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Abstract: Stochastic separation theorems play important roles in high-dimensional data analysis and
machine learning. It turns out that in high dimensional space, any point of a random set of points can
be separated from other points by a hyperplane with high probability, even if the number of points is
exponential in terms of dimensions. This and similar facts can be used for constructing correctors for
artificial intelligent systems, for determining the intrinsic dimensionality of data and for explaining
various natural intelligence phenomena. In this paper, we refine the estimations for the number of
points and for the probability in stochastic separation theorems, thereby strengthening some results
obtained earlier. We propose the boundaries for linear and Fisher separability, when the points
are drawn randomly, independently and uniformly from a d-dimensional spherical layer and from
the cube. These results allow us to better outline the applicability limits of the stochastic separation
theorems in applications.

Keywords: stochastic separation theorems; random points; 1-convex set; linear separability;
Fisher separability; Fisher linear discriminant

1. Introduction

It is generally accepted that the modern information world is the world of big data.
However, some of the implications of the advent of the big data era remain poorly understood.
In his “millennium lecture”, D. L. Donoho [1] described the post-classical world in which the number
of features d is much greater than the sample size n: d� n. It turns out that many phenomena of the
post-classical world are already observed if d� log n, or, more precisely, when ID� log n, where ID
is the intrinsic dimensionality of the data [2]. Classical methods of data analysis and machine learning
become of little use in such a situation, because usually they require huge amounts of data. Such an
unlimited appetite of classical approaches for data is usually considered as a phenomenon of the
“curse of dimensionality”. However, the properties ID � n or ID � log n themselves are neither a
curse nor a blessing, and can be beneficial.

One of the “post-classical” phenomena is stochastic separability [3–5]. If the dimensionality of
data is high, then under broad assumptions any sample of the data set can be separated from the rest
by a hyperplane (or even Fisher discriminant—as a special case) with a probability close to 1 even the
number of samples is exponential in terms of dimensions. Thus, high-dimensional datasets exhibit
fairly simple geometric properties.

Recently, stochastic separation theorems have been widely used in machine learning
for constructing correctors and ensembles of correctors of artificial intelligence systems [6,7],
for determining the intrinsic dimensionality of data sets [8,9], for explaining various natural
intelligence phenomena, such as grandmother’s neuron [10,11].
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In its usual form a stochastic separation theorem is formulated as follows. A random n-element
set in Rd is linearly separable with probability p > 1− ϑ, if n < aebd. The exact form of the exponential
function depends on the probability distribution that determines how the random set is drawn,
and on the constant ϑ (0 < ϑ < 1). In particular, uniform distributions with different support are
considered in [5,12–14]. Wider classes of distributions (including non-i.i.d.) are considered in [7].
Roughly speaking, these classes consist of distributions without sharp peaks in sets with exponentially
small volume. Estimates for product distributions in the cube and the standard normal distribution are
obtained in [15]. General stochastic separation theorems with optimal bounds for important classes
of distributions (log-concave distribution, their convex combinations and product distributions) are
proposed in [2].

We note that there are many algorithms for constructing a functional separating a point
from all other points in a data set (Fisher linear discriminant, linear programming algorithm,
support vector machine, Rosenblatt perceptron, etc.). Among all these methods the computationally
cheapest is Fisher discriminant analysis [6]. Other advantages of the Fisher discriminant analysis are
its simplicity and the robustness.

The papers [5–7,12] deal with only Fisher separability, whereas [13,14] considered a (more general)
linear separability. A comparison of the estimations for linear and Fisher separability allows us to
clarify the applicability boundary of these methods, namely, to answer the question of what d and
n are sufficient in order to use only Fisher separability and so that there is no need to search a more
sophisticated linear discriminant.

In [13,14], there were obtained estimates for the cardinality of the set of points that guarantee
its linear separability when the points are drawn randomly, independently and uniformly from a
d-dimensional spherical layer and from the unit cube. These results give more accurate estimates than
the bounds obtained in [5,12] for Fisher separability.

Our interest in the study of the linear separability in spherical layers is explained, among other
reasons, by the possibility of applying our results to determining the intrinsic dimension of data. After
applying PCA to the data points for the selection of the major components and subsequent whitening
we can map them to a spherical layer of a given thickness. If the intrinsic dimensionality of the initial
set of n points is ID, then we expect that the separability properties of the resulting set of points are
similar to the properties of uniformly distributed n points in dimension d. In particular, we can use the
theoretical estimates for the separation probability to estimate ID (cf. [8,9]).

Here we give even more precise estimations for the number of points in the spherical layer to
guarantee their linear separability. We also consider the case of linear separability of random points
inside a cube in more detail than it was done in [13]. In particular, we give estimates for the probability
of separability of one point. We also report results of computational experiments comparing the
theoretical estimations for the probability of the linear and Fisher separabilities with the corresponding
experimental frequencies and discuss them.

2. Definitions

A point X ∈ Rd is linearly separable from a set M ⊂ Rd if there exists a hyperplane separated X
from M; i.e., there exists AX ∈ Rd such that (AX , X) > (AX , Y) for all Y ∈ M.

A point X ∈ Rd is Fisher separable from the set M ⊂ Rd if (X, Y) < (X, X) for all Y ∈ M [6,7].
A set of points {X1, . . . , Xn} ⊂ Rd is called linearly separable [5] or 1-convex [3] if any point Xi

is linearly separable from all other points in the set, or in other words, the set of vertices of their convex
hull, conv(X1, . . . , Xn), coincides with {X1, . . . , Xn}. The set {X1, . . . , Xn} is called Fisher separable if
(Xi, Xj) < (Xi, Xi) for all i, j, such that i 6= j [6,7].

Fisher separability implies linear separability but not vice versa (even if the set is centered and
normalized to unit variance). Thus, if M ⊂ Rd is a random set of points from a certain probability
distribution, then the probability that M is linearly separable is not less than the probability that M is
Fisher separable.
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Denote by Bd = {X ∈ Rd : ‖X‖ ≤ 1} the d-dimensional unit ball centered at the origin (‖X‖
means Euclidean norm), rBd is the d-dimensional ball of radius r < 1 centered at the origin and
Qd = [0, 1]d is the d-dimensional unit cube.

Let Mn = {X1, . . . , Xn} be the set of points chosen randomly, independently, according to the
uniform distribution on the (1− r)-thick spherical layer Bd \ rBd, i.e., on the unit ball with spherical
cavity of radius r. Denote by P◦(d, r, n) the probability that Mn is linearly separable, and by P◦F(d, r, n)
the probability that Mn is Fisher separable. Denote by P◦1 (d, r, n) the probability that a random point
chosen according to the uniform distribution on Bd \ rBd is separable from Mn, and by P◦F1 (d, r, n) the
probability that a random point is Fisher separable from Mn.

Now let Mn = {X1, . . . , Xn} be the set of points chosen randomly, independently, according to
the uniform distribution on the cube Qd. Let P�(d, n) and P�F(d, n) denote the probabilities that
Mn is linearly separable and Fisher separable, respectively. Let P�1 (d, n) and P�F

1 (d, n) denote the
probabilities that a random point chosen according to the uniform distribution on Qd is separable and
Fisher separable from Mn, respectively.

3. Previous Results

3.1. Random Points in a Spherical Layer

In [5] it was shown (among other results) that for all r, ϑ, n and d, where 0 < r < 1, 0 < ϑ < 1,
d ∈ N, if

n <

(
r√

1− r2

)d
√1 +

2ϑ(1− r2)d/2

r2d − 1

 , (1)

then n points chosen randomly, independently, according to the uniform distribution on Bd \ rBd are
Fisher separable with a probability greater than 1− ϑ, i.e., P◦F(d, r, n) > 1− ϑ.

The following statements concerning the Fisher separability of random points in the spherical
layer are proved in [12].

• For all r, where 0 < r < 1, and for any d ∈ N

P◦F1 (d, r, n) > (1− rd)

(
1− (1− r2)d/2

2

)n

. (2)

• For all r, ϑ, where 0 < r < 1, 0 < ϑ < 1, and for sufficiently large d, if

n <
ϑ

(1− r2)d/2 , (3)

then P◦F1 (d, r, n) > 1− ϑ.
• For all r, where 0 < r < 1, and for any d ∈ N

P◦F(d, r, n) >

[
(1− rd)

(
1− (n− 1)

(1− r2)d/2

2

)]n

. (4)

• For all r, ϑ, where 0 < r < 1, 0 < ϑ < 1 and for sufficiently large d, if

n <

√
ϑ

(1− r2)d/4 , (5)

then P◦F(d, r, n) > 1− ϑ.
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The authors of [5,12] formulate their results for linearly separable sets of points, but in fact in the
proofs they used that the sets are only Fisher separable.

Note that all estimates (1)–(5) require 0 < r < 1 with strong inequality. This means that they are
inapplicable for (maybe the most interesting) case r = 0, i.e., for the unit ball with no cavities.

A reviewer of the original version of the article drew our attention that for r = 0 better results are
obtained in [6,15]. Specifically,

P◦F1 (d, 0, n) ≥ 1− n
2d+1 , (6)

P◦F(d, 0, n) ≥ 1− n(n− 1)
2d+1 > 1− n2

2d+1 , (7)

and P◦F1 (d, 0, n) > 1− ϑ provided that n < ϑ · 2d+1. See details in Section 4.4.
The both estimates (1) and (5) are exponentially dependent on d for fixed r, ϑ and the estimate (1)

is weaker than (5).
The following results concerning the linear separability of random points in the spherical layer

were obtained in [14]:

• For all r, where 0 ≤ r < 1, and for any d ∈ N

P◦1 (d, r, n) > 1− n
2d . (8)

• For all r, ϑ, where 0 ≤ r < 1, 0 < ϑ < 1, and for any d ∈ N, if

n < ϑ2d, (9)

then P◦1 (d, r, n) > 1− ϑ.
• For all r, where 0 ≤ r < 1, and for any d ∈ N

P◦(d, r, n) > 1− n(n− 1)
2d . (10)

• For all r, ϑ, where 0 ≤ r < 1, 0 < ϑ < 1, and for any d, if

n <
√

ϑ2d, (11)

then P◦(d, r, n) > 1− ϑ.

We note that the bounds (8)–(11) do not depend on r. We remove this drawback in this paper,
giving more accurate estimates (see Theorems 1 and 3 and Corollaries 1 and 2).

3.2. Random Points Inside a Cube

In [5], a product distribution in the Qd is considered. Let the coordinates of a random point
X = (x1, . . . , xd) ∈ Qd be independent random variables with variances σ2

i > σ2
0 > 0 (i = 1, . . . , d).

In [5], it is shown that for all ϑ and n, where 0 < ϑ < 1, if

n <

√
ϑe0.5dσ4

0

3
, (12)

then Mn is Fisher separable with a probability greater than 1− ϑ. As above, the authors of [5] formulate
their result for the linearly separable case, but in fact they used only the Fisher separability.
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If all random variables x1, . . . , xd have the uniform distribution on the segment [0, 1] then σ2
0 = 1

12 .
Thus, the inequality (12) takes the form

n <

√
ϑed/288

3
. (13)

We obtain that if n satisfies (13), then P�F(d, n) > 1− ϑ.
In [13], it was shown that if we want to guarantee only the linear separability, then the bound (13)

can be increased. Namely, if

n <

√
ϑcd

d + 1
, c = 1.18858,

then P�(d, n) > 1− ϑ. Here we give related estimates including ones for the linear separability of one
point (see Theorems 5 and 6 and Corollary 3).

We note that better (and in fact asymptotically optimal) estimates for the Fisher separability in
the unit cube are derived in [15]. The papers [13,15] were submitted to the same conference, so these
results were derived in parallel and independently. Corollary 7 in [15] states that n points are Fisher
separable with probability greater than 1 − ϑ provided only that n <

√
ϑeγd for γ = 0.23319 . . .

See details in Section 5.

4. Random Points in a Spherical Layer

4.1. The Separability of One Point

The theorem below gives the probability of the linear separability of a random point from a
random n-element set Mn = {X1, . . . , Xn} in Bd \ rBd. The proof develops an approach borrowed
from [3,16].

The regularized incomplete beta function is defined as Ix(a, b) = B(x; a, b)
B(a, b) , where

B(a, b) =
1∫

0

ta−1(1− t)b−1dt, B(x; a, b) =
x∫

0

ta−1(1− t)b−1dt

are beta function and incomplete beta function, respectively (see [17]).

Theorem 1. Let 0 ≤ r < 1, α = 4r2(1− r2), β = 1− r2, d ∈ N. Then

(1) for 0 ≤ r ≤ 1√
2

P◦1 (d, r, n) > 1− n ·
1− 0.5

(
Iα

( d+1
2 , 1

2
)
+ (2r)d · Iβ

( d+1
2 , 1

2
))

2d(1− rd)
; (14)

(2) for 1√
2
≤ r < 1

P◦1 (d, r, n) > 1− n ·
0.5
(

Iα

( d+1
2 , 1

2
)
− (2r)d · Iβ

( d+1
2 , 1

2
))

2d(1− rd)
. (15)

Proof. A random point Y is linearly separable from Mn = {X1, . . . , Xn} if and only if Y /∈ conv(Mn).
Denote this event by C. Thus, P◦1 (d, r, n) = P(C). Let us find the upper bound for the probability of the
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event C. This event means that the point Y belongs to the convex hull of Mn. Since the points in Mn
have the uniform distribution, then the probability of C is

P(C) =
Vol
(

conv(Mn) \
(

conv(Mn) ∩ rBd

))
Vol(Bd)−Vol(rBd)

.

First, estimate the numerator of this fraction. We denote by Si the ball with center at the origin,
with the diameter 1, and the point Xi lies on this diameter (see Figure 1). Then

conv(Mn) \ (conv(Mn) ∩ rBd) ⊆
n⋃

i=1

(
Si \ (Si ∩ rBd)

)
= W

and

Vol
(

conv(Mn) \
(

conv(Mn) ∩ rBd

))
≤ Vol(W) ≤

n

∑
i=1

Vol
(

Si \ (Si ∩ rBd)
)

=
n

∑
i=1

(Vol(Si)−Vol(Si ∩ rBd)) = n(Vol(S1)−Vol(S1 ∩ rBd))

= n

(
γd

(
1
2

)d
−Vol(S1 ∩ rBd)

)
,

where γd is the volume of a ball of radius 1. Hence

P(C) ≤
n
(

γd

(
1
2

)d
−Vol(S1 ∩ rBd)

)
γd(1− rd)

.

Now find Vol(S1 ∩ rBd). It is obvious that Vol(S1 ∩ rBd) is equal to the sum of the volumes of two
spherical caps. We denote by Cap(R, H) the volume of a spherical cap of height H of a ball of radius R.
It is known [18] that

Cap(R, H) =
1
2

γdRd I(2RH−H2)/R2

(
d + 1

2
,

1
2

)
if 0 ≤ H ≤ R.

X1X2

S1S2

BdrBd

Figure 1. Illustration to the proof of Theorem 1.

Consider two cases: 0 ≤ r ≤ 1√
2

and 1√
2
≤ r < 1 (see Figure 2)
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Case 1 If 0 ≤ r ≤ 1√
2
, then the centers of the balls S1, S2, . . . , Sn are inside of the spherical caps of

height h of the ball rBd (see the left picture on Figure 2). Therefore, the following equalities are true:

r2 − (r− h)2 =

(
1
2

)2
−
(

r− h− 1
2

)2
,

r2 − (r− h)2 = −(r− h)2 + (r− h),

h = r− r2,

V1 = Cap
(

1
2

, r− h
)
= Cap

(
1
2

, r2
)

, V2 = Cap(r, h) = Cap(r, r− r2).

If R = 1
2 , H = r2, then (2RH − H2)/R2 = 4r2(1− r2) = α, hence

V1 =
1
2

γd

(
1
2

)d
Iα

(
d + 1

2
,

1
2

)
.

If R = r, H = r− r2, then (2RH − H2)/R2 = 2H/R− (H/R)2 = 2(1− r)− (1− r)2 = 1− r2 = β, hence

V2 =
1
2

γdrd Iβ

(
d + 1

2
,

1
2

)
.

Thus,

Vol(S1 ∩ rBd) = V1 + V2 = γd

(
1
2

(
1
2

)d
Iα

(
d + 1

2
,

1
2

)
+

1
2

rd Iβ

(
d + 1

2
,

1
2

))
.

Hence

P(C) = 1− P(C) ≥ 1−
n
(

γd

(
1
2

)d
−Vol(S1 ∩ rBd)

)
γd(1− rd)

= 1− n ·
1− 0.5

(
Iα(

d+1
2 , 1

2 ) + (2r)d · Iβ(
d+1

2 , 1
2 )
)

2d(1− rd)
.

Case 2 If 1√
2
≤ r < 1, then the centers of the balls S1, S2, . . . , Sn are outside of the spherical caps of

height h of the ball rBd (see the right picture on Figure 2). Therefore, the following equalities are true:

r2 − (r− h)2 =

(
1
2

)2
−
(

r− h− 1
2

)2
,

r2 − (r− h)2 = −(r− h)2 + (r− h),

h = r− r2,

V1 = Vol
(

1
2

Bd

)
−Cap

(
1
2

, 1− (r− h)
)
= Vol

(
1
2

Bd

)
−Cap

(
1
2

, 1− r2
)

.

If R = 1
2 , H = 1− r2, then (2RH − H2)/R2 = 4r2(1− r2); hence,

V1 = γd

(
1
2

)d
− 1

2
γd

(
1
2

)d
Iα

(
d + 1

2
,

1
2

)
,
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where α = 4r2(1− r2),

V2 = Cap(r, h) = Cap(r, r− r2) =
1
2

γdrd Iβ

(
d + 1

2
,

1
2

)
,

where β = 1− r2. Thus,

Vol(S1 ∩ rBd) = V1 + V2 = γd

((
1
2

)d
− 1

2

(
1
2

)d
Iα

(
d + 1

2
,

1
2

)
+

1
2

rd Iβ

(
d + 1

2
,

1
2

))
.

Hence

P(C) = 1− P(C) ≥ 1−
n
(

γd

(
1
2

)d
−Vol(S1 ∩ rBd)

)
γd(1− rd)

= 1− n ·
0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
)

2d(1− rd)
.

r− h h

1

r 1
2

rBd

r 1
2

r− h h

rBd

Figure 2. Illustration to the proof of Theorem 1: case 1 (left); case 2 (right).

The estimates (14) and (15) for P◦1 (d, r, n) are monotonically increasing in both d and r and
decreasing in n, which corresponds to the behavior of the probability P◦1 (d, r, n) itself (see Figures 3 and
4). On the contrary, the estimate (3) for the probability P◦F1 (d, r, n) is nonmonotonic in r (see Figure 5).

Note that the estimates (14), (15) obtained in Theorem 1 are quite accurate (in the sense that they
are close to empirical values), as is illustrated with Figure 4. The experiment also shows that the
probabilities P◦1 (d, r, n) and P◦F1 (d, r, n) (more precisely, the corresponding frequencies) are quite close
to each other, but there is a certain gap between them.

The following corollary gives an estimate for the number of points n guaranteeing the linear
separability of a random point from a random n-element set Mn in Bd \ rBd with probability close to 1.

Corollary 1. Let 0 < ϑ < 1, α = 4r2(1− r2), β = 1− r2, d ∈ N. If

(1)

n < N1(d, r, ϑ) =
ϑ2d(1− rd)

1− 0.5
(

Iα(
d+1

2 , 1
2 ) + (2r)d · Iβ(

d+1
2 , 1

2 )
) , 0 ≤ r ≤ 1√

2

or
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(2)

n < N2(d, r, ϑ) =
ϑ2d(1− rd)

0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
) ,

1√
2
≤ r < 1,

then P◦1 (d, r, n) > 1− ϑ.

The theorem below establishes asymptotic estimates.

Figure 3. The graphs of the right-hand sides of the estimates (14), (15) for the probability P◦1 (d, r, n)
that a random point is linear and separable from a set of n = 1000 (left) and n = 10,000 (right) random
points in the layer Bd \ rBd.

Figure 4. The graphs of the estimates for the probabilities P◦1 (d, r, n) (P◦F1 (d, r, n)) that a random point
is linearly (and respectively, Fisher) separable from a set of n = 10,000 random points in the layer
Bd \ rBd. The solid lines correspond to the theoretical bounds (14) and (15) for the linear separability.
The dash-dotted lines represent the theoretical bounds (2) and (6) for the Fisher separability. The crosses
(circles) correspond to the empirical frequencies for linear (and respectively Fisher) separability
obtained in 60 trials for each dimension d.
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Figure 5. The graphs of the right-hand side of the estimate (3) for the probability P◦F1 (d, r, n) that a
random point is Fisher separable from a set of n = 1000 (left) and n = 10,000 (right) random points in
the layer Bd \ rBd.

Theorem 2.

(1) If 0 ≤ r < 1√
2

then

N1(d, r, ϑ) ∼ ϑ2d.

(2) If r = 1√
2

then

N1(d, r, ϑ) = N2(d, r, ϑ) ∼ ϑ2d+1.

(3) If 1√
2
< r < 1 then

N2(d, r, ϑ) ∼ ϑ
√

2π · r(2r2 − 1)√
1− r2

·
√

d + 1 ·
(

1

r
√

1− r2

)d
.

Proof. The paper [19] gives the following asymptotic expansion for the incomplete beta function

B(x; a, b) ∼ xa

a

∞

∑
k=0

fk(b, x)
ak for 0 ≤ x < 1, a→ ∞

and

fk(b, x) =
dk

dwk

[
(1− xe−w)b−1

]
w=0

.

Since f0(b, x) = (1− x)b−1 then

B(x; a, b) ∼ xa

a
(1− x)b−1 +

xa

a

∞

∑
k=1

fk(b, x)
ak ∼ xa

a
(1− x)b−1 for b, x fixed, a→ ∞.

Since B(a, b) ∼ Γ(b)
ab for b fixed and a→ ∞, then

Ix(a, b) =
B(x; a, b)
B(a, b)

∼ xa(1− x)b−1

a1−bΓ(b)

for b, x fixed and a→ ∞.
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We have x = α = 4r2(1− r2) or x = β = 1− r2 and a = d+1
2 , b = 1

2 ; hence,

Iα

(
d + 1

2
,

1
2

)
∼

√
2α

d+1
2

√
π
√

d + 1
√

1− 4r2 + 4r4
=

√
2
π
· 1
|1− 2r2| ·

α
d+1

2
√

d + 1
,

(2r)d Iβ

(
d + 1

2
,

1
2

)
∼ (2r)d

√
2(
√

1− r2)d+1

r
√

π
√

d + 1
=

√
2
π
· 1

2r2 ·
α

d+1
2

√
d + 1

.

If r = 0, then α = 0, β = 1; hence, N1(d, r, ϑ) ∼ ϑ2d.
If 0 < r < 1√

2
, then 0 < α < 1; hence,

Iα

(
d + 1

2
,

1
2

)
+ (2r)d Iβ

(
d + 1

2
,

1
2

)
∼ 0

and
N1(d, r, ϑ) ∼ ϑ2d.

If r = 1√
2

, then α = 1, β = 1
2 ; hence,

N1(d, r, ϑ) = N2(d, r, ϑ) ∼ ϑ2d(1− rd)

0.5
(

1−
√

2
π ·

1√
d+1

) ∼ ϑ2d+1.

If 1√
2
< r < 1, then 0 < α < 1; hence,

Iα

(
d + 1

2
,

1
2

)
− (2r)d Iβ

(
d + 1

2
,

1
2

)
∼
√

2
π
· 1

2r2(2r2 − 1)
· α

d+1
2

√
d + 1

=

√
2
π
·
√

1− r2

r(2r2 − 1)
· 2

d(r
√

1− r2)d
√

d + 1

and

N2(d, r, ϑ) =
ϑ2d(1− rd)

0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
) ∼ ϑ2d

0.5
√

2
π ·

√
1−r2

r(2r2−1) ·
2d(r
√

1−r2)d
√

d+1

= ϑ
√

2π · r(2r2 − 1)√
1− r2

·
√

d + 1 ·
(

1

r
√

1− r2

)d
.

4.2. Separability of a Set of Points

The theorem below gives the probability of the linear separability of a random n-element set Mn

in Bd \ rBd.

Theorem 3. Let 0 ≤ r < 1, α = 4r2(1− r2), β = 1− r2 and d, n ∈ N. Then

(1) for 0 ≤ r ≤ 1√
2

P◦(d, r, n) > 1− n(n− 1) ·
1− 0.5

(
Iα(

d+1
2 , 1

2 ) + (2r)d · Iβ(
d+1

2 , 1
2 )
)

2d(1− rd)
; (16)

(2) for 1√
2
≤ r < 1

P◦(d, r, n) > 1− n(n− 1) ·
0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
)

2d(1− rd)
. (17)
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Proof. Denote by An the event that Mn is linearly separable and denote by Ci the event that
Xi /∈ conv(Mn \ {Xi}) (i = 1, . . . , n). Thus, P◦(d, r, n) = P(An). Clearly, An = C1 ∩ . . . ∩ Cn

and P(An) = P(C1 ∩ . . . ∩ Cn) = 1− P(C1 ∪ . . . ∪ Cn) ≥ 1−
n
∑

i=1
P(Ci). Let us find an upper bound for

the probability of the event Ci. This event means that the point Xi belongs to the convex hull of the
remaining points, i.e., Xi ∈ conv(Mn \ {Xi}). In the proof of the previous theorem, it was shown that
if 0 ≤ r ≤ 1√

2
, then

P(Ci) ≤ (n− 1) ·
1− 0.5

(
Iα(

d+1
2 , 1

2 ) + (2r)d · Iβ(
d+1

2 , 1
2 )
)

2d(1− rd)
(i = 1, . . . , n);

and if 1√
2
≤ r < 1, then

P(Ci) ≤ (n− 1) ·
0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
)

2d(1− rd)
(i = 1, . . . , n).

Therefore, using the inequality

P(An) ≥ 1−
n

∑
i=1

P(Ci)

we obtain what is required.

The graphs of the estimates (16), (17) and corresponding frequencies in 60 trials for n = 1000 and
n= 10,000 points are shown in Figures 6 and 7, respectively. The experiment shows that our estimates
are quite accurate and close to the corresponding frequencies.

Another important conclusion from the experiment is as follows. Despite the fact that the
estimates for both probabilities P◦F(d, r, n) and P◦(d, r, n) and corresponding frequencies are close to 1
for sufficiently big d, the "threshold values" for such a big d differ greatly. In other words, the blessing
of dimensionality when using linear discriminants comes noticeably earlier than if we only use Fisher
discriminants. This is achieved at the cost of constructing the usual linear discriminant in comparison
with the Fisher one.

The following corollary gives an estimate for the number of points n guaranteeing the linear
separability of a random n-element set Mn in Bd \ rBd with probability close to 1.

Corollary 2. Let 0 < ϑ < 1, α = 4r2(1− r2), β = 1− r2. If

(1)

0 ≤ r ≤ 1√
2

and n <
√

N1(d, r, ϑ) =

√√√√ ϑ2d(1− rd)

1− 0.5
(

Iα(
d+1

2 , 1
2 ) + (2r)d · Iβ(

d+1
2 , 1

2 )
)

or
(2)

1√
2
≤ r < 1 and n <

√
N2(d, r, ϑ) =

√√√√ ϑ2d(1− rd)

0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
) ,

then P◦(d, r, n) > 1− ϑ.

The theorem below establishes asymptotic estimates for the number of points guaranteeing the
linear separability with probability greater than 1− ϑ.
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Theorem 4.

(1) If 0 ≤ r < 1√
2

then √
N1(d, r, ϑ) ∼

√
ϑ2d/2.

(2) If r = 1√
2

then √
N1(d, r, ϑ) =

√
N2(d, r, ϑ) ∼

√
ϑ2(d+1)/2.

(3) If 1√
2
< r < 1 then

√
N2(d, r, ϑ) ∼

√
ϑ

4
√

2π ·
√

r(2r2 − 1)
4
√

1− r2
· 4
√

d + 1 ·
(

1

r
√

1− r2

)d/2
.

Figure 6. The graphs of the estimates for the probabilities P◦(d, r, n) (P◦F(d, r, n)) that a random set of
n = 1000 points in Bd \ rBd is linearly (and respectively Fisher) separable. The solid lines correspond
to the theoretical bounds (16) and (17) for the linear separability. The dash-dotted lines represent the
theoretical bound (4) and (7) for the Fisher separability. The crosses (circles) correspond to the empirical
frequencies for linear (and respectively, Fisher) separability obtained in 60 trials for each dimension d.
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Figure 7. The graphs of the estimates for the probabilities P◦(d, r, n) (P◦F(d, r, n)) that a random set of
n =10,000 points in Bd \ rBd is linearly (and respectively, Fisher) separable. The notation is the same as
in Figure 6.

4.3. Comparison of the Results

Let us show that the new estimates (16) and (17) for linear separability tend to be 1 faster than the
estimate (4) in [12] for Fisher separability.

Statement 1. Let 0 < r < 1, α = 4r2(1− r2), β = 1− r2 and d, n ∈ N,

f1 = n(n− 1) ·
1− 0.5

(
Iα(

d+1
2 , 1

2 ) + (2r)d · Iβ(
d+1

2 , 1
2 )
)

2d(1− rd)
,

f2 = n(n− 1) ·
0.5
(

Iα(
d+1

2 , 1
2 )− (2r)d · Iβ(

d+1
2 , 1

2 )
)

2d(1− rd)
,

g = 1−
[
(1− rd)

(
1− (n− 1)

(1− r2)d/2

2

)]n

.

For r and n fixed

(1) if 0 < r < 1√
2

, then
g
f1
∼ 1

2
(4− 4r2)d/2 → ∞;

(2) if r = 1√
2

, then
g
f1

=
g
f2
∼ n + 1

n− 1
· 2d/2 → ∞;

(3) if 1√
2
< r < 1, then

g
f2
∼
√

2π · r(2r2 − 1)

(n− 1)
√

1− r2
·
√

d + 1 ·
(

1
1− r2

)d/2
→ ∞.
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Proof. If 0 < r < 1√
2

, then g ∼ n(n−1)
2 (1− r2)d/2 and f1 ∼ n(n−1)

2d (see the proof of Theorem 2); hence,

g
f
∼

n(n−1)
2 (1− r2)d/2

n(n−1)
2d

=
1
2
(4− 4r2)d/2 → ∞, as 4− 4r2 > 2.

If r = 1√
2

, then g ∼ n(n+1)
2

1
2d/2 and f1 = f2 ∼ n(n−1)

2d+1 (see the proof of Theorem 2); hence,

g
f1

=
g
f1
∼

n(n+1)
2

1
2d/2

n(n−1)
2d+1

=
n + 1
n− 1

· 2d/2 → ∞.

If 1√
2

< r < 1, then g ∼ nrd and f2 ∼ n(n−1)
√

2π· r(2r2−1)√
1−r2

·
√

d+1·
(

1
r
√

1−r2

)d (see the proof

of Theorem 2), hence

g
f2
∼

nrd
√

2π · r(2r2−1)√
1−r2 ·

√
d + 1 ·

(
1

r
√

1−r2

)d

n(n− 1)
=
√

2π · r(2r2 − 1)

(n− 1)
√

1− r2
·
√

d + 1 ·
(

1
1− r2

)d/2
→ ∞.

Now let us compare the estimates for the number of points that guarantee the linear and Fisher
separabilities of random points in the spherical layer obtained in Corollary 2 and in [12], respectively.
The estimate in Corollary 2 for the number of points guaranteeing the linear separability tends to ∞
faster than the estimate (5), guaranteeing the Fisher separability for all 0 < r < 1.

Statement 2. Let f1 =
√

N1(d, r, ϑ), f2 =
√

N2(d, r, ϑ), g =
√

ϑ
(1−r2)d/4 , 0 < r < 1, 0 < ϑ < 1, d ∈ N. For

r and ϑ fixed

(1) if 0 < r < 1√
2

, then
f1

g
∼ (2

√
1− r2)d/2 → ∞;

(2) if r = 1√
2

, then
f1

g
=

f2

g
∼ 2(d+2)/4 → ∞;

(3) if 1√
2
< r < 1, then f2

g ∼
√√

2π · r(2r2−1)√
1−r2 · (d + 1)1/4 ·

(
1
r

)d/2
→ ∞.

Proof. If 0 < r < 1√
2

then f1
g ∼

√
ϑ2d(1−r2)d/4
√

ϑ
= (2
√

1− r2)d/2.

If r = 1√
2

, then f1 = f2 ∼
√

ϑ2d+1 and g =
√

ϑ2d/4; hence, f1
g = f2

g ∼
√

ϑ2d+1√
ϑ2d/4 = 2(d+2)/4.

If 1√
2
< r < 1, then f2 ∼

√
ϑ
√

2π · r(2r2−1)√
1−r2 ·

√
d + 1 ·

(
1

r
√

1−r2

)d
; hence,

f2

g
∼

√
ϑ
√

2π · r(2r2 − 1)√
1− r2

· (d + 1)1/4 ·
(

1
r2(1− r2)

)d/4 (1− r2)d/4
√

ϑ

=

√
√

2π · r(2r2 − 1)√
1− r2

· (d + 1)1/4 ·
(

1
r

)d/2
.
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4.4. A Note about Random Points Inside the Ball (r = 0)

A reviewer of the original version of the article drew our attention to the fact that for the uniform
distribution inside the ball (case r = 0), better results are known. Specifically, let pF

xy be the probability
that i.i.d. points x, y inside the ball are not Fisher separable. Let Ixy be the indicator function of
this event. Then

pF
xy = E[Ixy] = E[E[Ixy | y]] = E[py],

where py denotes the probability that x is not Fisher separable from a given point y. In [6]

(also discussed in [15]), there is a proof that E[py] = 1/2d+1. In the notation of our paper,
this implies that

P◦F1 (d, 0, n) ≥ 1− n
2d+1 , P◦F(d, 0, n) ≥ 1− n(n− 1)

2d+1 > 1− n2

2d+1 ,

and P◦F1 (d, 0, n) > 1− ϑ provided that n < ϑ · 2d+1. This improves the estimate in Theorem 2 for the
case r = 0 twice. Note that the same estimate n < ϑ · 2d+1 was derived for r = 1√

2
(see Theorem 2).

The reviewer conjectured that estimate n < ϑ · 2d derived in this paper could be improved twice for the

whole range r ∈
[
0, 1√

2

)
. The experimental results give support for this hypothesis (see Figures 4–7).

5. Random Points Inside a Cube

Consider a set of points Mn = {X1, . . . , Xn} choosing randomly, independently and according to
the uniform distribution on the d-dimensional unit cube Qd.

Theorem 5. Let d, n ∈ N. Then

P�1 (d, n) > 1− n(d + 1)
cd , c = 1.18858 . . . (18)

Proof. A random point Y is linearly separable from Mn = {X1, . . . , Xn} if and only if Y /∈ conv(Mn).
Denote this event by C. Thus, P�1 (d, n) = P(C). Let us find the upper bound for the probability of the
event C. This event means that the point Y belongs to the convex hull of Mn. Since the points in Mn

have the uniform distribution, the probability of C is

P(C) =
Vol
(

conv(Mn)
)

Vol(Qd)
= Vol

(
conv(Mn)

)
.

In [20] it is proved that the upper bound for the maximal volume of the convex hull of k points placed

in Qd is k(d+1)
cd , where c = 1.18858. Thus, Vol

(
conv(Y1, . . . , Yk)

)
< k(d+1)

cd so

P(C) = Vol
(

conv(Mn)
)
<

n(d + 1)
cd .

and

P�1 (d, n) = P(C) = 1− P(C) > 1− n(d + 1)
cd .

Corollary 3. Let 0 < ϑ < 1,

n <
ϑcd

d + 1
, c = 1.18858 . . . (19)

Then P�1 (d, n) > 1− ϑ.
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Theorem 6. Let d, n ∈ N. Then

P�(d, n) > 1− n(n− 1)(d + 1)
cd , c = 1.18858. (20)

Proof. Denote by An the event that Mn is linearly separable and denote by Ci the event that
Xi /∈ conv(Mn \ {Xi}) (i = 1, . . . , n). Thus, P�(d, n) = P(An). Clearly An = C1 ∩ . . . ∩ Cn and

P(An) = P(C1 ∩ . . . ∩ Cn) = 1− P(C1 ∪ . . . ∪ Cn) ≥ 1−
n
∑

i=1
P(Ci). Let us find the upper bound for

the probability of the event Ci. This event means that the point Xi belongs to the convex hull of the
remaining points, i.e., Xi ∈ conv(Mn \ {Xi}). In the proof of the previous theorem, it was shown that

P(Ci) ≤
(n− 1)(d + 1)

cd , c = 1.18858 (i = 1, . . . , n).

Hence

P(An) ≥ 1−
n

∑
i=1

P(Ci) ≥ 1− n(n− 1)(d + 1)
cd .

Corollary 4. [13] Let 0 < ϑ < 1,

n <

√
ϑcd

d + 1
, c = 1.18858. (21)

Then P�(d, n) > 1− ϑ.

We note that the estimate (21) for the number of points guaranteeing the linear separability tends
to be ∞ faster than the estimate (13), guaranteeing the Fisher separability because√

ϑcd

d+1√
ϑed/288

3

=

√
3

d + 1

(
c

e
1

288

)d
→ ∞, as d→ ∞,

since c/e
1

288 ≈ 1.18446.
However better (and in fact asymptotically optimal) estimates for the Fisher separability in

the unit cube are derived in [15]. Corollary 7 in [15] states that n points are Fisher separable with
probability greater than 1− ϑ provided only that n <

√
ϑeγd for γ = 0.23319 . . . . This can be written

as n <
√

ϑcd for c = e2γ = 1.59421 . . . . Thus,

P�F
1 (d, n) > 1− n

exp(2γd)
= 1− n

cd , (22)

P�F(d, n) > 1− n2

cd . (23)

Theorem 6 and Corollary 4 in our paper state the same results with c = 1.18858 . . . , and for just linear
separability instead of Fisher separability. However, [13,15] were submitted to the same conference,
so these results were derived in parallel and independently.

The bounds (18) and (20) for the probabilities and corresponding frequencies are presented in
Figures 8 and 9.
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Figure 8. The graphs of the estimate for the probabilities P�1 (d, n) and P� F
1 (d, n) that a random point

is linearly (Fisher) separable from a set of n = 10,000 random points inside the cube Qd. The solid red
and blue lines correspond to the theoretical bounds (18) and (22) respectively. Red crosses (blue circles)
correspond to the empirical frequencies for linear (and respectively, Fisher) separability obtained in
60 trials for each dimension d.

Figure 9. The graphs of the estimates (20) and (23) for the probabilities P�(d, n) and P� F(d, n) that
a set of n = 10,000 random points inside the unit cube Qd is linear and Fisher separable, respectively.
The notation is the same as in Figure 8.

6. Subsequent Work

In a recent paper [2], explicit and asymptotically optimal estimates of Fisher separation
probabilities for spherically invariant distribution (e.g., the standard normal and the uniform
distributions) were obtained. Theorem 14 in [2] generalizes the results presented here. Since [2]
was submitted to the arxiv later, we did not compare the results of that article with our results.

7. Conclusions

In this paper we refined the estimates for the number of points and for the probability in stochastic
separation theorems. We gave new bounds for linear separability, when the points are drawn randomly,
independently and uniformly from a d-dimensional spherical layer or from the unit cube. These results
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refine some results obtained in [5,12–14] and allow us to better understand the applicability limits of
the stochastic separation theorems for high-dimensional data mining and machine learning problems.

The strongest progress was in the estimation for the number of random points in a (1− r)-thick
spherical layer Bd \ rBd that are linear separable with high probability. If

n .
√

ϑ2d/2, 0 ≤ r <
1√
2

or n .
√

ϑ2(d+1)/2, r =
1√
2

or

n .
√

ϑ
4
√

2π ·
√

r(2r2 − 1)
4
√

1− r2
· 4
√

d + 1 ·
(

1

r
√

1− r2

)d/2
,

1√
2
< r < 1,

then n i.i.d. random points inside the spherical layer Bd \ rBd are linear separable with probability at
least 1− ϑ (the asymptotic inequalities are for d→ ∞).

One of the main results of the experiment comparing linear and Fisher separabilities is as follows.
The blessing of dimensionality when using linear discriminants can come noticeably earlier (for smaller
values of d) than if we only use Fisher discriminants. This is achieved at the cost of constructing the
usual linear discriminant in comparison with the Fisher one.
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