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Abstract: We revise and slightly generalize some variational problems related to the “informational
approach” in the classical optimization problem for automatic control systems which was popular
from 1970–1990. We find extremals for various degenerated (derivative independent) functionals and
propose some interpretations of obtained minimax relations. The main example of such functionals is
given by the Gelfand–Pinsker–Yaglom formula for the information quantity contained in one random
process in another one. We find some balance relations in a linear stationary one-dimensional system
with Gaussian signal and interpret them in terms of Legendre duality.
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1. Introduction

An informational approach to an opimality criteria for a control system synthesis was proposed
by Bukanov in [1]. He has considered the following one-dimensional, control system.

Remark 1. The “subtraction” and “addition” notation of the diagram nodes means that f.e. the input function
X(t) = U(t)− P(t) and Z(t) = Y(t)−Y0(t) while V(t) = Z(t) + N(t).

His choice of an informational criterion was motivated by a straightforward engineering
application: studies of the automatic board control system of the passenger jet TU-154. Mathematically,
he had used the classical Gelfand–Pinsker–Yaglom functional formula [2]

JU,Z = − 1
4π

∫ +∞

−∞
log(1−R2

UZ)dω

for the amount of information about the one random process (the defect or the error signal Z) contained
in another such process (the control signal U), whereRUZ denotes the mutual correlation function for
these processes.

Pinsker had re-written this functional in the following form:

JU,Z =
1

4π

∫ +∞

−∞
log

sUsZ

sUsZ − |sUZ|2
dω. (1)

Here, SU , SZ are spectral densities of the powers of the control signal U and the defect signal Z,
SUZ -is the mutual spectral density.
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Bukanov has expressed the functional variables of (1) in terms of the object-regulator transfer
functions and spectral densities of the perturbations and has obtained the following explicit integral:

JU,Z =
1

4π

∫ +∞

−∞
log

(R0sP)
2 + (RrsN)

2 + (1 +R2
0R2

r )sNsP

(1 +R2
0R2

r + 2R0Rr cos(φ0 + φr))sNsP
dω. (2)

The transfer functions of the object and the regulator are represented by the frequency responses
K0(jω) = R0 exp(jω) and Kr(jω) = Rr exp(jω). (We shall describe below the detailed reduction of
the Pinsker Formula (1) to the Bukanov’s expression (2) in a slightly general context.)

The aim of this paper to revise and to generalize this optimal regulator problem (for a class
of linear stationary systems with non-zero program (Y0)) as the classical optimization problem for
automatic control system of Figure 1. We get the following results:

• find extremals for a generalization of (1) and for some other degenerated (derivative independent)
“informational” functionals (the main example of such functionals is given by the Pinsker formula
for the entropy quantity of one random process in another.)

• obtained some minimax relations and propose its new interpretations as an “energy–balance
equilibrium” in a spirit of the Brillouin’s and Schrodinger’s ideas of “negentropy” (we remind
briefly this notion in the Discussion section).

• write our balance relations in a linear stationary one-dimensional system with Gaussian signals
and interpret them in terms of Legendre duality.
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Figure 1. This is a figure from [1]. Here, K0 denotes the operator object which transform the input
function X(t) to the output function Y(t) which should be compared with the given function Y0

(the program function). The “defect” signal Z together with a measurement “noise” N forms the input
of a regulator given by an operator Kr. The resulting control signal U with an external perturbation P
goes back to the input of the object operator K0.

We would like to stress and warn a mathematical purist reader that this manuscript is not
a “mathematical paper” in a formal sense of this notion. We (almost) never discuss and almost
never precise any “existence and finitude conditions”. We would rather prefer formal manipulations
whenever they exist. Therefore, we decided not to overload these small notes with probability and
measure theory precise statements, technicalities, and terminology. We refer all interested readers to
the book [2] for all rigorous conditions and other pure mathematical details and statements.

1.1. The Origins

The famous Shannon’s formula [3] provides a facility to measure the capacity of a communication
channel in a presence not only of white noise but also in the case when the transmission is perturbed by
any Gaussian noise with the power spectrum function ε(ω) proportional to the square module of a
filter transfer function y(ω):

ε(ω) = κ|y(ω)|2.
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We recall it because it is probably the first when implicitly the informational characteristics are
stipulated by some “energy” constraint. Namely, let the power of the “transmitter” is bounded by
some (positive) quantity A2 such the spectral function of the transmitted signal is s(ω):∫ ω1

ω0

s(ω)dω = A2. (3)

The Shannon formula we have mentioned above for the total capacity of s(ω) reads for the
frequency bandwidth [ω0, ω1] as

Cs,ε =
∫ ω1

ω0

log(1 +
s(ω)

ε(ω)
)dω.

Now, it is easy to give a mathematical answer to the natural question: what should we do to get a
maximal transmission rate for the given constraint (3)? Shannon proposes to consider the variational
problem with the Lagrange multiplier:

max{
∫ ω1

ω0

[log(1 +
s(ω)

ε(ω)
) + λs(ω)]dω} (4)

which gives the condition

λ +
1

s(ω) + ε(ω)
= 0

and implies that s(ω) + ε(ω) is a constant. Going further, we put s(ω) = − 1
λ − ε(ω) in (3) and obtain

λ = −ω1 −ω0

A2 + B2 ,

where B2 =
∫ ω1

ω0
ε(ω)dω and the extremal smax(ω) = A2+B2

ω1−ω0
− ε(ω), while

Cmax
s,ε = (ω1 −ω0) log

A2 + B2

ω1 −ω0
−
∫ ω1

ω0

ε(ω))dω.

In this paper, we are going to apply these beautiful observations of the founding father of Theory
of Information to some (degenerated) variational problems with power constraints arising in the
optimal control of automatic systems.

1.2. Review of Some Previously Known Results

The informational criteria for a control system synthesis were very popular in applied automatic
control and measure systems in 1970–1980. We should mention here relevant to our interests works of
academician Petrov’s school researchers [4]. They were concentrated on the questions of correctness
and regularization (in sense of Tikhonov) the control and statistical optimization problems. Their most
important and most interesting (to our aims ) input has concluded in a study of a connection between
the regularization and a correctness of problems in a one side and an approach motivated by the above
Shannon channel capacity formulae in the other. Mathematically, their main tool was based on the Wiener
filter theory and related integral equations of the Kolmogorov–Wiener type (see, for example, [5]).

It seems that the system considered by N. Bukanov was ideologically similar to models elaborated
by Petrov’s school researchers [5,6]. In the same time, one should stress that Bukanov’s choice of the
informational criterion has some advantages. Its mathematical toolbox does not appeal to integral
equations and was strongly motivated as we have mentioned by engineering applications to numerical
computations related with an optimization of the jet TU-154 automatic board control system.

We shall compare both approaches—[1,5,6] for some basic examples of control linear systems.
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We remind that, in [1], a solution was proposed for the variational problem in the class of linear
stationary systems with zero program (Y0 = 0) and Gaussian perturbation signal functions. Namely,
Formula (1) makes sense exactly in this class of random functions admissible in [2].

More precisely, the main result of [1] is that the (degenerated) variational problem for the
functional (2) has the following extremals:

Rr = R0
sP
sN

, φr = −φ0, (5)

which are minimized at the same time as the functional of the error signal dispersion:

DZ,Z =
∫ +∞

−∞

R2
0(sP +R2

r sN)

1 +R2
0R2

r + 2R0Rr cos(φ0 + φr)
dω (6)

and the functional of the control signal power dispersion:

DU,U =
∫ +∞

−∞

R2
r (sN +R2

0sP)

1 +R2
0R2

r + 2R0Rr cos(φ0 + φr)
dω. (7)

One can conclude that the extremal relations (5) between the object–regulator characteristics
guarantee that the optimal regulator provides the minimal power to the object of control.
Another interesting observation made in [1] is that, in spite of the functional (2) minimal value
(JU,Z)min = 0, it does not mean that the regulator does not use the information at all—it means only
that there is a certain “informational balance”:

JU,Z = [C0,P,N −Q0] + [Cr,P,N −Qr] (8)

between the channel capacity

C0,P,N =
1

4π

∫ +∞

−∞
log(1 +R2

0
sP
sN

)dω.

of the object channel in the presence of perturbations P and N, the channel capacity

Cr,P,N =
1

4π

∫ +∞

−∞
log(1 +R2

r
sN
sP

)dω.

of the regulator channel in the presence of perturbations P and N, and the (half-)differences

Q0 =
1
2
(Q′0 −Q0”), Qr =

1
2
(Q′r −Qr”)

of the informational performances Q0, Qr of the output of the object and the regulator channels with
open (Q′0, Q′r) and closed (Q0”, Qr”) loop–controllers:

Q′0 =
1

4π

∫ +∞

−∞
log(R2

0
sP
sN

)dω, Q′r =
1

4π

∫ +∞

−∞
log(R2

r
sN
sP

)dω,

Q0” =
1

4π

∫ +∞

−∞
log(|WZP|2

sP
sN

)dω, Qr” =
1

4π

∫ +∞

−∞
log(|WUN |2

sN
sP

)dω.

Here, WZP and WUN are corresponding complex frequency responses (see details in [1]).
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1.3. Further Generalizations and the Subject of the Paper

Further studies of this type optimal linear control systems were concerned to a natural
generalization for the systems with a non-trivial program (Y0 6= 0 ). At the same time, it was an
interesting and mathematically natural question to study similar (degenerated) variational problems
for various informational functionals similar to (1) with a “power” constraint of type (3).

The first steps in this direction were done by the author (in a collaboration with N. Bukanov and
V. Kublanov). We have reported our partial results in the paper [7] which was, in fact, a short
conference proceedings announcement. No details of those results were ever published (to the best of
my knowledge). It should be mentioned that some results and the intrinsic ideology—to consider an
“entropy criterion” of optimal regulation proposed in our paper [7] were rediscovered in 1986 in the
announcement [8].

One of the aims of this manuscript is to revise and to generalize the results reported in [7] and to
consider them in a general context of variational problems with Legendre–Fenchel dual functionals.

The paper is organized as follows: Section 2 contains a reminder and a generalization of basic
results from [1]. We introduce the notations and remind main definitions of all important notions,
objects, and formulas used in the manuscript—among them are: the Pinsker functionals of entropy and
informational rates of one stationary Gaussian signal with respect to another, signal spectral densities,
and transfer functions.

First, we remind readers about (and generalize in the case of a non-trivial Gaussian stationary
program signal) the variational problem for the Pinsker functional in the form proposed by Bukanov.
We observe and discuss (Proposition 1) an important formula that represents the Pinsker informational
rate functional associated with the linear system in Figure 1 in a Shannon-like channel capacity form.

Theorem 2 in Section 3 solves two degenerate variational problems for channel capacities
functionals related with the program channel and with the error signal perturbation channel.
We compare the expressions for both channel capacities with the Petrov–Uskov Formula (6) from [6].
Theorem 3 (essentially reported in [7]) gives the main balance relations for the system on Figure 1.
We want to stress that the observed similarity of these relations with the famous Brilliouin and Schrodinger
“negentropy” notion appeared due to my numerous discussions with Bukanov, who also indicated a close
connection with the information gain, or the Kullback–Leibler divergence (see, for example [9], for a
modern geometric approach to “informational thermodynamics”). In Section 4, we consider another
informational functionals with or without necessary connections with optimization of linear automatic
control systems. Our main observation here is Theorem 4 which remarks that the formula for the second
Pinsker main functional—the entropy rate of a random process relatively to another random process—can
be interpreted like a Legendre duality relation for the first Pinsker informational rate functional.

2. Optimization of the Linear Control System with a Non-Trivial Stationary Gaussian Program

The results of the section (slightly) generalize and extend the material of the paper [1] and give a
new interpretation of it. It is worth noting that our notations are different from the original and our
motivations and reasonings do not base on possible engineering applications and are purely theoretical.

2.1. Useful Formulas and Notations

We collect here (for the convenience of readers) all basic theoretical formulas which we shall use
throughout the text. We clarify (once and forever in the paper) that all random variables and random
processes (discrete or continuous) we shall understand in the same sense as in the Pinsker book [2],
and we refer a “mathematically oriented” reader to this book for precise definitions, description,
and properties.
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2.1.1. Formulae

In what follows, we shall use the following important formulas. Let ξ, η be two random functions
(= stationary (generalized) Gaussian random processes).

• The Gelfand–Pinsker–Yaglom functional (Formula (2.58) from [10]) for the amount of information
about a random function contained in another such function:

Jξ,η =
1

4π

∫ +∞

−∞
log

sξ sη

sξsη − |sξη |2
dω = − 1

4π

∫ +∞

−∞
log(1−R2

ξη)dω

where sξ(ω) and sη(ω) are respectively the spectral densities of ξ and η and sξη(ω)—the mutual
spectral density of ξ and η. Here,

R2
ξη :=

|sξη |2

sξ sη

is the common correlation function for the processes sξ and sη (Formula (10.21) from [2]).
• Gelfand–Pinsker–Yaglom functional for Gaussian ξ, η = ξ + ν such that ξ and ν are non-correlated

(Formula (2.61) from [10]):

Jξ,η =
1

4π

∫ +∞

−∞
log(1 +

sν

sξ
)dω

• The entropy rate of a random variable ξ with respect to η was defined by Pinsker [2]. For two
one-dimensional Gaussian stationary (in the wide sense) stochastic processes ξ and η, the formula
for the entropy rate (Formula (10.5.7) from [2]) reads

Hξ,η =
1

4π

∫ +∞

−∞
(

sξ

sη
− 1− log

sξ

sη
)dω (9)

• For Gaussian ξ, η = ξ + ν such that ξ and ν are non-correlated:

Hξ,η =
1

4π

∫ +∞

−∞
(

sν

sξ
− log(1 +

sν

sξ
))dω

2.1.2. Generalized Variational Problem

We suppose now that the stationary Gaussian program Y0 6= 0. Then, the following system
of linear operator equations with respect to the variables U and Z in p−coordinates of the Laplace
transform for our control system in Figure 1 takes place:{

Kr(p)Z(p)−U(p) = Kr(p)N(p),

Z(p) + K0(p)U(p) = K0(p)P(p)−Y0(p).
(10)

The main determinant of the system

∆ =

∣∣∣∣∣Kr −1
1 K0

∣∣∣∣∣ = 1 + K0Kr 6= 0.

We remind readers about frequency representations K0(jω) := R0(ω) exp(jφ0(ω)) and Kr(jω) :=
Rr(ω) exp(jφr(ω))
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2.1.3. Notations

For the automatic control system in Figure 1, we introduce the following notations:

1.
S0,P,N := R2

0sP + sN

2.
Sr,N,P := R2

r sN + sP

3.
S0,r,φ := (1 + 2R0Rr cos(φ0 + φr) +R2

0R2
r )sPsN

In these notations, the functional (2) Jξ,η for the processes ξ = U and η = Z is written as

JU,Z =
1

4π

∫ +∞

−∞
log
S0,P,NSr,N,P

S0,r,φ
dω (11)

Solving the system (10) and calculating the spectral density of signals U, Z and denoting the
program signal sY0 , we obtain{

sZ(ω) = |WZY0 |2(jω)sY0(ω) + |WZN |2(jω)sN(ω) + |WZP|2(jω)sP(ω),

sU(ω) = |WUY0 |2(jω)sY0(ω) + |WUN |2(jω)sN(ω) + |WUP|2(jω)sP(ω).
(12)

One can find the explicit expressions for the transfer functions W(jω) in Appendix B. We have
computed the full functional generalizing functional (2):

Jgen
U,Z =

1
4π

∫ +∞

−∞
log

sP[(sY0 +R2
0Sr,N,P)(sY0 + S0,P,N)]

S0,r,φ(sY0 +R2
0sP)

dω (13)

We see that Y0 = 0 (13) and (11) coincide.

Theorem 1. The functional Jgen
U,Z has the following extremals:φr = φ̂r := −φ0,

Rr = R̂r := R0
sP
sN
[1 +

sY0
R2

0sp
]

(14)

Proof of Theorem 1. We denote by L the “Lagrangian” density for the functional (13):

L(φr(ω),Rr(ω)) = log
sP[(sY0 +R2

0Sr,N,P)(sY0 + S0,P,N)]

S0,r,φ(sY0 +R2
0sP)

The “degeneracy” of (13) means that the Lagrangian density does not depend on derivatives of φr

and Rr and the Euler–Lagrange equations are replaced by easy and straightforward computations
from the system of variations 

δJgen
U,Z

δφr
= 0,

δJgen
U,Z

δRr
= 0

(15)

(due to the basic lemma of the calculus of variations) by the usual function minimax conditions.
The first variation gives

δJgen
U,Z

δφr
= 0⇒ −2R0Rr sin(φ0 + φr)

S0,r,φ(R2
0sP + sY0)

= 0

and we obtain the first condition in Theorem 1. The second condition is verifying with a bit more
cumbersome computation and we put it in Appendix A.
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Corollary 1.

1. Taking Y0 = 0 immediately obtains the extremals (5) of the functional (2);
2. The extremal minimal value of the functional (13) is

Ĵgen
U,Z = 0,

but, exactly like in the case of the zero program (see (15) in [1]), it does not mean that the regulator of
the control system does not use the information. It just means that there is a balance of various channel
capacities generalizing (8). We shall discuss and interpret these generalizations in the next sections.

3. The same extremals (14) minimize the (generalized) functional of “power” error signal:

Dgen
Z,Z =

∫ +∞

−∞

sPsN(sY0 +R2
0Sr,N,P)

S0.r,φ
dω. (16)

4. This extremal value easily computed

D̂gen
Z,Z = (σ2

Z)min =
∫ +∞

−∞

sN(sY0 +R2
0sP)

sY0 + S0,P,N
dω.

and coincides with the minimal value of DZ,Z (14.1) in [1] for zero–program case.
5. The same is true for the similar generalization of the functional (7) for the power of the regulator. We omit

the corresponding evident formulas generalizing (14.2) in [1].

We shall obtain another remarkable representation for the functional (13) using the spectral
densities of signals Z and Ẑ:

Proposition 1.

Jgen
U,Z =

1
4π

∫ +∞

−∞
log

sZ
sẐ

dω (17)

Proof. We shall compute the spectral density sZ from the first equation of (12):

sZ(ω) =
(sY0 +R2

0Sr,N,P)sPsN

S0,r,φ
,

the spectral density sẐ putting the extremals (14) in the above formula and substituting both spectral
densities in (17).

This formula will be very useful in further interpretations in Section 4.

3. Capacity of Channels and Balance Theorems for the Linear Stationary Control System

Now, using the generalization for Y0 6= 0, we can also generalize and extend the relations which
we have reported in [7]. In the same time, we shall propose some new interpretations of these relations.
We shall assume throughout this section that all signals are stationary and Gaussian.

3.1. Capacity of Channels via Differential Entropy

We recall that, for the capacity of the channel for the linear control system in Figure 1, the given
program Y0 can be computed via differential entropies (“reduced to a degree of freedom”) of this
program and the error (defect) Z (see, for example, (ch. IV (12.5) in [11]):

CY0 = H(Y0)−H(Z) (18)
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where {
H(Y0) =

1
4π

∫ +∞
−∞ log(2πe)sY0(ω)dω,

H(Z) = 1
4π

∫ +∞
−∞ log(2πe)sZ(ω)dω

(19)

and the expression (18) is written as

CY0 =
1

4π

∫ +∞

−∞
log

sY0(ω)

sZ(ω)
dω. (20)

Analogously, one can obtain the capacity of the channel for the linear control system relatively
the perturbations P and N:

CP,N = H(Z)−H(P, N) (21)

and
H(P, N) =

1
4π

∫ +∞

−∞
log(2πe)S0,P,N(ω)dω

such that

CP,N =
1

4π

∫ +∞

−∞
log

sZ(ω)

S0,P,N(ω)
dω. (22)

Remark 2. It would be interesting to compare Formulas (20) and (22) with Formula (16) from [6]:

C =
∫

W
log

sm(ω)

sε(ω)
dω. (23)

for a channel capacity of the linear system in Figure 2.

                           
1970.     194,   5 

    621.391.23:621.391.28-29:62-506.3             
                       

 .  .       ,  .  .       

                                             
                                           

(                         .  .          1 1 IX 1969) 

         (*)                                                     -
   —       .                                                        
                                       (               )               
                          ,                                        
                                   ( . . .)                         -
                   .       -
                             -
                            
 . . .,                        - <p(tfcmlt)+nltl 
                           - ——**Q 
                .         -
     ,                      -
                            
                            -    - 1 

                             
                                                                 
                                          . 

         . 1                                                     -
      (      ,                           ) ; W(s) —              
                                  ; Wk(s) —-                     
                     . 

                                                   m(t)          -
                    n(t),                                     

 ( 0 — m ( 0 +n(t). ( 1 ) 

                          u(t); m(t), n(t)   u(t)                -
       ,           ,                                             -
                                                            .   -
                                                       ? ( ),      -
                 . 

                                ,                               
          . . .                                            ,       
                         

  (»/). =   (*/) IA{if), (2) 

    
D(if)=Sm(f) +Smn(f) -Smu{f)W{-if) -Sum(f)W(if) -

-Sun(f)W(if) + Su(f)\W(lf)\*; (3) 
A (if) = Sm (/) + Sn(f) + Su(f) I W(if) | 2 -

1029 

Figure 2. This is a figure from [5]. Here, W(p) denotes the transfer function of the operator object.
The signal m(t) with the perturbation signal n(t) form a function φ(t) on the input of a regulator given
by an operator Wk(p). The system should reproduce the “useful” signal m(t) as an output.

Remark 3. Here the “cross” notation of the diagram nodes means the same as the “addition” nodes notation in
Figure 1.

Here, sm(ω) and sε are spectral densities of the “useful” signal m(t) and the “error” signal ε(t)
correspondingly.

The integral should be calculated over the total frequency band W. In particular, if u(t) = 0 and
m and n are non-correlated, then

C =
∫

W
log

sm(ω) + sn(ω)

sn(ω)
dω. (24)

We assume that the perturbation n(t) has the spectral density with an additional “white noise”
spectral density: sn(ω) = s̃n(ω) + c2. We have from (24)

C =
∫

W
log

sm(ω) + s̃n(ω) + c2

s̃n(ω) + c2 dω. (25)
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The analog of the the balance relations (18) and (21) reads

H(n, m)−H(n, ε) = C = 1
W

∫
W

log
sm(ω) + s̃n(ω) + c2

s̃n(ω) + c2 dω.

The authors of [5] argue that the entropy quantityH(n, ε) is a characteristic of information lost
while the signal goes through the system of Figure 2, and the minimum of this loss is achieved when
c ≡ 0. When c→ ∞, the entropyH(n, ε)→ H(n, m) i.e., the “error” entropy tends to the entropy of
the “useful” signal and the channel capacity C goes to 0.

Remark 4. We should stress here that:

1. all signals are supposed to be stationary random Gaussian with zero expectation value;
2. the “optimality” solution in [5] was founded with the type “energy” constraint (3), which means in the

context the minimality condition of the second momentum (“dispersion”) for the error signal sε :

∫
W

sεdω =
∫

W

sm(s̃n + c2)

sm + s̃n + c2 dω = σ2
ε

3. The minimal value min σ2
ε is achieved when c = 0 and this condition shows that the “energy” and

informational criteria give the same result (compare with the similar conclusion for the case of the system
in Figure 1)

4. The independency condition (the signals m(t) and n(t) are non-correlated) can be released, and this leads
to the following generalization of capacity channel formula (24):

C =
∫

W
log

sm(sm + sn)

smsn + |smn|2
dω. (26)

3.2. Variational Problems for the Channel Capacity Functionals

Now, we need to substitute the spectral densities of all signals in Formulas (20) and (22) and, as a
result, obtain the following two channel capacity functionals:

CY0 =
1

4π

∫ +∞

−∞
log

sY0S0,r,φ

sPsN(sY0 +R2
0Sr,N,P)

dω (27)

and

CP,N =
1

4π

∫ +∞

−∞
log

sPsN(sY0 +R2
0Sr,N,P)

S0,P,NS0,r,φ
dω (28)

Remark 5. It is evident that the functional (28) generalizes the similar thing for the Y0 = 0 case

CP,N |Y0=0 =
1

4π

∫ +∞

−∞
log

sPsNR2
0Sr,N,P

S0,P,NS0,r,φ
dω (29)

whose extremum under conditions (5) are

Cmin
P,N |Y0=0 =

1
4π

∫ +∞

−∞
log

sPsNR2
0

S2
0,P,N

dω (30)

Remark 6. (One can straightforwardly check that this extremal value is a sum of the informational performances
(Q”0, Q”r) of the object and the regulator channels with closed loop–controllers outputs under the conditions (5):

Cmin,0
P,N |Y0=0 = (Q”0 + Q”r)|φ=φ0,Rr=R0

sP
SN

.
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These remarks definitely indicate that there are more general information–performance balance
relations and we start to discuss them.

Theorem 2. The functional (27) has the maximal value

Cmax
Y0

=
1

4π

∫ +∞

−∞
log

sY0

sN

[
1 +

sN

sY0 +R2
0sP

]
dω (31)

and the functional (28) has the minimal value

Cmin
P,N =

1
4π

∫ +∞

−∞
log

(sY0 +R2
0sP)sN

(sY0 + S0,P,N)S0,P,N
dω (32)

for the same set of extremals (14): φr = φ̂r := −φ0,

Rr = R̂r := R0
sP
sN
[1 +

sY0
R2

0sp
]

Proof of Theorem 2. Both functionals are degenerated in the same sense as above. Therefore, their
extremals are straightforwardly reduced to their Lagrangian densities’ usual minimax computations.
Similarly, to determine a character of obtained extremums, it is enough to verify the Hessian matrices
definiteness for these densities instead of computations of the second variation δ2(CY0) and δ2(CN,P).
We omit these routine but tedious computations which are absolutely similar to those in Theorem 1.

3.3. Informational Balance in the Linear Control System

The following theorem was obtained in a collaboration with Bukanov and Kublanov and was
announced in [7].

Theorem 3. There are two balance relations between the channel capacities:

1. For the channel capacity of the program Y0 and the informational rate in the control signal U in the “defect"
signal Z:

Cmax
Y0
− CY0 = Jgen

U,Z. (33)

2. For the channel capacity of perturbations P and N and the above informational rate:

CP,N − Cmin
P,N = Jgen

U,Z. (34)

Proof. Both identities are easily checked by manipulations with definitions of the corresponding
channel capacities and computed extrema. Let us verify the first one:

Cmax
Y0
− CY0 =

1
4π

∫ +∞

−∞
log

sY0

sN

[
1 +

sN

sY0 +R2
0sP()

]
dω− 1

4π

∫ +∞

−∞
log

sY0S0,r,φ

sPsN(sY0 +R2
0Sr,N,P)

dω

=
1

4π

∫ +∞

−∞
log

sP(sY0 +R2
0sP + sN)(sY0 +R2

0Sr,N,P)

S0,r,φ(sY0 +R2
0sP)

dω = Jgen
U,Z.

Remark 7. Using (20), one can recast Formula (17) re-writing the first balance relation (33) as

Jgen
U,Z =

1
4π

∫ +∞

−∞
log

sY0(ω)

sẐ(ω)
dω− 1

4π

∫ +∞

−∞
log

sY0(ω)

sZ(ω)
dω =

1
4π

∫ +∞

−∞
log

sZ(ω)

sẐ(ω)
dω.
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On other hand, it means that

Jgen
U,Z =

1
4π

∫ +∞

−∞
log(2πe)sZ(ω)dω− 1

4π

∫ +∞

−∞
log(2πe)sẐ(ω)dω = H(Z)−H(Ẑ)

which shows a similarity with the Brillouin “negentropy" principle which says that the system loses information
during a transition from a state with low entropy to a state with higher entropy. (We include a brief description
of this notion in the Discussion section below).

Naively speaking, the entropyH(Z) of the error signal of the linear system with any regulator is bigger
(“more chaos") than the error signal entropyH(Ẑ) for the case of the system with optimal regulator:

H(Ẑ) = H(Z)− Jgen
U,Z ≥ 0.

Similarly, the same result can be obtained from the second balance relation

CP,N − Cmin
P,N = H(Z)−H(P, N)−H(Ẑ) +H(P, N) = Jgen

U,Z.

One can imagine here the informational rate Jgen
U,Z as an “informational difference” between Z and Ẑ or as a

“Brillouin–Schrödinger negentropy” [12].

Remark 8. We should admit that the first balance relation (33) does not exist in the absence of the program
signal (Y0 = 0), while the second is a generalization of the previously described informational balance relation
(8): The LHS of the identity (34) under condition Y0 = 0 is:

(CP,N − Cmin
P,N)|Y0=0 =

1
4π

∫ +∞

−∞
log

sPsNR2
0Sr,N,P

S0,P,NS0,r,φ
dω− 1

4π

∫ +∞

−∞
log

sPsNR2
0

S2
0,P,N

dω

=
1

4π

∫ +∞

−∞
log
S0,P,NSr,N,P

S0,r,φ
dω = JUZ = (Jgen

UZ )|Y0=0. (35)

which is exactly the RHS of (34) in the same condition.

4. Entropy Rate Functional for the Linear Stationary Control System

Now, we shall discuss the entropy rate functional (9) for the pair of Gaussian stationary error
signal (Z) and the error signal with optimal regulator (Ẑ) in the linear control system above:

HZ,Ẑ =
1

4π

∫ +∞

−∞
(

sZ
sẐ
− 1− log

sZ
sẐ

)dω. (36)

Introduce the function F(X) := log(X) − 1 + 1
X of a positive argument X > 0 and study

its behavior.

4.1. Properties of the Function F(X) and Legendre–Fenchel Transformation

Lemma 1. The function F(X) has the following (almost) evident properties:

1. F(X) ≥ 0 and F(1) = 0.
2. Let X = u

v such that u > 0; v > 0, then

log(
u
v
) ≥ (1− v

u
);
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3. If u = u(ω) and v = v(ω) are integrable on (R, dµ(ω)) with some measure µ(ω) and∫
R,µ

udµ(ω) =
∫
R,µ

vdµ(ω)

then ∫
R,µ

u log(
u
v
)dµ(ω) ≥ 0;

4. Let Y = 1
X and F (Y) := F( 1

X ); then, the function F (Y) = Y− 1− log(Y) admits the Legendre–Fenchel
transformation F ∗(p) = − log(1− p).

Proof.

1. To prove the first positivity property of F(X), we split the half line {X ≥ 0} in two subsets:
{0 ≤ X < 1} and {X ≥ 1}. Start with the second subset: for 1 ≤ t ≤ X, we have 1

t ≥
1
X and

log X =
∫ X

1

dt
t
≥
∫ X

1

dt
X

=
1
X

∫ X

1
dt =

X− 1
X

= 1− 1
X

.

In the first subset, one has similarly − 1
t ≥ −

1
X if X ≤ t < 1 and

log X = −
∫ 1

X

dt
t
≥ −

∫ 1

X

dt
X

= 1− 1
X

.

2. Tautological corollary of the computations in (1).
3. Using the inequality (2), we obtain:∫

R,µ
u log(

u
v
)dµ(ω) ≥

∫
R,µ

u(1− v
u
)dµ(ω) = 0;

4. The Legendre–Fenchel transformation F ∗(p) of the function F (Y) exists because the function is
smooth and convex for Y > 0. The only critical point Ycrit = 1 with the critical valueF (Ycrit) = 0 is
obtained from 1− 1

Y = 0. By the definition (see, f.e. [13], we put p := 1− 1
Y and find Y(p) = 1

1−p .

Then, we find the Legendre-dual function from d
dp (F

∗(p)) = 1
1−p , F ∗(p) = − log(1 − p).

We shall check that it satisfies the duality relation

F ∗(p) = pY(p)−F (Y(p)) :

pY(p)−F (Y(p)) = p
1

1− p
− (

1
1− p

− 1− log(
1

1− p
)) = − log(1− p) = F ∗(p).

We note the famous Fenchel–Young inequality which reads in this case as

F (Y) +F ∗(p) ≥ Yp

which gives the evident inequality

1 + log[Y(1− p)] ≤ Y(1− p).
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4.2. Legendre Transformation Analogy for the Control System Functionals

We can observe that the Pinsker entropy rate functional (9) can be written in the form

Hξ,η =
1

4π

∫ +∞

−∞
(

sξ

sη
− 1− log

sξ

sη
)dω =

1
4π

∫ +∞

−∞
F (Y(ω))dω,

where Y(ω) := sξ (ω)

sη(ω)
. Then, the Legendre–Fenchel dual functional should be

1
4π

∫ +∞

−∞
F ∗(p(ω))dω,

with p(ω) = 1− 1
Y(ω = 1− sη(ω)

sξ (ω)
. Using the part 4 of the Lemma 1, one can compute

F ∗(p(ω)) = − log(1− p(ω)) = − log(
sη(ω)

sξ(ω)
) = log(

sξ(ω)

sη(ω)
) = log Y(ω).

Thus, we have obtained the following Legendre duality relation:

1
4π

∫ +∞

−∞
F (Y(ω))dω +

1
4π

∫ +∞

−∞
F ∗(p(ω))dω =

1
4π

∫ +∞

−∞
p(ω)Y(ω)dω.

Coming back to the Pinsker entropy rate functional Formula (9), one observes that the
duality implies

Hξ,η +
1

4π

∫ +∞

−∞
log
(

sξ(ω)

sη(ω)

)
dω =

1
4π

∫ +∞

−∞

(
sξ(ω)

sη(ω)
− 1
)

dω. (37)

Formula (37) expressed the duality relation between the entropy rate and the functional
1

4π

∫ +∞
−∞ log( sξ (ω)

sη(ω)
)dω for any pair of stationary Gaussian signals. Let us consider the case of the

Pinsker entropy rate for our control system (36), i.e., sξ(ω) = sZ(ω) and sη(ω) = sẐ(ω). In this case,
(37) and (36) give us the Legendre duality condition between the functionals:

HZ,Ẑ +
1

4π

∫ +∞

−∞
log
(

sZ(ω)

sẐ(ω)

)
dω =

1
4π

∫ +∞

−∞

(
sZ(ω)

sẐ(ω)
− 1
)

dω. (38)

Summing up the discussion in Section 4.2, one can formulate the following theorem:

Theorem 4. The Pinsker functional of the entropy rate of the error signal in the stationary linear control system
with respect to the error signal of this control system with the optimal by the informational criterion regulator
and the informational rate functional for these signals are in Legendre duality:

HZ,Ẑ + Jgen
U,Z =

1
4π

∫ +∞

−∞

(
sZ(ω)

sẐ(ω)
− 1
)

dω. (39)

Remark 9. We can also check that the the duality relation (37) can be easily generalized to the multidimensional
case for two n− dimensional stationary Gaussian processes ξ and η such that ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn)

and such that the pairs (ξ j, ηj) are pair-wise uncorrelated. Then, one can define n− dimensional analogues of
entropy rate and informational rate functionals:

Hξ,η =
1

4π

∫ +∞

−∞

[(
n

∑
j,k=1

sξ jξk (ω)s−1
ηjηk

(ω)

)
− n− log

det ‖sξ jξk (ω)‖
det ‖sηjηk (ω)‖

]
dω
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which can be simplified (because of the mutual independence of the signals ξ and η ) to

Hξ,η =
1

4π

∫ +∞

−∞

n

∑
j=1

(
sξ jξ j(ω)

sηjηj(ω)
− 1− log

sξ jξ j(ω)

sηjηj(ω)

)
dω, (40)

where ‖sξ jξk (ω)‖ (resp. ‖sηjηk (ω)‖) is the mutual spectral densities matrix of signal-components of ξ (resp.η)
and s−1

ηjηk
(ω) denotes the (jk) entry of the matrix ‖sηjηk (ω)‖.

We see that one can apply the Legendre duality Formula (37) to each summand of (40) and re-write it as

Hξ,η + Lξ,η =
1

4π

∫ +∞

−∞

n

∑
j=1

(
sξ jξ j(ω)

sηjηj(ω)
− 1

)
dω, (41)

where the functional

Lξ,η =
1

4π

∫ +∞

−∞
log

det ‖sξ jξk (ω)‖
det ‖sηjηk (ω)‖dω =

1
4π

∫ +∞

−∞

n

∑
j=1

log
sξ jξ j(ω)

sηjηj(ω)
dω

plays the role of the Pinsker informational rate functional (see chapters 10 and 11 in [2]) and for n = 1 coincides

with 1
4π

∫ +∞
−∞ log( sξ (ω)

sη(ω)
)dω.

We want to stress that our multidimensional considerations are purely formal. We do not discuss
the conditions of existence and finiteness for all formulas above and refer to [2,14] for all necessary
mathematical details. We also do not know if these multidimensional generalizations can immediately
apply to an optimal automatic control system problem, but we hope that such functional might be
useful in comparison with the method of multidimensional optimization where the minimum of the
error expectation value square and maximum of the information mean value criteria were used [15].

5. Discussion

The relationship between entropy and information was first discovered in the seminal work
of Szilard [16]. Later, in the works of Brillouin [17], the negentropy principle of information was
formulated, generalizing the second law of thermodynamics. According to this principle, both entropy
and information should be considered jointly and cannot be interpreted separately. Brillouin had
shown [18] that the definition of “information” leads to a direct connection between information
and the negative of entropy (here is the abbreviation “negentropy”). Every experiment consumes
negentropy (increases entropy) and yields information. The negentropy principle of information is a
generalization of Carnot’s principle in thermodynamics that Brillouin had formulated in the following
form: the amount of information contained in a physical system must be considered as a negative term
in the total entropy of this system. If a system is isolated, it fulfills Carnot’s principle in its generalized
form. According to this principle, the total entropy of the system does not decrease. Our Theorem 4 is
a good illustration of these energy-information principle.

The functional Lξ,η := 1
4π

∫ +∞
−∞ log

(
sξ (ω)

sη(ω)

)
dω enters in the Legendre duality relation (37) with

the entropy rate functional Hξ,η and has explicit interpretation in terms of the informational rate JZ,Ẑ
in the case of the control system. The Legendre balance relation predicts some thermodynamical
allusions going back to Gibbs thermodynamical potential relation:

S(E) + F(β) = βE,

which relates the Helmholtz free energy F to the entropy S, total energy E, and β = 1
T is inverse to

the temperature (the Boltzman constant is supposed to be 1 here). If we shall follow the initial idea of
Bukanov about a “similarity” of the informational rate functional Lξ,η with the Brillouin negentropy
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N (ρ) and the information gain or Kullback–Leibler divergence I(p, q) =
∫

ρ log ρdq which is “similar
(up to sign) to the differential entropy expression”:

N (ρ) = I(ξ) + I(p, q) = −
∫

ξ log ξdq + I(p, q) =
∫

log
ρ

ξ
dq

for Gaussian ξ, which has the same mean value as ρ. (notations and the statement from p. 15 of [9]),
then we should conclude that, in our case, the informational rate functional Jξ,η is rather a Legendre
dual to the entropy rate Hξ,η , though it plays a “role of Hamiltonian” while Hξ,η figured here as a
“Lagrangian”. Following the “mechanical and thermodynamical” allusions of [9], we could interpret the
results of our Theorems 1 and 2 as a (specified) example of the “principle of minimal gain information”
and the balance relations in Theorem 3 show the connection with Jaynes principle of maximum entropy.
It would interesting to give further interpretations in this line and to understand what the role of the
“partition function” Z is, which, in our context, should naively read

Lξ,η =
∫

log
sξ

sη
dω = −

∫
logZdω.

This question, together with more serious comprehension of appropriate Lagrangian or canonical
coordinates in these application approaches, would open a door to powerful invariant methods in the
theory of information control systems.

There are many other possible developments to study, but all of them look more traditional.
We could almost straightforwardly generalize our results using slightly more complicated cases
of the capacity channel formulas in comparison with the results of Petrov et al. for signals with
correlations, multidimensional systems generalizing the system in Figure 2, etc. The “physical
realization” conditions are also beyond the scope of this paper.
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Appendix A. Proof of the Theorem 1, Second Condition

δJgen
U,Z

δRr
=

1
4π

∫ +∞

−∞

δ

δRr

[
log(sY0 +R

2
0sP +R2

0R2
r sN)− logS0,r,φ

]
dω

=
1

4π

∫ +∞

−∞

[
sNRrR0

(sY0 +R2
0sP +R2

0R2
r sN)

− cos(φ0 + φr) +R0Rr

1 + 2R0Rr cos(φ0 + φr) +R2
0R2

r

]
dω.

Using the first condition of (14), one can re-write it as

1
4π

∫ +∞

−∞

[
sNRrR0

(sY0 +R2
0sP +R2

0R2
r sN)

− 1 +R0Rr

1 + 2R0Rr +R2
0R2

r

]
dω =

1
4π

∫ +∞

−∞

[
sNRrR0

(sY0 +R2
0sP +R2

0R2
r sN)

− 1
1 +R0Rr

]
dω =

1
4π

∫ +∞

−∞

[
sNRrR0 − (sY0 +R2

0sP)

(sY0 +R2
0sP +R2

0R2
r sN)(1 +R0Rr)

]
dω.
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Now, using the basic lemma of variational calculus, we obtain the second condition in (14):

sNRrR0 = sY0 +R
2
0sP.

Appendix B. Formulas for Transition Functions in Frequency Variables

We shall display for completeness reasons the formulas (from [1,7]) for transition functions of the
linear system in Figure 1 which we have used in computations of the spectral densities sU and sZ (12):

WZY0(jω) = −1
1+R0Rr

, WZN(jω) = −R0Rr
1+R0Rr

WZP(jω) = R0
1+R0Rr

, WUY0(jω) = −Rr
1+R0Rr

WUN(jω) = Rr
1+R0Rr

, WUP(jω) = R0Rr
1+R0Rr

.
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