC4LA,A+XC40L.AC,A =dLg 4.

O

Proposition 4. The system of equations (8) in the second step of Proposition 2 can be solved by a sequential
method of complexity O(mN) for a PAC code with a convolution impulse response g = (80,81, - - -,gm) (where
Qo0 # 0 by definition of PAC codes).

Proof. To develop a sequential method that solves (8), we begin by rewriting the convolution
Equation (1) as follows

U = o0 + 101+ +&mVi—m =0vi+s;, i=12,...,N )

where we used gop = 1 and have defined s; = g1v;_1 + - - - + gm¥i_p, as an ith feed-forward variable.
Please also note that in (9), we have used the convention that v; = 0 for j < 1.

Observe that, for each 1 < i < N, eitheri € Aori € A°. In the former case, we obtain u; from
the constraint u 4 = ¢; in the latter case, we obtain v; from v 4o = f. Given the value of one of the
elements of the pair (v;, u;), the other can be found from the relation u; = v; + s;. Also, observe that s;
depends only on the knowledge of (v1,v,...,v;_1). These observations suggest a sequential method
for carrying out the second step of Proposition 2. The sequential method begins with i = 1 with s; = 0.
Either 1 € A and (vq,u1) = (c1,¢1) where ¢y is the first element of the auxiliary word ¢; or 1 € A° and
(v1,u1) = (f1, f1) where fj is the first element of the frozen word £. In either case, we can compute s,
before proceeding to the next step of the sequential method. In general, the ith step of the sequential
method begins with s; available from the (i — 1)th step and one determines the missing element of
the pair (v;, u;) using the relation u; = v; +s;. Thus, this method solves the system of equations (8).
The method also provides a proof of existence and uniqueness of the solution.

The complexity of the sequential method given above is dominated by the complexity of
calculating the feed-forward variables (si,5p,...,5N). From the definition of s;, it is clear that s;
can be calculated using at most m multiplications and m — 1 additions in ;. Thus, the overall
complexity is O(mN). O

Remark 1. An inspection of the above proof will show that the sequential method of Proposition 4 can be used
to solve the system of equations (8) for any IUT matrix T; the Toeplitz property is not essential.

The complexity O(mN) of the sequential method of Proposition 4 corresponds to a significant
savings if m < N. If m < N is not true, it may be worth working with the inverse of T. To discuss
this, we first cite a well-known result, see e.g., [6].

Proposition 5. The class of all N-by-N IUT Toeplitz matrices form a group under matrix multiplication. Let
T e Fé\]XN be an IUT Toeplitz matrix with its first row given by g = (80,81, ---,gn—1) € FY. (If g has span
m+1,theng; =0form <i <N —1.) Then, T~ € ]FZZVXN is an IUT Toeplitz matrix with first row given by
h = (ho,hy,..., hy—1) € FY where hg = (1/go) and hy = —81—0 Zilegk,ihifork =1,2,...,N—1.

Proposition 5 allows us to recast the convolution problem (8) in an inverted form: Compute a
convolution input-output pair (v, u) so that

v=uT}, vye=f uyg=c (10)
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The inverted problem (10) has the same form as the original problem (8) with the roles of v
and u reversed. Therefore, it can be solved using the same sequential method described above.
There may be an advantage in solving the inverted problem if the span of the first row of T~!
is shorter than that of T. For example, let T & IF%GXM be an IUT Toeplitz matrix with first row
g=(1,111000,0,1,1,0,1,1,0,1,0), with a span of 15. The inverse T le IF%6X16 is the IUT Toeplitz
matrix with first row h = (1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0), which has a span of 11.

We end this section by noting that for hardware implementations of the convolution operation in
PAC encoding (both for systematic and non-systematic cases), one can use shift-register circuits that
are commonly used in encoding algebraic codes. In particular, the convolution operation u = v * g (or,
equivalently the transform u = vT) can be implemented as shown in Figure 2. A version of the same
circuit, with the left-most stage eliminated, generates the feed-forward variable s; at point A’ when

v;_1 is provided as input at point A.
O~
(T

T : .
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Uq

Wo¥e
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Figure 2. Convolution circuit.

4. Shortening of PAC Codes

PAC codes have native lengths that are powers of two, N = 2" for some n > 1. In many
applications, it is necessary to adjust the code length to some desired value other than 2”. One method
for adjusting code length is code shortening in which a portion x¢ of the codeword x is constrained
to a predetermined value, say zero, and is not transmitted, effectively reducing the code length
from N to N — |C|. A common method of code shortening for polar codes is to choose the set C so
that Lec ¢ = 0 [7,8]. The systematic encoding method for PAC codes presented above can be used to
implement such a shortening method.

Suppose we desire shortening of a PAC code in connection with non-systematic encoding.
We partition the index set {1,2, ..., N} into three disjoint sets: a data index set .4, a frozen index set
B, and a shortening index set C subject to the condition L 45, = 0. Then, we apply the systematic
encoding method presented above to the problem

x=vVTL, (vg4,vg)=(df), xc=0. (11)

In other words, the data word d is treated as if it is part of the frozen part of the convolution
input word v, and the part x¢ of the codeword is treated as if it is the data part of the codeword in a
systematic PAC code.

If on the other hand, we desire to shorten a systematic PAC code, then the index set {1,2,..., N}
is partitioned into a data index set A, a frozen index set 3, and a shortening index set C subject to the
condition Lg 4,¢ = 0, and we apply the above systematic encoding method to the problem

x=vIL, vp=1 (xg4,xc)=(d,0). (12)

In other words, we treat (x¢,x4) as if all of it is data in a systematic PAC code.
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