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Abstract: This study examined the extreme learning machine (ELM) applied to the Wald test statistic
for the model specification of the conditional mean, which we call the WELM testing procedure. The
omnibus test statistics available in the literature weakly converge to a Gaussian stochastic process
under the null that the model is correct, and this makes their application inconvenient. By contrast,
the WELM testing procedure is straightforwardly applicable when detecting model misspecification.
We applied the WELM testing procedure to the sequential testing procedure formed by a set of
polynomial models and estimate an approximate conditional expectation. We then conducted
extensive Monte Carlo experiments to evaluate the performance of the sequential WELM testing
procedure and verify that it consistently estimates the most parsimonious conditional mean when the
set of polynomial models contains a correctly specified model. Otherwise, it consistently rejects all
the models in the set.

Keywords: conditional mean specification testing; omnibus test; gaussian process; extreme learning
machine; wald test statistic; functional regression; sequential testing procedure; consistent correct
model estimation

1. Introduction

Conducting data inference using correctly specified models is desirable for predicting future
observations. If models are misspecified, however, proper data inference cannot be conducted,
and predicting future observations may then involve an undesired bias. Because of this, previous
studies have developed methodologies to test the correct model assumptions. For example, in a
classical study, Ramsey [1] provides a test statistic for non-linearity. In another classical study,
Bierens [2] provides an omnibus model specification test statistic that detects arbitrary model
misspecification consistently. In addition to these works, a number of studies provide correct model
specification testing methodologies [3–7].

Despite the rapid development of correct model specification testing, researchers may still be
unable to obtain a correctly specified model and may have to predict future observations using
misspecified models. If all candidate models are misspecified by model specification tests, the model
with the lowest mean square error is typically chosen to forecast future observations, even if it is
known to be misspecified.

To address this concern, the present study provides a robust methodology to search for a correct
model in a systematic way. To do so, we developed a sequential testing procedure that combines
the model specification test statistic available in the previous literature with high-degree polynomial
models, so that a close approximation of the conditional mean equation can be consistently estimated.
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In previous studies, model specification testing using artificial neural networks (ANNs) are widely
applied because of their universal approximation property [8–10]. Cho, Ishida, and White [7] propose
an ANN-based quasi-likelihood ratio (QLR) statistic for testing neglected non-linearity that exploits the
generically comprehensively revealing (GCR) feature of the ANN-based test statistic and overcomes
the so-called twofold Davies’ [11,12] identification problem to obtain its null limit distribution as a
functional of a Gaussian stochastic process.

However, despite the theoretical efficacy of the QLR test statistic, it may not be convenient
for empirical applications. Its null limit distribution is dependent on the model scopes, so that the
asymptotic critical values are different from model to model. Cho, Phillips, and Seo [13] and Cho,
Huang, and White [14] note this inconvenience and define a Wald test statistic using a functional
regression, so that it follows a chi-squared distribution under the null hypothesis that the model is
correctly specified. Cho and White [15] further demonstrate that, if the extreme learning machine
(ELM) proposed by Huang, Zhu, and Siew [16] is combined with the Wald test statistic, its computation
can be efficiently performed in addition to being GCR. They refer to this as the Wald-ELM (WELM)
testing procedure.

The polynomial model is also widely applied for empirical applications. Its popularity lies in the
fact that it has a recursive structure and can uniformly approximate any continuous function. This
aspect makes it convenient to apply it to a sequential testing procedure. If a lower-degree polynomial
model is rejected by a proper testing procedure, we can consider its next higher-degree polynomial
model as another approximation and test model adequacy.

Previous studies also apply sequential testing procedures to polynomial models. Cho and
Phillips [17] develop a sequential testing methodology to test the null of a polynomial function to
identify the polynomial degree by extending the testing methodology of Baek, Cho, and Phillips [18].
Specifically, Baek, Cho, and Phillips [18] note that, if the QLR test statistic in Cho, Ishida, and White [7]
is applied to a linear model augmented by a power transformation, the twofold identification problem
is transformed into a trifold Davies’ [11,12] identification problem. They overcome this and derive the
null limit distribution of the QLR test statistic. Hence, they recommend using Hansen’s [19] weighted
bootstrap for empirical applications because the null limit distribution is associated with a Gaussian
stochastic process as in the twofold identification problem. Specifically, the null limit distribution is
represented by the maximum of the squared Gaussian process, so that the asymptotic critical values are
different from model to model, making its application inconvenient for obtaining asymptotic critical
values. Cho and Phillips [17] extend the QLR test statistic to test the null of the polynomial function
hypothesis and obtain its null limit distribution by overcoming the multifold identification problem,
which is further developed from the trifold identification problem in Baek, Cho, and Phillips [18].
In addition to this derivation, they apply the null limit distribution to the sequential testing procedure
to search for a close approximation of the conditional mean function. For practical applications of the
sequential testing procedure, they also recommend applying the weighted bootstrap as in Baek, Cho,
and Phillips [18].

In this study, we applied the WELM test statistic to the sequential testing procedure. This statistic
is convenient for applications, as well as possesses the GCR feature, so that it can be employed in
this study. In addition, the WELM test statistic has features not shared by the test statistics used
in the literature. First, the null limit distribution is obtained as a chi-squared distribution, so that
traditional theory on the sequential testing procedure can be applied [20]. Hence, we do not need
to apply approximation theory on the probability of the maximum of a squared Gaussian process
as for the QLR test statistic. Furthermore, as we discuss below, the sequential testing procedure is
conducted by reducing the level of significance in response to a rise in the sample size, so that the
degree estimation error reduces to zero asymptotically. As the null limit distribution is chi-squared,
we can easily choose the plans for the level of significance without satisfying the additional condition
for the application of the QLR test statistic that the level of significance slowly converges to zero. This
condition does not have to be imposed in our sequential testing procedure. Second, the conditioning
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variable does not have to be positively valued as required by Cho and Phillips [15]. Even when the
conditioning variable is negatively valued, the sequential testing procedure using the WELM test
statistic is directly applicable.

The rest of this paper is organized as follows. Section 2 focuses on the polynomial model and
provides the null limit distribution of the WELM test statistic, along with a literature review. Section 3
applies the WELM test statistic to the sequential testing procedure and provides the theoretical
results. Section 4 discusses the extensive simulations conducted using the WELM test statistic and
sequential testing procedure. We consider three data-generating processes (DGPs) and examine how
the sequential testing procedure responds to various plans for the level of significance. Section 5
provides concluding remarks and summarizes the main findings. All the mathematical proofs are
presented in the Appendix A.

2. Method 1: Application of the WELM Test to the Polynomial Model

In this section, we first describe the main motivation of this study in relation to the development
of the literature in terms of model specification testing. To fix our idea, we focus on the WELM
test statistic applied to the polynomial model. Our primary interest is in developing a statistical
methodology to estimate the conditional mean equation of time-series observations. We therefore
suppose that data are weakly dependent observations as follows:

Assumption 1. [DGP] Let (Ω,F ,P) be a complete probability space and let k ∈ N. Let {(yt, xt, d′t)′ : Ω 7→
R2+k : t = 1, 2, . . . } be a strictly stationary and absolutely regular process with mixing coefficients βτ such
that for some ρ > 1, ∑∞

t=1 τ2ρ/(ρ−1)βτ < ∞ and xt is strictly non-negative with probability 1.

Here, yt and zt := (xt, d′t)′ are serially dependent target and explanatory variables, respectively,
and zt can contain the lagged target variables, so that dynamic misspecification can be removed
from our consideration. Specifically, researchers are concerned about possible non-linearity with
respect to xt when they attempt to approximate the conditional mean equation using the p-th-degree
polynomial function:

E[yt|Ft] ≈ xt(p)′α∗(p) + d′tη∗,

where xt(p) := (1, xt, ..., xp
t )
′, θ∗(p) := (α∗(p)′, η∗)

′ is the linear coefficient of (x(p)′, d′t)′, and Ft is the
smallest σ-field generated by (zt, yt−1, zt−1, yt−2, . . .).

The polynomial functions are uniformly dense and this motivates us to estimate the conditional
mean using the above specification. The Stone-Weierstrass theorem implies that continuous functions
are uniformly approximated by polynomial functions with high levels of degrees, so that the above
polynomial function becomes a successful approximation of the conditional mean if the degree p is
sufficiently large.

The current study seeks to provide a statistical method to estimate the degree of the polynomial
function in the most parsimonious manner. The non-local behavior of a high-degree polynomial
model is understood as one of the drawbacks of estimating the high-degree polynomial model using
regression. That is, the outlier of xt can substantially affect the estimated forecast, and this can reduce
the utility of the polynomial model estimation [21].

We accommodate this aspect by estimating the polynomial using the most parsimonious model.
Specifically, we estimate the polynomial degree p as small as possible, and for this purpose, we provide
a sequential testing methodology described in the next section. In particular, our testing approach is
based upon the GCR property of an ANN model and ELMs.

To describe our testing procedure using the ELM applied to the GCR property, we note that
Stinchcombe and White [10] show that when the regression model is estimated by attaching an analytic
function to a linear model, the linear coefficient consistently estimates a non-zero coefficient if and only
if the regression model is misspecified for the conditional mean equation; the authors refer to this as
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the GCR property. Specifically, the following assumption gives the model advocated by Stinchcombe
and White [10]:

Assumption 2. [Model] LetMp := { f (·; θ(p), λ, δ) : (θ(p), λ, δ) ∈ Θ(p)×Λ× ∆} be specified as the
alternative model, where

f (zt; θ(p), λ, δ) := xt(p)′α(p) + d′tη+ λΨ(δxt)

and Ψ(·), δ, and λ, are the additional hidden unit constructed by an analytic function, input-to-hidden weight,
and hidden-to-output weight, respectively.

Here, if we let λ∗ be the probability limit of the parameter estimated by regression, the GCR property
implies that the estimated coefficient for λ∗ is consistently different from zero if the p-th-degree
polynomial model is misspecified for the conditional mean. Therefore, we can detect whether the
p-th-degree polynomial model is correct by testing whether the coefficient of the hidden unit is zero.
That is, if the estimated hidden-to-output weight is statistically different from zero, it means thatMp

does not approximate the model sufficiently well. Otherwise,Mp becomes a successful approximation
of the conditional mean, motivating us to rephrase the following hypotheses:

H0 : For some θ∗(p) ∈ Θ(p), P[E(yt|Ft) = xt(p)′α∗(p) + d′tη∗] = 1 versus

H1 : For every θ(p) ∈ Θ(p), P[E(yt|Ft) = xt(p)′α(p) + d′tη] < 1

into the following equivalent hypotheses:

H′0 : λ∗ = 0 versus H′1 : λ∗ 6= 0

in their framework. This implies that we can let our null model be

M0
p := { f 0(·; θ(p)) : θ(p) ∈ Θ(p)}

and f 0(zt; θ(p)) := xt(p)′α(p) + d′tη for p = 1, 2, . . .. In what follows, we let Ψt(δ) denote Ψ(δxt) for
notational simplicity.

This aspect now implies that the GCR property can be exploited by testingH′0 againstH′1, and we
need to test whether the input-to-output weight is zero.

We now provide the regularity conditions for the regular behavior of the test statistics
provided below:

Assumption 3. [Regularity] (i) (∆,D,Q) and (Ω× ∆,F ×D,P ·Q) are complete probability spaces. (ii)
For p ∈ N, Θ(p) is a non-empty compact and convex set, and Λ and ∆ are non-empty compact and convex
subsets such that 0 is an interior element of Λ. (iii) For p ∈ N, ∑n

t=1 wt(p)wt(p)′ is positive definite with
probability 1 and E[wt(p)wt(p)′] is positive definite, where wt(p) := (xt(p)′, d′t)′. (iv) Ψ : R 7→ R is a
non-polynomial analytic function. (v) E[y2

t ] < ∞, E[x2p
t ] < ∞, and there is a sequence of stationary and ergodic

random variables {st} such that (v.a) |ut| ≤ st, (v.b) supδ∈∆ |Ψ(δxt)| ≤ st, (v.c) (
∫

∆ Ψt(δ)dQ(δ))2 ≤ st,
(v.d) supδ∈∆ |(∂Ψ(δxt))/(∂δ)| ≤ st, and (v.e) for some κ ≥ 4ρ, E[|st|κ ] < ∞.

Assumptions 1–3 are obtained by adapting the regularity conditions in Cho and White [15] to the
current polynomial model structure. Their model assumes non-linearity with respect to the parameters,
and we further simplify their assumptions by imposing the polynomial model structure used herein,
so that the limit results provided below can be obtained as corollaries of their theorems.

Indeed, testingH′0 : λ∗ = 0 is irregular because it involves Davies’ [11,12] identification problem.
That is, if λ∗ = 0, δ∗ is not identified, δ∗ is identified only when λ∗ 6= 0, so that the null limit distribution
of the t-test statistic testingH′0 becomes different from the standard normal distribution. The null limit
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distribution is found to be characterized by a Gaussian stochastic process indexed by the unidentified
parameter δ. That is, if we let tn be the standard t-test statistic testingH′0, it follows that

tn ⇒ sup
δ∈∆
G(δ)

underH′0 and Assumptions 1–3 , where G(·) is a Gaussian stochastic process such that for every δ ∈ ∆,
E[G(δ)] = 0, and for each (δ, δ′),

E[G(δ)G(δ′)] = ρ(δ, δ′)

{r(δ, δ)}1/2{r(δ′, δ′)}1/2

with
ρ(δ, δ′) = E[u2

t Ψ∗t (δ)Ψ
∗
t (δ
′)] and r(δ, δ′) = E[u2

t ]E[Ψ∗t (δ)Ψ∗t (δ′)].

Here, we let Ψ∗t (δ) := Ψt(δ)−E[Ψt(δ)wt(p)′]E[wt(p)wt(p)′]−1wt(p), and ut := yt −E[yt|Ft].
This limit distribution makes it inconvenient to apply the standard t-test statistic when testingH′0

againstH′1. The limit distribution is affected by too many factors in terms of the data and model. If the
error ut is conditionally homoscedastic, the associated Gaussian process is a standard Gaussian process
in the sense that for every δ ∈ ∆, G(δ) ∼ N(0, 1). However, this does not hold if ut is conditionally
heteroscedastic. Furthermore, there are many candidate analytic functions for Ψ(·). As Cho and
White [7] highlight, the previous literature chooses different functions for Ψ(·), namely the logistic
cumulative distribution function in White [22], exponential function in Bierens [2] and ridgelet function
in Candés [23], among others. Different covariance kernel structures are obtained for the different
analytic functions selected for Ψ(·), and this leads to different null limit distributions for the t-test
statistic. Empirical researchers applying the standard t-test statistic have to apply different critical
values to different models and data, making it more difficult to obtain asymptotic critical values than
the test statistic value itself. This aspect also analogously applies to other standard test statistics, such
as Wald, Lagrange multiplier, and QLR.

To overcome this, we use another testing method that applies the ELM proposed by Huang,
Zhu, and Siew [16]. Cho and White [15] note that the functional ordinary least squares (FOLS)
estimator suggested by Cho, Huang, and White [14] and Cho, Phillips, and Seo [13] can be exploited
to yield a straightforward statistic to test H′0 against H′1 by applying the ELM. As we detail below,
the FOLS estimator has a limit distribution involved with integration, which lets the estimator follow
a normal distribution asymptotically instead of being characterized by the Gaussian process. Using
this property, we can convert the FOLS estimator into a Wald test statistic to follow a chi-squared
distribution asymptotically under the null hypothesis. Here, the ELMs are exploited to compute the
involved integrations.

Specifically, first, for each δ, E[utΨt(δ)] = 0 under H0 because Ψt(δ) := Ψ(δxt) is measurable
with respect to Ft and ut is a martingale difference sequence from the fact that ut := yt −E[yt|Ft], so
that E[ut|Ft] = 0. This implies that, if Ψt(δ) is regressed against (1, ut), the estimated coefficient of ut

has to be zero irrespective of δ. Therefore, instead of testingH′0 againstH′1, we opt to test

H′′0 : β∗(·) ≡ 0 vs H′′1 : β∗(·) 6= 0,

where for each δ ∈ ∆, [
α∗(δ)

β∗(δ)

]
:=

[
1 E[ut]

E[ut] E[u2
t ]

]−1 [
E[Ψt(δ)]

E[utΨt(δ)]

]
.
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Here, E[ut] = 0 and thus ut is a martingale difference sequence. Nevertheless, many of the entities on
the right side are unknown to the researcher, necessitating the estimation of each expectation by its
sample analog: for each δ ∈ ∆,[

α̂n(δ)

β̂n(δ)

]
:=

[
1 ∑n

t=1 ût

∑n
t=1 ût ∑n

t=1 û2
t

]−1 [
∑n

t=1 Ψt(δ)

∑n
t=1 ûtΨt(δ)

]
,

where ût is the regression residual obtained fromM0
p, namely

ût := yt −wt(p)′
(

n

∑
t=1

wt(p)wt(p)′
)−1 n

∑
t=1

wt(p)yt,

so that it also follows that ∑n
t=1 ût ≡ 0 and consistently estimates ut underH0. As there are a continuum

of δs in ∆, Cho and White [15] integrate the above estimators using an adjunct probability measure
Q(·) and obtain the following limit distribution:[ √

n
∫

∆(α̂n(δ)− α∗(δ))dQ(δ)√
n
∫

∆ β̂n(δ)dQ(δ)

]
⇒
[

1 0
0 E[u2

t ]

]−1 [ ∫
∆ G1(δ)dQ(δ)∫
∆ G2(δ)dQ(δ)

]
(1)

underH0 and Assumptions 1–3, where Q(·) is an adjunct probability measure defined on ∆ (which is
selected by the researcher), and G1(·) and G2(·) are two independent Gaussian processes such that for
each δ ∈ ∆, E[G1(δ)] = 0 and E[G2(δ)] = 0, and for each δ and δ′ ∈ ∆,

E[G1(δ)G1(δ
′)] = τ(δ, δ′) := E[Ψt(δ)Ψt(δ

′)]−E[Ψt(δ)]E[Ψt(δ
′)], and E[G2(δ)G2(δ

′)] = ρ(δ, δ′).

This null limit distribution is indeed obtained by following the limit distribution theory of the
FOLS estimator in Cho, Huang, and White [14] and Cho, Phillips, and Seo [13], in which they test
the population mean function of functional data by estimating a parametric model using the FOLS
estimator. More precisely, the FOLS estimator is obtained by minimizing the following functional
mean squared errors:

Qn(γ, ξ) :=
1

2n

n

∑
t=1

∫
∆
(Ψt(δ)− γ− ξût)

2dQ(δ)

with respect to γ and ξ. If we let (γ̂n, ξ̂n) denote the FOLS estimator minimizing Qn(·, ·), it now
follows that[

γ̂n

ξ̂n

]
=

[
1 ∑n

t=1 ût

∑n
t=1 ût ∑n

t=1 û2
t

]−1 [
∑n

t=1
∫

∆ Ψt(δ)dQ(δ)

∑n
t=1
∫

∆ ûtΨt(δ)dQ(δ)

]

a.s.→
[

γ∗
ξ∗

]
:=

[
1 0
0 E[u2

t ]

]−1 [ ∫
∆ E[Ψt(δ)]dQ(δ)∫

∆ E[utΨt(δ)]dQ(δ)

]

under Assumptions 1–3 , leading to that[ √
n(γ̂n − γ∗)√
n(ξ̂n − ξ∗)

]
⇒
[

1 0
0 E[u2

t ]

]−1 [ ∫
∆ G1(δ)dQ(δ)∫
∆ G2(δ)dQ(δ)

]
.

This limit distribution is now identical to that in (1), and ξ∗ = 0 underH0.
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Based on the FOLS estimator, Cho and White [15] test the null hypothesis using the Wald
test statistic. Integrating Gaussian processes produces a normally distributed random variable,
implying that [ ∫

∆ G1(δ)dQ(δ)∫
∆ G2(δ)dQ(δ)

]
∼ N

[(
0
0

)
,

(
σ2

γ 0
0 σ2

ξ

)]
,

where
σ2

γ :=
∫

∆

∫
∆

τ(δ, δ′)dQ(δ)dQ(δ′) and σ2
ξ :=

∫
∆

∫
∆

ρ(δ, δ′)dQ(δ)dQ(δ′).

This further implies that[ √
n
∫

∆(α̂n(δ)− α∗(δ))dQ(δ)√
n
∫

∆ β̂n(δ)dQ(δ)

]
A∼ N

[(
0
0

)
,

(
σ2

γ 0
0 σ2

ξ /σ2
u

)]
(2)

underH0, where σ2
u := E[u2

t ], and the null limit distribution of the FOLS estimator now motivates us
to construct the following Wald test statistic:

Wn := n

(
σ̂2

u,n

σ̂2
ξ,n

)(∫
∆

β̂n(δ)dQ(δ)

)2
,

which follows a chi-squared distribution with one degree of freedom underH′′0 and Assumptions 1–3,
where σ̂2

ξ,n and σ̂2
u,n are consistent estimators of σ2

ξ and σ2
u , respectively. Under H′′1 ,

∫
∆ β∗(δ)dQ(δ) is

not necessarily equal to zero, and we can expect power for this test statistic from this aspect. The test
statistic is defined following Wald’s [24] test principle. Owing to its trivial null limit behavior, its
empirical applicability is more straightforward than other test statistics requiring extra efforts by
the researcher to obtain the asymptotic critical values, namely the QLR test statistic in Baek, Cho,
and Phillips [18] and Cho and Phillips [17].

Nevertheless, the burden of computing the Wald test statistic can be immense because of the
involved integrations. To compute the statistic, it is thus necessary to calculate the integration of Ψt(·)
for each t, and if n is large, the involved computational burden can be huge.

Cho and White [15] recommend resolving this issue by applying the ELM proposed by Huang,
Zhu, and Siew [16]. That is, if we let {δi : i = 1, 2, . . . , m} be a set of identically and independently
distributed (IID) random variables following the Q distribution, it follows that

Ψ̄t,m :=
1
m

m

∑
i=1

Ψt(δi)
a.s.→
∫

∆
Ψt(δ)dQ(δ)

by the law of large numbers, so that the FOLS estimator can be well approximated by[
γ̂m,n

ξ̂m,n

]
:=

[
1 ∑n

t=1 ût

∑n
t=1 ût ∑n

t=1 û2
t

]−1 [
∑n

t=1 Ψ̄t,m

∑n
t=1 ûtΨ̄t,m

]

if m is sufficiently large. To implement this plan, we formally assume the following condition.

Assumption 4 [ELM] {δj} is a sequence of IID random variables defined on (∆,D,Q).

Then, we can expect that

Wm,n := nσ̂2
n

(
ξ̂2

m,n

σ̂2
ξ,m,n

)
A∼ X 2

1
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underH′′′0 and Assumptions 1–4, where

σ̂2
ξ,m,n :=

1
n

n

∑
t=1

û2
t Ψ̄∗2t,m,n and

Ψ̄∗t,m,n := Ψ̄t,m −
(

1
n

n

∑
t=1

Ψ̄t,mwt(p)

)(
1
n

n

∑
t=1

wt(p)wt(p)′
)−1

wt(p).

The only difference betweenWn andWm,n is in the fact that ξ̂m,n is used to estimate
∫

∆ β̂n(δ)dQ(δ).
Following Cho and White [15], we also refer to this as the WELM test statistic.

Cho and White [15] show by simulation that the null distribution of the WELM test statistic is
well approximated by the chi-squared distribution by letting n and m be sufficiently large when their
null model is the first-order autoregressive model. In addition, they verify that the WELM test statistic
displays respectful power.

Before moving onto the next section, we collect the main claims in this section into the
following lemma.

Lemma 1. Given Assumptions 1–4, (i)Wn
A∼ X 2

1 under H′′0 ; and for any positive sequence {cn} such that

cn = o(n), if
∫

∆ β∗(δ)dQ(δ) 6= 0, P(Wn > cn) → 1 under H′′1 ; and (ii)Wm,n
A∼ X 2

1 under H′′0 as m and
n → ∞; and for any positive sequence {cn} such that cn = o(n), P(Wm,n > cn) → 1 under H′′1 as m and
n→ ∞.

Lemma 1(i and ii) are provided by Cho, Huang, and White [14] and Cho and White [15], respectively,
in a general context, but we provide their proofs in the Appendix A to fit the current context.

3. Method 2: Sequential WELM Testing Procedure

In this section, we examine the sequential testing procedure combined with the WELM test
statistic. The WELM test statistic developed by Cho and White [15] focuses on specification testing. We
develop a testing methodology to estimate the most parsimonious polynomial model by combining
the WELM test statistic with a sequential testing procedure.

To fix our idea on the sequential testing procedure, we first provide our model. The model
in Assumption 2 assumes a p-th-degree polynomial model, and we now suppose that there are p̄
polynomial models altogether:

M( p̄) := {Mp : p = 1, 2, . . . , p̄} and M0( p̄) := {M0
p : p = 1, 2, . . . , p̄},

so thatM( p̄) andM0( p̄) are the sets of the alternative and null models, respectively. These model
sets encompass the models in Assumption 2 as special cases. That is,Mp andM0

p in Assumption 2
are elements ofM( p̄) andM0( p̄), respectively.

The most parsimonious model, which we seek to estimate using a sequential testing procedure,
is obtained by testing smaller models against larger models sequentially. Specifically, the following
procedure is proposed as our sequential testing procedure:

Step 1: We testM0
1 againstM1 using the WELM test statistic. IfM0

1 cannot be rejected at the level
of significance α, we stop the sequential testing procedure and conclude that the conditional
mean is linear with respect to xt. Otherwise, we move onto the next step. The regression
residual is computed by regressing yt on (1, xt) when computing the WELM test statistic.

Step 2: We testM0
2 againstM2 using the WELM test statistic. IfM0

2 cannot be rejected at the level
of significance α, we stop the sequential testing procedure; otherwise, we move onto the next
step. In this way, we continue our testing procedure until we reach p = p̄. As in the first step,
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the regression residual is computed by regressing yt on (1, xt, . . . , xp
t ) to compute the WELM

statistic, which testsM0
p againstMp for p = 2, 3, . . . , p̄− 1.

Step 3: We testM0
p̄ againstM p̄ using the WELM test statistic. IfM0

p̄ cannot be rejected, we stop the
sequential testing procedure to conclude that E[yt|Ft] is sufficiently well approximated by
M0

p̄; otherwise, we conclude thatM0( p̄) is entirely misspecified for E[yt|Ft].

Using this procedure, the most parsimonious and correct model is consistently detected. For a
specific discussion, for some α∗(p) and η∗, let p∗ be defined as

p∗ := min{p ∈ N : E[yt|Ft] = xt(p)′α∗(p) + d′tη∗}.

Note that p∗ is the smallest polynomial degree such that the conditional mean is equal to the
conditional mean. If p > p∗, the coefficients of degrees greater than p∗ must be zero. Therefore, ifM0

p∗
can be estimated, the most parsimonious polynomial model can be estimated, and the sequential
testing procedure described above is designed to estimate p∗. The WELM testing procedure has the
GCR property [10], and the sequential testing procedure starts model testing from the smallest model
to larger ones. Therefore, if the lower-degree polynomial model is misspecified for the conditional
mean, it will be consistently rejected by the WELM test statistic, so that we can expect to estimate the
most parsimonious correct model using the sequential testing procedure. From this result, we obtain
the following corollary.

Corollary 1. Given Assumption 1, if Assumptions 2–4 hold for each p ∈ P := {1, 2, . . . , p̄} and p∗ ∈ P,
for any ε > 0, limn→∞ P(| p̂n(α)− p∗| > ε) = α, where p̂n(α) is the polynomial degree estimator obtained by
applying the WELM test statistics to the sequential testing procedure with the level of significance α.

Corollary 1 implies that the degree estimator p̂n(α) has a consistent estimation error equal to
the level of significance α; hence, if this estimation error is not removed from the above procedure,
the degree estimator is not consistent for p∗.

Further, the significance level α is selected by the researcher. We can let α be dependent on the
sample size n, so that, if αn → 0 as n→ ∞, the degree estimation error can be allowed to converge to
zero, leading to a consistent estimator. We contain this result in the following theorem.

Theorem 1. Given Assumption 1, if Assumptions 2 and 3 hold for each p ∈ P := {1, 2, . . . , p̄}, p∗ ∈ P,
and αn = 1− C(cn) such that for some δ ∈ (0, 1), cn = O(nδ), then for any ε > 0, limn→∞ P(| p̂n(αn)−
p∗| > ε) = 0, where C(·) is the chi-squared distribution function with one degree of freedom.

The results in Corollary 1 and Theorem 1 correspond to the results using the sequential testing
procedure in the literature. Hosoya [20] examines the sequential testing procedure for a set of models
nested by larger models using the likelihood ratio test statistic, so that the likelihood ratio test statistics
can be sequentially applied using the chi-squared null limit distributions. Nevertheless, the models
assumed by Hosoya [20] do not have the identification problem that we examine herein. Theorem 2
of Cho and Phillips [17] also provides a result analogous to Theorem 1 of the current study, but their
conditions are more relaxed in the following senses. First, they apply the QLR test statistic for their
sequential testing problem, which compares the mean square errors obtained from the null and
alternative models such that the alternative model is constructed by letting Ψ(δxt = xδ

t . They show
that a multifold identification problem exists under the null that the conditional mean is correctly
specified by the polynomial model. Therefore, their QLR test statistic weakly converges to a functional
of a Gaussian stochastic process. Consequently, the null limit distribution of their test statistic does
not follow a chi-squared distribution. The null limit distribution is obtained using the weighted
bootstrapping proposed by Hansen [19], making its application inconvenient. Second, the particular
form of power transformation for Ψt(·) restricts their applications. If xt is negatively valued, it
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may not be properly defined. Note that xδ
t = exp(δ log(xt)), which is defined only when xt > 0,

so that the application of their methodology is restrictive if xt can be negatively valued. Finally,
the level of significance αn is assumed to slowly converge to zero relative to the convergence rate
herein. They require that log(αn)/n→ 0 in addition to αn → 0, whereas the latter is only assumed in
Theorem 1. This requirement is imposed mainly because the null limit distribution of the QLR test
statistic is characterized by the maximum of the squared Gaussian process. The tail distribution of the
maximum is approximated by associating it with that from the squared fractional Brownian motion
using the Slepian inequality. log(αn)/n→ 0 is required to yield a sequence of critical values uniformly
dominated by those from the squared fractional Brownian motion. On the contrary, our sequential
testing procedure does not need to satisfy this additional condition.

4. Results: Monte Carlo Simulations

In this section, we illustrate the sequential WELM testing procedure by conducting Monte Carlo
simulations using stationary time-series observations.

4.1. Linear Function and Sequential Testing Procedure

Without loss of generality, we first suppose the following dynamic and stationary time-series DGP:

yt = α0∗ + α1∗xt + η∗yt−1 + εt,

where xt = φ∗xt−1 + ut, (εt, ut) ∼ IID N(0, σ2
∗ I2), y0 ∼ N(0, σ2

y ), x0 ∼ IID N(0, σ2
x), and t = 1, 2, ..., n

such that |φ∗| < 1 and η∗| < 1. The last two inequality conditions are imposed for the stationarity of
the data.

Given this DGP condition, we let our model be constructed by polynomial models. We first
consider a linear model as the first-degree polynomial model. For this purpose, we let the explanatory
variable vector xt(p) be simply xt, so that p = 1, and we also let dt be the lagged dependent variable
yt−1. Therefore, if we let θ = (α1, α2, η)′, the null model M0

1 becomes {Φ(·, ) : θ ∈ Θ}, where
Φ(Xt, θ) := α0 + α1xt + ηyt−1. For our alternative model, we let the exponential function be Ψ(·),
so that

M1 := { f (·; θ, λ, δ) : (θ, λ, δ) ∈ Θ×Λ× ∆} and

f (Xt; θ, λ, δ) := α0 + α1xt + ηyt−1 + λ exp(δxt)

such that Λ := [−λ̄, λ̄] and ∆ := [δ, δ̄]. Next, we compute the WELM test statistic Ŵn,m by first
approximating Ψ̄m,t :=

∫
∆ Ψ(X′tδ)dQ(δ) using Ψ̄m,t := m−1 ∑m

i=1 exp(δxt) and next by letting wt(1) :=
[1, xt, yt−1]

′, where we suppose that Q is a probability measure uniformly distributed on ∆ =
[
δ, δ̄
]
.

This linear model is correctly specified for the DGP. Therefore, we should expect that the WELM test
statistic rejects this model α× 100% asymptotically when the level of significance is α.

Next, we extend the model scope to higher-degree polynomial models. For this purpose, we
further let xt(p) := (1, xt, x2

t , ..., xp
t ) to specify the following null and alternative models:

M0
p = {α0 + α1xt + α2x2

t + · · ·+ αpxp
t + ηyt−1 : θ := (α0, . . . , αp, η) ∈ Θ(p)}, and

Mp = {α0 + α1xt + α2x2
t + · · ·+ αpxp

t + ηyt−1 +λ exp(δxt) : θ := (α0, . . . , αp, η) ∈ Θ(p), λ ∈ Λ, δ ∈ ∆}.

Given this, we further let wt(p) := [1, xt, x2
t , . . . , xp

t , yt−1]
′ to compute the WELM test statistic to

test the p-th-degree polynomial model. If p = 1, the WELM test statistic is the same as that obtained
using the linear model. For p = 2, 3 and p̄ = 4, the null modelsM0

p are correctly specified, so that the
WELM test statistics are also expected to reject the null model α× 100% asymptotically. Through this,
we construct the following sets of alternative and null models:

M(4) := {Mp : p = 1, 2, . . . , 4} and M0(4) := {M0
p : p = 1, 2, . . . , 4}
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to apply the sequential testing procedure.
For this DGP and the models, we conduct simulations and report the simulation results in

Table 1, which are obtained by applying the sequential testing procedure. We generate data by letting
(α1∗, η∗, φ∗, σ2

∗) = (0.5, 0.5, 0.5, 1.0) and also let the levels of significance α be 10%, 5%, and 1%. Given
these simulation environments, we examine the empirical rejection rates of the WELM test statistic for
n = 50, 100, 200, 500, 1000, 2000, and 5000. We also let m = 5000, and the total number of experiments
is 5000. In the Supplement, we provide the URL address containing this simulation code made in R
language.

The simulation results can be summarized as follows. First, the sequential testing procedure stops
mostly at the first step, which implies that the sequential WELM test identifies the correct degree of the
unknown polynomial function correctly. More specifically, as the sample size n increases, the WELM
test statistic detects the linear model as the correct model approximately (1− α)× 100%. This aspect is
observed irrespective of the sample size, so that we can expect that the WELM test statistic controls the
type-I error precisely; hence, the most parsimonious correct model can be efficiently estimated. Second,
even when the sequential testing procedure estimates the models whose polynomial degrees are
greater than unity, most of the selected models are quadratic models. This implies that the sequential
testing procedure has a strong tendency to select the next most parsimonious model for the conditional
mean function. As a result, selected models are mostly linear or quadratic functions. Third, as the
level of significance α decreases, more precise estimation results are delivered from the experiments.
However, this result in another way implies that the estimation error cannot be eliminated altogether
as long as the level of significance is fixed.

Table 1. Estimated polynomial degrees using the sequential Wald extreme learning machine (WELM)
testing procedure (in percent). Number of replications: 5000. This table reports the proportion of
estimated polynomial degrees using the sequential WELM testing procedure. DGP: yt = α1∗xt +

η∗yt−1 + εt, where xt = φ∗xt−1 + ut, (x0, y0) ∼ IID N(0, I2), (εt, ut) ∼ IID N(0, σ2
∗ I2), δi ∼ IID

U(0, 1), and (α1∗, η∗, φ∗, σ2
∗ ) = (0.5, 0.5, 0.5, 1.0). Here, the given hypotheses are provided as follows:

H(1)
0 : E[yt|xt, yt−1] = θ0∗ + θ1∗xt + θy∗yt−1; H(2)

0 : E[yt|xt, yt−1] = θ0∗ + θ1∗xt + θ2∗x2
t + θy∗yt−1;

H(3)
0 : E[yt|yt−1] = θ0∗ + θ1∗xt + θ2∗x2

t + θ3∗x3
t + θy∗yt−1; and H(4)

0 : E[yt|xt] = θ0∗ + θ1∗xt + θ2∗x2
t +

θ3∗x3
t + θ4∗x4

t + θy∗yt−1. We further let Ψ(xtδ) = exp(xtδ) to compute the WELM test statistic.

Nominal Level (%) p\n 50 100 200 500 1000 2000 5000

10%

1 89.88 89.82 89.48 90.36 89.94 89.92 89.70
2 9.02 9.04 8.78 8.10 8.12 7.72 7.90
3 0.94 1.02 1.66 1.46 1.66 2.10 2.00
≥4 0.16 0.12 0.08 0.08 0.28 0.26 0.40

5%

1 96.12 95.92 96.44 95.5 94.4 95.24 95.18
2 3.6 3.84 3.38 4.1 4.98 4.18 4.16
3 0.28 0.22 0.18 0.34 0.56 0.5 0.54
≥4 0 0.02 0 0.06 0.06 0.08 0.12

1%

1 99.69 99.5 99.44 99.41 99.3 99.25 99.29
2 0.31 0.5 0.56 0.59 0.7 0.75 0.71
3 0 0 0 0 0 0 0
≥4 0 0 0 0 0 0 0

We therefore conduct another simulation by letting the level of significance be dependent upon
the sample size. Specifically, we let the level of significance αn be n−1/2, n−1, n−3/2, and n−2. For these
levels of significance, αn reduces to zero as n increases, so that the sequential testing procedure
is expected to eliminate the estimation error asymptotically. Among the levels of significance, n−2

approaches zero more quickly than the other levels of significance. Table 2 reports the simulation results
obtained from 5000 experiments. The figures in the first panel denote P̂n(αn) := r−1 ∑r

i=1 I( p̂n,i =

1), where r denotes the total number of experiments set to be 5000 and p̂n,i denotes the degree
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estimated by the sequential testing procedure from the i-th experiment when the level of significance
is αn. Here, I(·) denotes the indicator function. For each plan for the level of significance αn, P̂n(αn)

estimates the empirical probability for the estimated degree using the sequential testing procedure
to be equal to 100%. The other figures in parentheses denote the hypothetical proportion measured
by (1− αn)× 100%. As αn reduces to zero more quickly, the hypothetical proportion more quickly
arrives at 100%. In addition to the sequential testing procedure, we compare these estimation results
with standard information criterion-based estimations using the Akaike information criterion (AIC),
Bayesian information criterion (BIC), and small-sample corrected AIC (AICc). These information
criteria are applied to the null models M0

p with p = 1, 2, 3, 4 and we compute the proportions
measured by P̃n := r−1 ∑r

i=1 I( p̃n,i = 1), where p̃n,i denotes the degree selected by the information
criterion. The figures in the second panel report the proportions estimated by the information criteria.
Finally, we apply the same information criteria to the alternative modelsMp with p = 1, 2, 3, 4 and
report the estimated proportions in the third panel, which are obtained using the same methodology.
We distinguish them from the earlier information criteria by attaching “′” to AIC, BIC, and AICc, so
that AIC′, BIC′, and AICc′ denote the information criteria applied to the alternative models.

Table 2. Proportion of sequentially estimated polynomial degrees using the sequential WELM testing
procedure (in percent). Number of replications: 5000. This table reports the percentages of the correctly
estimated polynomial degree using the sequential WELM testing procedure and the information
criteria. The figures in the first panel denote P̂n(αn)× 100, and those in the second and third panels
are P̃n × 100. In addition, the figures in parentheses denote (1− αn)× 100, where we let P̂n(αn) :=
r−1 ∑r

i=1 I( p̂n,i = p∗). r is the number of iterations, p̂n,i denotes the degree estimator obtained from
the sequential testing procedure for the i-th simulation, and I(·) is the indicator function. Similarly,
P̃n := r−1 ∑r

i=1 I( p̃n,i = p∗), where p̃n,i is the degree estimator obtained by the information criteria.
MODEL:Mp := {xt(p)′α(p) + ηyt−1 + Ψ(δxt)}, where p = 1, 2, 3, 4. The Akaike information criterion
(AIC), Bayesian information criterion (BIC), and small-sample corrected AIC (AICc) are the information
criteria applied to M0

p := {xt(p)′α(p) + ηyt−1}, and the AIC′, BIC′, and AICc′ are those applied
toMp, where p = 1, 2, 3, 4. DGP: yt = α1∗xt + η∗yt−1 + εt, where xt = φ∗xt−1 + ut, (x0, y0) ∼ IID
N(0, I2), (εt, ut) ∼ IID N(0, σ2

∗ I2), δi ∼ IID U(0, 1), and (α1∗, η∗, φ∗, σ2
∗ ) = (0.5, 0.5, 0.5, 1.0).

Methods\n 50 100 200 500 1000 2000 5000

Seqn. Estmtn. 84.06 85.48 85.28 84.84 85.76 86.18 86.82
with αn = n−1/2 (85.86) (90.00) (92.93) (95.53) (96.83) (97.76) (98.59)

Seqn. Estmtn. 98.90 98.80 98.40 98.30 98.48 98.06 98.22
with αn = n−1 (98.00) (99.00) (99.50) (99.80) (99.90) (99.95) (99.98)
Seqn. Estmtn. 100.0 99.90 99.88 99.90 98.78 99.84 99.72

with αn = n−3/2 (99.71) (99.90) (99.96) (99.99) (100.0) (100.0) (100.0)
Seqn. Estmtn. 100.0 100.0 99.98 99.96 100.0 99.98 100.0
with αn = n−2 (99.96) (99.99) (100.0) (100.0) (100.0) (100.0) (100.0)

AIC 75.40 77.74 77.64 76.74 78.04 78.8 78.16
BIC 92.86 95.48 97.24 98.34 98.92 99.34 99.68

AICc 81.34 80.56 78.68 77.38 78.30 78.86 78.24

AIC′ 70.64 73.94 73.94 75.76 75.54 76.14 76.22
BIC′ 92.12 95.80 97.74 98.56 99.02 99.38 99.68

AICc′ 78.84 77.50 76.30 76.34 75.94 76.34 76.32

The simulation results in Table 2 can be summarized as follows. First, for every significance
level αn, the distance between P̂n(αn) and (1− αn) approaches zero as the sample size n increases.
This suggests that the first-degree polynomial model is successfully estimated using the sequential
estimation procedure. Second, the distance between P̂n(αn) and (1 − αn) is closest to zero when
the plan for the level of significance is set to αn = n−2. This implies that the sequential testing
procedure can estimate the first-degree polynomial model more precisely than xxxx by letting the level
of significance converge to zero more quickly. Third, as the second panel shows, the BIC converges to
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100% with the increase in sample size, whereas the AIC and AICc are not as fast as the BIC. Fourth,
as the third panel shows, the BIC′ performs similarly to the BIC, whereas the AIC′ and AICc′ perform
a little worse than the AIC and AICc, respectively. Finally, when comparing the BIC (or the BIC′) with
the sequential WELM testing procedure, the performance of the information criteria is inferior to those
of the sequential testing procedure when αn converges to zero quickly. Specifically, if we let αn be
n−3/2 or n−2, the performance of the sequential testing procedure is better than that obtained by the
BIC for all sample sizes. By contrast, if we let αn be n−1/2, the performance of the BIC is superior to
the sequential testing procedure for all sample sizes. In the middle, if αn reduces to zero at a moderate
rate, namely n−1, the performance of the sequential testing procedure is dependent upon the sample
size n. That is, if n is relatively small, the sequential testing procedure performs better than the BIC;
however, if n is relatively large, the BIC performs better than the sequential testing procedure. This
aspect implies that letting the level of significance converge to zero as quickly as possible can produce
the best estimation result if the first-degree polynomial model is a correct model.

4.2. Quadratic Function and Sequential Testing Procedure

We extend the earlier simulation by conducting another simulation. We examine a different
DGP. Specifically, we suppose that data are generated by yt = α1∗xt + α2∗x2

t + η∗yt−1 + εt, where
xt = φ∗xt−1 + ut, (x0, y0) ∼ IID N(0, I2), (εt, ut) ∼ IID N(0, σ2

∗ I2), and (α1∗, α2∗, η∗, φ∗, σ2
∗) =

(0.5, 0.5, 0.5, 0.5, 1.0). Therefore, the first-degree polynomial model is now incorrectly specified,
whereas the second-, third-, and fourth-degree polynomial models are correctly specified. Hence,
the desired sequential testing procedure should estimate the second-degree polynomial model as the
most parsimonious and correctly specified model. We attempt this second simulation to verify whether
the lessons we could have obtained from the simulations in Section 4.1 are still valid for other DGPs.

As before, we first conduct the simulations by fixing the levels of significance and next by letting
them depend on the sample size. Tables 3 and 4, respectively, report the simulation results for the first
and second cases obtained in the same simulation environments as for Tables 1 and 2.

We can summarize the simulation results as follows. First, Table 3 shows that the proportion of
the linear model selected by the sequential testing procedure decreases to zero as the sample size n
increases. For each level of significance, 10%, 5%, and 1%, the first-degree polynomial model is selected
less and less as n increases. This aspect implies that the WELM test statistic has a consistent power
to reject the misspecified model. Second, as shown in Table 3, the second-degree polynomial model
is asymptotically selected (1− α)× 100%, and this implies that the WELM test statistic controls the
type-I error efficiently. Hence, the most parsimonious and correctly specified model can be consistently
selected by the sequential testing procedure. Third, as before, the estimation error incurred by the
sequential testing procedure cannot be removed altogether as long as the level of significance is fixed
irrespective of the sample size. Fourth, Table 4 reports the proportions of the polynomial degrees
estimated by the sequential WELM testing procedure with the significance levels dependent on the
sample size, and the information criteria. As we can see, for αn = n−1, αn = n−6/4, and αn = n−2,
the distance between P̂n(αn) and (1− αn) approaches zero with an increase in sample size. Fifth, if the
sample size is relatively small, slowly converging levels of significance estimate the correct degree
better than quickly converging levels. For example, if n = 50, letting αn = n−1/2 produces higher
proportions than that obtained by letting αn be n−2. Nevertheless, as the sample size increases, they
show different estimation patterns. For αn = n−1/2, the proportion converges to 100% slowly, whereas
for αn = n−2, it converges to 100% quickly, implying that the plans for the level of significance have
to be carefully chosen to apply them to the sequential testing procedure. If a relatively large sample
data set is examined, the correct degree of the polynomial model can be better estimated by letting
the level of significance converge to zero quickly. On the contrary, if the sample size is small, a level
of significance converging to zero relatively slowly should be chosen. Sixth, we also compare the
performances of the information criteria and observe that the BIC overall performs better than the AIC
and AICc, and the same thing holds among the AIC′, BIC′, and AICc′. Further, the BIC always provides
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better estimates than the BIC′. Finally, we compare the simulation results using the sequential testing
procedure with the BIC. If the sample size is small, the BIC always dominates all the estimation results
from using the sequential testing procedures; however, if the sample size is sufficiently large, say more
than 2000, the sequential testing procedure with a level of significance converging to zero quickly
provides better estimates than the BIC. This simulation result is different from what we observed
in Section 4.1. The sequential testing procedure does not always perform better than the BIC. If the
polynomial function has a lower degree in the DGP, the sequential testing procedure may perform
better than the information criterion. In particular, if the sample size is sufficiently large, the use of the
sequential testing procedure appears more amenable.

Table 3. Estimated polynomial degrees using the sequential WELM testing procedure (in percent).
Number of replications: 5000. This table reports the proportion of estimated polynomial degrees using
the sequential WELM testing procedure. DGP: yt = α1∗xt + α2∗x2

t + η∗yt−1 + εt, where xt = φ∗xt−1 +

ut, (x0, y0) ∼ IID N(0, I2), (εt, ut) ∼ IID N(0, σ2
∗ I2), δi ∼ IID U(0, 1), and (α1∗, α2∗, η∗, φ∗, σ2

∗ ) =

(0.5, 0.5, 0.5, 0.5, 1.0). Here, the hypotheses are provided as follows: H(1)
0 : E[yt|xt, yt−1] = θ0∗ + θ1∗xt +

θy∗yt−1;H(2)
0 : E[yt|xt, yt−1] = θ0∗ + θ1∗xt + θ2∗x2

t + θy∗yt−1;H(3)
0 : E[yt|yt−1] = θ0∗ + θ1∗xt + θ2∗x2

t +

θ3∗x3
t + θy∗yt−1; and H(4)

0 : E[yt|xt] = θ0∗ + θ1∗xt + θ2∗x2
t + θ3∗x3

t + θ4∗x4
t + θy∗yt−1. We further let

Ψ(xtδ) = exp(xtδ) to compute the WELM test statistic.

Nominal Level (%) p\n 50 100 200 500 1000 2000 5000

10%

1 7.56 2.18 0.78 0.16 0.06 0.00 0.00
2 81.30 87.14 89.10 89.40 90.48 89.98 90.20
3 9.56 9.22 8.98 8.94 8.18 8.56 8.08
≥4 1.58 1.46 1.14 1.50 1.28 1.46 1.72

5%

1 21.36 7.38 3.32 0.56 0.16 0.00 0.00
2 74.58 88.28 91.72 95.02 96.02 95.92 95.30
3 3.80 4.12 4.66 4.10 3.40 3.64 4.28
≥4 0.26 0.22 0.30 0.32 0.42 0.44 0.42

1%

1 61.34 28.62 12.46 2.86 0.96 0.14 0.02
2 38.32 70.94 86.90 96.74 98.36 98.96 99.34
3 0.34 0.44 0.60 0.40 0.66 0.88 0.62
≥4 0.00 0.00 0.04 0.00 0.02 0.02 0.02
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Table 4. Proportion of sequentially estimated polynomial degrees using the sequential WELM testing
procedure (in percent). Number of replications: 5000. This table reports the percentages of the correctly
estimated polynomial degree using the sequential WELM testing procedure and the information
criteria. The figures in the first panel denote P̂n(αn)× 100 and those in the second and third panels
are P̃n × 100. In addition, the figures in parentheses denote (1− αn)× 100, where we let P̂n(αn) :=
r−1 ∑r

i=1 I( p̂n,i = p∗); r is the number of iterations. p̂n,i denotes the degree estimator obtained using the
sequential testing procedure for the i-th simulation and I(·) is the indicator function. Similarly, P̃n :=
r−1 ∑r

i=1 I( p̃n,i = p∗), where p̃n,i is the degree estimator obtained by the information criteria. MODEL:
Mp := {xt(p)′α(p)+ ηyt−1 +Ψ(δxt)}, where p = 1, 2, 3, 4. The AIC, BIC, and AICc are the information
criteria applied toM0

p := {xt(p)′α(p) + ηyt−1}, and the AIC′, BIC′, and AICc′ are those applied to
Mp, where p = 1, 2, 3, 4. DGP: yt = α1∗xt + α2∗x2

t + η∗yt−1 + εt, where xt = φ∗xt−1 + ut, (x0, y0) ∼
IID N(0, I2), (εt, ut) ∼ IID N(0, σ2

∗ I2), δi ∼ IID U(0, 1), and (α1∗, α2∗, η∗, φ∗, σ2
∗ ) = (0.5, 0.5, 0.5, 0.5, 1.0).

Methods\n 50 100 200 500 1000 2000 5000

Seqn. Estmtn. 80.18 83.12 83.34 85.00 86.28 85.80 85.62
with αn = n−1/2 (85.86) (90.00) (92.93) (95.53) (96.84) (97.76) (98.59)

Seqn. Estmtn. 53.98 81.48 90.78 96.52 98.00 98.10 98.44
withαn = n−1 (94.68) (96.84) (98.12) (99.05) (99.44) (99.67) (99.83)
Seqn. Estmtn. 15.70 49.46 76.74 93.28 97.82 99.48 99.84

with αn = n−3/2 (99.71) (99.90) (99.96) (99.99) (100.0) (100.0) (100.0)
Seqn. Estmtn. 2.48 20.66 56.92 86.98 95.88 98.98 99.90
with αn = n−2 (99.96) (99.99) (100.0) (100.0) (100.0) (100.0) (100.0)

AIC 81.08 83.92 83.26 84.66 84.08 83.94 83.86
BIC 92.22 96.50 97.44 98.66 98.92 99.50 99.64

AICc 85.42 85.68 84.22 85.16 84.28 84.08 83.90

AIC′ 64.90 76.28 78.16 78.80 78.74 78.64 77.78
BIC′ 71.44 93.54 97.56 98.70 99.12 99.22 99.74

AICc′ 69.60 80.10 79.80 79.48 79.04 78.86 77.86

4.3. Misspecified Models and Sequential Testing Procedure

As our final simulation, we now suppose that none of the models are correctly specified by
supposing that yt = π∗ cos(yt−1) + εt, where y0 ∼ N(0, σ2

y0
) and ut ∼ IID N(0, σ2

u). Here, we let
(π∗, σ2

y0
, σ2

u) = (1.0, 1.0, 1.0). We apply the same models as before and select the best model using
the sequential testing procedure. Note that the cos(·) function is expressed as an infinite-degree
polynomial function by Taylor’s expansion, so that the fourth-degree polynomial model cannot be
correctly specified for this DGP. This implies that the sequential testing procedure is expected to
estimate a degree greater than 4. Our primary interest in this simulation is in investigating how the
earlier finite sample properties of the sequential testing procedure are modified by this new DGP
condition. As the model conditions and simulation environments are the same as before, we do
not iterate.
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Table 5. Estimated polynomial degrees using the sequential WELM testing procedure (in percent).
Number of replications: 5000. This table reports the proportion of estimated polynomial degrees using
the sequential WELM testing procedure. DGP: yt = π∗ cos(yt−1) + εt, where y0 ∼ N(0, σ2

y0
), δi ∼

IID U(−1, 1), and ut ∼ IID N(0, σ2
u). Here, we let (π∗, σ2

y0
, σ2

u) = (1.0, 1.0, 1.0). The hypotheses are

provided as follows: H(1)
0 : E[yt|xt, yt−1] = θ0∗ + θ1∗xt + θy∗yt−1;H(2)

0 : E[yt|xt, yt−1] = θ0∗ + θ1∗xt +

θ2∗x2
t + θy∗yt−1; H(3)

0 : E[yt|yt−1] = θ0∗ + θ1∗xt + θ2∗x2
t + θ3∗x3

t + θy∗yt−1; and H(4)
0 : E[yt|xt] =

θ0∗ + θ1∗xt + θ2∗x2
t + θ3∗x3

t + θ4∗x4
t + θy∗yt−1. All these null hypotheses are misspecified for the DGP.

We further let Ψ(xtδ) = exp(xtδ) to compute the WELM test statistic.

Nominal Level (%) p\n 50 100 200 500 1000 2000 5000

10%

1 20.50 5.10 1.10 0.08 0.04 0.00 0.00
2 56.46 51.04 30.90 6.78 1.94 0.58 0.12
3 11.24 17.90 18.88 6.08 0.36 0.00 0.00
≥4 11.8 25.96 49.12 87.06 97.66 99.42 99.88

5%

1 39.82 13.50 3.76 0.86 0.26 0.00 0.00
2 55.16 71.94 66.90 42.70 19.30 4.82 0.30
3 4.22 11.30 18.22 11.90 1.76 0.00 0.00
≥4 0.80 3.17 11.12 44.54 78.68 95.18 99.70

1%

1 71.18 30.31 5.80 0.50 0.04 0.00 0.00
2 27.98 65.51 78.66 48.81 22.47 9.36 1.91
3 0.42 2.34 8.76 16.90 9.06 2.19 0.67
≥4 0.42 1.84 6.78 33.79 68.43 88.45 97.42

Tables 5 and 6 report the simulation results. Table 5 is obtained by fixing the levels of significance
and Table 6 is obtained by letting the levels of significance depend on the sample size. The simulation
results are summarized as follows. First, as the sample size n increases, the empirical rejection rates
also increase for each degree p = 1, 2, and 3 and the sequential testing procedure concludes that
the polynomial degree is greater than or equal to 4 for most experiments. For example, if n = 2000,
the sums of the proportions of p = 1, 2, 3 are only 0.58%, 4.82%, and 11.55% for the 10%, 5%, and 1%
significance levels, respectively, and they further decrease as n increases to 5000. This result indicates
that the power of the sequential WELM testing procedure performs well if the sample size is sufficiently
large. Second, when an incorrect model is selected, the quadratic model is overall selected more often
than the linear or cubic models. That is, the second-degree polynomial model is preferred to the first-
and third-degree polynomial models. This is mainly because the cosine function is an even function
around zero, so that the quadratic function may better approximate the cosine function when the
sample size is not sufficiently large. Third, we now let the levels of significance depend on the sample
size and examine the simulation results in Table 6.
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Table 6. Proportion of sequentially estimated polynomial degrees using the sequential WELM testing
procedure (in percent). Number of replications: 5000. This table reports the percentages of the correctly
estimated polynomial degree using the sequential WELM testing procedure and the information
criteria. The figures in the first panel denote P̂n(αn)× 100 and those in the second and third panels
are P̃n × 100. In addition, the figures in parentheses denote (1− αn)× 100, where we let P̂n(αn) :=
r−1 ∑r

i=1 I( p̂n,i = p∗). r is the number of iterations, p̂n,i denotes the degree estimator obtained using
the sequential testing procedure for the i-th simulation, and I(·) is the indicator function. Similarly,
P̃n := r−1 ∑r

i=1 I( p̃n,i = p∗), where p̃n,i is the degree estimator obtained by the information criteria.
MODEL: Mp := {xt(p)′α(p) + ηyt−1 + Ψ(δxt)}, where p = 1, 2, 3, 4. The AIC, BIC, and AICc are
the information criteria applied toM0

p := {xt(p)′α(p) + ηyt−1}, and the AIC′, BIC′, and AICc′ are
those applied toMp, where p = 1, 2, 3, 4. DGP: yt = π∗ cos(yt−1) + εt, where y0 ∼ N(0, σ2

y0
), δi ∼ IID

U(−1, 1), ut ∼ IID N(0, σ2
u), and (π∗, σ2

y0
, σ2

u) = (1.0, 1.0, 1.0).

Methods\n 50 100 200 500 1000 2000 5000

Seqn. Estmtn. 14.38 27.76 47.30 67.90 61.68 41.80 11.80
with αn = n−1/2 (85.86) (90.00) (92.93) (95.53) (96.84) (97.76) (98.59)

Seqn. Estmtn. 4.32 11.36 29.04 63.24 75.84 63.72 31.08
withαn = n−3/4 (94.68) (96.84) (98.12) (99.05) (99.44) (99.67) (99.83)
Seqn. Estmtn. 1.04 4.42 14.36 47.30 74.64 78.58 54.68
with αn = n−1 (98.00) (99.00) (99.50) (99.80) (99.90) (99.95) (99.98)
Seqn. Estmtn. 0.00 0.00 0.16 2.90 19.50 53.60 81.64
with αn = n−2 (99.96) (99.99) (100.0) (100.0) (100.0) (100.0) (100.0)

AIC 19.74 32.94 59.70 94.26 99.74 100.0 100.0
BIC 5.38 9.26 22.08 65.66 96.16 99.98 100.0

AICc 15.12 29.90 58.22 94.14 99.74 100.0 100.0

AIC′ 8.82 9.64 13.06 26.14 45.72 76.26 98.14
BIC′ 0.90 0.74 0.88 2.00 5.72 19.92 67.76

AICc′ 5.34 7.84 11.84 25.50 45.40 76.12 98.12

As we can see, the distance between P̂n(αn) and (1− αn) reduces with a rise in sample size.
Although the distance is not as close to zero as in Tables 2 and 4, the distance reduces. Further, if n
is small, slowly converging levels of significance provide better estimates than quickly converging
plans. Nevertheless, as n increases, the proportions converge to 100% more quickly when we let
αn be n−2 than when we let αn be n−1/2. Hence, if the data set has a large sample size, the level of
significance converging to zero relatively quickly should be chosen. This is the same observation as in
Section 4.2. Moreover, we now compare the performances of the information criteria and observe that
the AIC overall performs better than the BIC and AICc, and the same thing holds among the AIC′,
BIC′, and AICc′. In addition, the AIC always provides better estimates than the AIC′. Finally, we
compare the simulation results using the sequential testing procedure with the AIC. The AIC always
dominates all the estimations from using the sequential testing procedures. This simulation result
implies that the BIC is not always the best performing information criterion and the sequential testing
procedure can dominate the BIC even when the sample size is small. Furthermore, if all the considered
models are misspecified, it is difficult to draw regular patterns among the sequential testing procedure
and information criteria.

5. Conclusions

We applied the Wald test statistic assisted by the ELM to test the correct model assumption and
estimate a close approximation of the conditional mean. When testing for the model misspecification of
the conditional mean, omnibus test statistics typically weakly converge to a Gaussian stochastic process
under the null hypothesis that the model is correctly specified. This aspect makes their applications
inconvenient. We defined the Wald test statistic using the functional regression and applied the ELM
to compute the test statistic efficiently (i.e., WELM), following Cho and White [15]. The WELM test
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statistic is GCR and follows a chi-squared distribution under the null. We further applied the WELM
test statistic to a sequential testing procedure to search for an approximate conditional expectation
and conduct extensive Monte Carlo experiments to evaluate its performance. Using simulation, we
verified that, if the candidate polynomial models are correctly specified, the sequential WELM testing
procedure estimates the most parsimonious and correct model consistently. Further, it consistently
rejects all the candidate models if none of the polynomial models are correctly specified. We further
compared the performance of standard information criteria, such as the BIC and AIC, as well as
its small-sample adjusted version. From this comparison, we find that the model estimation using
the sequential testing procedure has competitive power in estimating the most parsimonious and
correct model.

Supplementary Materials: The program codes to reproduce the simulation outputs are available online at
https://web.yonsei.ac.kr/jinseocho/swelm.htm.
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Appendix A

Proof of Lemma 1. (i) First, Theorem 2 of Cho, Huang, and White [14] implies that[ √
n
∫

∆(α̂n(δ)− α∗(δ))dQ(δ)√
n
∫

∆(β̂n(δ)− β∗(δ))dQ(δ)

]
A∼ N

[(
0
0

)
,

(
σ2

γ 0
0 σ2

ξ /σ2
u

)]
, (A1)

so that √
n
∫

∆
β̂n(δ)dQ(δ)

A∼ N(0, σ2
ξ /σ2

u)

underH′0”. Therefore,

Wn := n

(
σ̂2

u,n

σ̂2
ξ,n

)(∫
∆

β̂n(δ)dQ(δ)

)2
A∼ X 2

1

underH′′0 . By contrast, underH′′1 , a∗ :=
∫

∆ β∗(δ)dQ(δ) 6= 0, so that (A1) implies that(
σ̂2

u,n

σ̂2
ξ,n

)(√
n
∫

∆
β̂n(δ)dQ(δ)−

√
na∗

)2
A∼ X 2

1 ,

where the left side is asymptotically identical to

Wn − 2n

(
σ̂2

u,n

σ̂2
ξ,n

)
a∗

(∫
∆

β̂n(δ)dQ(δ)− a∗

)
− n

(
σ̂2

u,n

σ̂2
ξ,n

)
a2
∗,

so thatWn = n(σ̂2
u,n/σ̂2

ξ,n)a2
∗ + OP(

√
n), and this implies thatWn/n = (σ2

u/σ2
ξ )a2
∗ + oP(1) under H′′1

from the fact that both σ̂2
u,n and σ̂2

ξ,n are consistent for σ̂2
u and σ̂2

ξ , respectively. Therefore, for any
cn = o(n), limn→∞ P(Wn > cn) = 1 as desired.

https://web.yonsei.ac.kr/jinseocho/swelm.htm
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(ii) Note that

Wm,n := nσ̂2
n

(
ξ̂2

m,n

σ̂2
ξ,m,n

)
,

where [
γ̂m,n

ξ̂m,n

]
:=

[
1 ∑n

t=1 ût

∑n
t=1 ût ∑n

t=1 û2
t

]−1 [
∑n

t=1 Ψ̄t,m

∑n
t=1 ûtΨ̄t,m

]
, σ̂2

ξ,m,n :=
1
n

n

∑
t=1

û2
t Ψ̄∗2t,m,n,

Ψ̄∗t,m,n := Ψ̄t,m −
(

1
n

n

∑
t=1

Ψ̄t,mwt(p)

)(
1
n

n

∑
t=1

wt(p)wt(p)′
)−1

wt(p), and

Ψ̄t,m :=
1
m

m

∑
i=1

Ψt(δi).

Therefore, if for each t, Ψ̄t,m
a.s.→
∫

∆ Ψt(δ)Q(δ), it follows that as m → ∞, ξ̂m,n
a.s.→ ξ̂n and σ̂2

ξ,m,n
a.s.→ σ̂2

ξ,n,
so thatWm,n →Wn as m→ ∞, and the desired result follows from Lemma 1(i).

The law of large numbers can apply to Ψ̄t,m, so that as m→ ∞, Ψ̄t,m
a.s.→ EQ[Ψt(δi)] from the fact

that δi is drawn from Q(·) and independent of the data observations. Furthermore, EQ[Ψt(δi)] =∫
∆ Ψt(δ)Q(δ) by the definition of the expectation. This completes the proof. �

Proof of Corollary 1. For notational simplicity, we letWm,n(p) denote the WELM test statistic testing
M0

p againstMp.
From the definition of p̂n(α), namely

p̂n(α) := arg min{P :Wm,n(p) ≤ cv(α)},

where cv(α) is the critical value obtained from the chi-squared distribution with one degree of freedom
and level of significance α, if p < p∗,

lim
n→∞

P( p̂n(α) = p) = 0, (A2)

because if p < p∗ ∈ P, the model is misspecified, so that for any positive sequence {cn} such that
cn = o(n),

P(Wm,n(p) > cn)→ 1 (A3)

as n→ ∞. Therefore, it follows that

lim
n→∞

P(I(p = p∗)|Wm,n(p)) = 0,

where P(I(p = p∗)|Wm,n(p)) denotes the conditional probability for the hypothesized polynomial
degree p being equal to p∗ conditional on that the hypothesisM0

p is tested byWm,n(p), implying (A2).
Therefore,

lim
n→∞

P( p̂n(α) ≥ p∗) = 1. (A4)

By contrast, if p ≥ p∗, the model is correctly specified andWm,n(p) A∼ X 2
1 from the structure of the

WELM test statistic, so that
P(Wm,n(p) > cv(α))→ α

as n→ ∞. That is, it follows that for each p ≥ p∗,

lim
n→∞

P (I(p = p∗)|Wm,n(p)) = 1− α. (A5)
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Therefore, the definition of p̂n(α), (A4), and (A5) imply that p̂n(α) consistently estimates the minimum
value of {p ∈ P : p ≥ p∗} with probability 1− α, which is p∗. This implies the desired result. �

Proof of Theorem 1. Let cvn be the critical value corresponding to αn, namely

cvn = C−1(1− αn),

which is O(nδ) and also o(n) because δ ∈ (0, 1) by the given condition. Therefore, for each p, (A3)
implies that

P(Wm,n(p) > cvn)→ 1,

implying that
lim

n→∞
P( p̂n(αn) ≥ p∗) = 1. (A6)

Contrary to this, if p ≥ p∗,Wm,b(p) A∼ X 2
1 , so that

lim
n→∞

P(Wm,n(p) > cvn)− αn = 0,

and αn = o(1) because cvn = O(nδ) for some δ > 0. Therefore, for each p ≥ p∗, it follows that

lim
n→∞

P(Wm,n(p) > cvn) = 0, (A7)

and this and (A6) imply that

lim
n→∞

P( p̂n(αn) = p∗)− (1− αn) = 0,

because p̂n(αn) is defined to be the smallest degree among the degrees satisfying (A7). The final
equation now implies that P( p̂n(αn) = p∗) = 1 + o(1). This completes the proof. �
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