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Abstract: Construction of graph-based approximations for multi-dimensional data point clouds
is widely used in a variety of areas. Notable examples of applications of such approximators are
cellular trajectory inference in single-cell data analysis, analysis of clinical trajectories from synchronic
datasets, and skeletonization of images. Several methods have been proposed to construct such
approximating graphs, with some based on computation of minimum spanning trees and some
based on principal graphs generalizing principal curves. In this article we propose a methodology to
compare and benchmark these two graph-based data approximation approaches, as well as to define
their hyperparameters. The main idea is to avoid comparing graphs directly, but at first to induce
clustering of the data point cloud from the graph approximation and, secondly, to use well-established
methods to compare and score the data cloud partitioning induced by the graphs. In particular,
mutual information-based approaches prove to be useful in this context. The induced clustering is
based on decomposing a graph into non-branching segments, and then clustering the data point
cloud by the nearest segment. Such a method allows efficient comparison of graph-based data
approximations of arbitrary topology and complexity. The method is implemented in Python using
the standard scikit-learn library which provides high speed and efficiency. As a demonstration of the
methodology we analyse and compare graph-based data approximation methods using synthetic as
well as real-life single cell datasets.

Keywords: data analysis; principal trees; trajectory inference; single-cell transcriptomics; clustering;
minimum spanning trees; graph theory

1. Introduction

Graph theory based methods play a significant role in modern data science and its applications to
various fields of science, including bioinformatics. One of the applications of graphs in unsupervised
machine learning is for dimensionality reduction, where the geometrical structure of a data point
cloud is approximated by a system of nodes embedded in the data space and connected by edges in a
more or less complex graph. For example, this graph can represent a regular grid as in Self-Organizing
Maps (SOM) [1], Elastic Maps (EIMap) [2,3] or principal curve approaches [4,5]. In this case, the graph
can serve as a base for reconstructing a low-dimensional principal manifold [3,6]. However, in some
applications of graph-based approximation, the geometry of a dataset can be characterized by more
complex structures such as branching points, excluded regions and regions of varying local intrinsic
dimensionality [7-9]. For example, some large-scale clinical or single cell omics datasets can be
modeled as a set of diverging and bifurcating trajectories connecting a root state (e.g., a progenitor
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cell) with a number of final states (e.g., corresponding to fully differentiated cells). In this case, a more
complex graph than regular grid graphs should be used for efficient data approximation. Graph-based
data approximation (GBDA) constructs a “data skeleton” which can be used to simplify, compress and
denoise the complete data description.

A challenging question in GBDA is to define the appropriate graph topology, which should be
more complex than a regular grid and less complex than a general graph with arbitrary topology
(in the latter case we might end up with a graph as complex as the data themselves). One evident
example of such a compromise consists in approximating the data point cloud by a graph with tree-like
topology. A more advanced approach consists in introducing cubic complexes as more sophisticated
graph types [10]. The task of approximating a data point cloud by a graph can be split into two
interconnected subtasks. The first subtask is to define optimal (in some mathematically defined
sense) embedment of graph nodes in the multi-dimensional space, when the graph topology is fixed.
The second, much more challenging subtask is to find the optimal (in some sense) graph topology
matching the dataset structure. Several mainstream ideas have been suggested for solving these
problems: one consists in exploiting the properties of Minimal Spanning Tree (MST) [11] and another
consists in building principal graphs (PG) [12]. The latter approach can be either equipped with a
systematic search for the optimal graph topology as in the topological graph grammar approach [10]
or using some heuristics to make an intelligent guess on the appropriate topology as in SimplePPT [13]
or so called reversed graph embedding approaches [14].

One particular important application of GBDA approach is the computational data analysis
of single-cell omics datasets [15]. A number of new methods have been developed in this field
combined under the name cellular trajectory inference (11) [16]. TI methodology provides a useful
tool for studying cell differentiation, cell cycle and other central biological processes with applications
in cancer [17] and developmental biology [18]. These methods essentially create a graph-based
approximation of a data point cloud where each data point represents a molecular profile of a single
cell allowing one to arrange the cells along the graph edges and branches, locally ranking the cells and
thus obtaining insights into the underlying biological processes. The availability and the complexity of
single cell omics datasets serves a source of motivation for us here.

The present study is devoted to improving and benchmarking existing GBDA approaches.
The question of benchmarking the GBDA methods is significant since, for example, only in
bioinformatics dozens of new GBDA methods have been introduced in the recent years. Most of
them build linear, tree-like or simple circular graph topologies but among these methods there exist
those building more general graph types (such as partition-based graph abstraction (PAGA) [19]).
It is desirable to understand their advantages and disadvantages and to formulate rules for choosing
the most appropriate ones for a given dataset or datatype (e.g., gene expression vs. other types of
experimental assays). This question has been mentioned in a recent review “Eleven grand challenges
in single-cell data science” [15]: “A pressing challenge is to assess how the different trajectory
inference methods perform on different data types and importantly to define metrics that are suitable.”
Recently several studies appeared devoted to systematic comparison of trajectory inference methods
in bioinformatics of single cells [16].

We contribute here to the question of comparing various graph-based data approximators
following an approach which was not previously exploited. The approach presented here can not
only be used to compare several GBDA methods, but also to fine-tune the hyper-parameters of any
GBDA method, thus moving forward the GBDA methodology. In previous benchmarking attempts,
the topological structures of graph-based approximators have been compared directly [16,20,21].
Quite opposite, the principle of our approach is reducing the problem of comparing two approximators
to the well-established realm of comparing clustering methods. The idea of this reduction is the
following: As a first step, subdivide an approximating graph into segments; as a second step, cluster
the data point cloud using these segments, i.e., assign each data point to the nearest graph segment
(Figure 1). Each approximating graph topology and geometry “induces” certain clustering (data point
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partitioning) of a dataset. At the third step we suggest using the well-established methods to compare
two clustering results (such as Rand or other scores). Since the induced clusterings are based on the
graphs, one thus obtains a score how different/similar these graph approximations are. In addition,
at the last step one can use the standard clustering quality scores (such as silhouette [22]) which
measures how good is the clustering itself. In this way, one can adjust the (meta)-parameters of the
graph approximation methods choosing those with the largest clustering quality score.

Figure 1. Decomposing a graph into non-branching segments and partitioning the data accordingly to
the graph segments. Segments are defined as paths with ends at branching or leaf nodes. Branching
nodes belong to several segments—so for better illustration here it is emphasized by multiplexing
branching nodes and slightly diverging these copies from their origin (it is for illustration only).
Toy example of a graph approximating a cloud of data points (shown in grey), and using its
decomposition into non-branching segments for partitioning the data which defines clustering of
the data cloud.

The graph segments mentioned above may be thought as connected components of a graph
without any branching point. The exact definition is provided below in the main text. The proposed
scores possess the main desired property for GBDA method benchmarking: They depend on
“trajectories” rather than on “graphs”, meaning that adding new nodes or rearranging them will
not change the scores if “trajectories” remain unmodified.

We argue that the proposed methodology provides a convenient scoring for comparing GBDA
approaches as well as for parameter fine-tuning. It is implemented using Python sklearn library
which provides highly standardised and efficient set of tools for calculation clustering quality and
clustering comparison scores. In order to demonstrate the effectiveness of our approach we compare
two mainstream GBDA methods, one is based on minimal spanning trees and another one based on
application of elastic principal graphs.

2. Results

2.1. Comparing and Benchmarking Graph-Based Data Approximation Methods Using Data Point Partitioning
by Graph Segments

In order to benchmark the graph-based data approximation (GBDA) methods, a standard strategy
consists in creating synthetic datasets with known underlying ground truth graph topology as a
generative model, applying the methods and comparing how far the reconstructions are from the
ground truth graph model.
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The contribution of the current paper is an alternative approach for comparison of two
graph-based approximations. Our proposal has certain advantages comparing with the approaches
used before. First of all it compares “trajectories” rather than “graphs” meaning that (omitting the
technical details) adding more nodes to the graph (or rearranging them), but preserving the same
“trajectories” does not change scores. It is easy to implement and interpret it for graphs of arbitrary
complexity, while many other approaches has limitations or unclear interpretations on complex graph
structures. Roughly speaking the main idea is to reduce the complex graph comparison problem to the
well studied problem of clustering results comparison.

2.1.1. Outlining the Method

In order to compare (i.e., calculate similarity score) two graphs approximating given dataset,
we perform three steps:

1. Split each approximating graph into segments. By a segment we mean certain path from one
branching point or leaf node to another.

2. Create clustering (partitioning) of the dataset by segments. Each data point is associated with
the nearest segment of the graph. Thus, in general, if graph is partitioned into N segments at the
previous step then the dataset will be partitioned into N clusters .

3. Compare the clusterings for the dataset using standard metrics (like adjusted Rand index or
adjusted mutual information or any other suitable measure). Since the clusterings are produced
from the structure of the approximating graphs, the score shows how two GBDA results are
similar to each other.

Figure 1 illustrates steps 1 and 2. More detailed description of all three steps is provided below.
The Python code and Jupyter notebooks are described in the “Implementation” section.

2.1.2. Details on Step 1: Segmenting the Graphs

Roughly speaking we split the graph into maximal non-branching segments. We can obtain such
splitting by throwing out all branching points and taking the connected components of the obtained
graph as desired segments, modulo rejoining back dropped branching points and some other details.
Recall that branching node is node of degree higher than two, and leaf (or terminal node) is node
of degree 1. Formally speaking let us call a segment of a graph a path in the graph which starts at
a branching or a leaf node and ends also at a branching or a leaf node, that does not contain any
other branching point except those possible at the ends. As one can see, such definition reflects the
intuition underlying the notion of the “segment”: however, we need to specify several exceptional
cases. For a graph which is an isolated cycle (not containing branching or leaf nodes), the whole cycle
will be considered as a “segment”. The same is true if a graph contains several connected components
which are cycles: Then all of them are considered as separate “segments”. The other exceptional case
is case of nodes of degree zero (isolated nodes); they also will be considered as separate “segments”.
These exceptional cases cannot happen for connected principal trees which are the main object of the
present study, they are just mentioned here for completeness.

It is not difficult to prove that: Any graph can be uniquely partitioned into such type of segments.

One can get the proof by a mild formalization of the argument with connected components
mentioned above. The other way is to describe a constructive process to obtain such partitioning of
the graph that is done in our Python implementation of the method.

We coded in Python a version of the depth-first search algorithm to produce a split into segments
for an arbitrary graph. The main difference to the classical depth-first search is a storage of visited
edges (not only nodes) of the graph to correctly process possible cycles in the graph. The algorithm
starts from any branching or leaf node, and walks along edges in depth, joining them to the “current
segment” until it meets a branching or a leaf node. Here, the “current segment” is terminated. In case



Entropy 2020, 22, 1274 5o0f 21

of a leaf node one returns from the recursion, the same for already visited branching node. In case of a
new branching node (not visited before) one goes into deeper level of depth-first recursive process.

2.1.3. Details on Step 2: Clustering (Partitioning) Data Points by Graph Segments

Having obtained an approximating graph split into several segments (see the previous step),
we can cluster the dataset by these segments. This means that for each datapoint we find the nearest
segment. There is slight ambiguity how that can be done, however that ambiguity would not much
effect the results (at least for the graphs quite many nodes) and so, for our purposes we choose the
simplest way to define the proximity. We calculate the distances between all datapoints and all nodes
of the graph. If the nearest node belongs to only one segment then the datapoint gets it as a label.
If there are several segments to which the nearest node belongs, then we take the second nearest
node (among nodes from the selected segments) and label the data point by the segment to which
that second nearest node belongs to. The algorithm is implemented in Python, Figure 2 illustrates its
work. The alternative way to define the proximity would be for each datapoint calculate distance not
only to nodes, but also to find nearest point on the graph (which might be somewhere at some edge,
not node) and since all edges belong to segments—that segment give a label to that datapint. That way
is theoretically better, however practically computationally more constly and the difference between
the two methods would not be big for datasets of our primary concern—single cell data—which are
quite noisy. Thus in what follows we consider the proximity defined as above. Let us also mention
that with any way to define the proximity there can be some ambiguity—some points may be on equal
distance from several segments; however, the set of such points would typically be of some measure
zero, i.e., practically such cases would be extremely rare and we can make arbitrary choice in such
situations.

Clustering 1 Clustering 2 Clustering 3 Clustering 4

Adjusted Rand Index Score Adjusted Mutual Information Score Fowlkes-Mallows Score V-measure Score

between 1 and 2 0.815906 0.775564 0.905927 0.776071
between 1 and 3 0.263459 0.429570 0.573803 0.430747
between 2 and 3 0.360228 0.488122 0.614351 0.489138
between 1 and 4 0.301286 0.435599 0.598238 0.436766
between 2 and 4 0.404889 0.499008 0.643161 0.500006
between 3 and 4 0.912738 0.882616 0.942185 0.882831

Figure 2. Example—trajectory comparison results. Trajectories which are close to each other from
visual point of view are close by introduced similarity scores (as well as induced clusterings are visually
similar). For example: trajectory 1 is visually similar to 2, but less to 2 and even less to 3,4, the scores in
the table shows the same ordering. Despite graphs 3 and 4 are quite different in the sense of graph
theory (three nodes are added to graph 3 to obtain graph 4), but trajectories for them are almost
identical, and thus clusterings are similar and their similarity scores are quite high. That illustrates the
main desired property—scores depend on trajectories not graphs themselves.

2.1.4. Details on Step 3: Compare the Clustering Measures for the Datasets

Having produced clustering of the dataset by several approximating graphs (see previous steps)
one can use the well-established and efficiently implemented in Python sklearn library scores for
clustering comparison. From our construction it follows that if the graphs are similar to each other
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then the clustering will be similar also, and the scores will reflect it, while dissimilar graphs will lead to
dissimilar clusterings and the scores will show it. Thus these scores give efficient measure of similarity
for graphs, for both geometry and topology at the same time.

There are many scores used to compare clustering: Adjusted Rand index [23], adjusted mutual
information [24], Fowlkes-Mallows score [25], V-measure [26], etc. According to our experiments in
most cases all the scores show similar results. So as a default choice we would suggest adjusted Rand
index. Let us mention that “adjusted” (adjusted Rand index, adjusted mutual information) indicates a
modification of the score such that for two random data clustering the score becomes near zero, that is
a desirable property and such score modifications should be used by default.

Figure 2 shows examples of graph comparison. One can see that all the scores lead to the same
conclusions which perfectly fit the intuition.

The suggested approach requires a dataset for which the compared graphs serve as an
approximation, thus it does not allow to compare graphs on their own. It might seem as a disadvantage,
but actually it is a way around for main applications, since the approach would give a more focus and
weight for the regions of the data space where more data points are concentrated.

2.2. Unsupervised Scores for Comparing GBDA Methods and Parameter Fine-Tuning

Another application of our approach is to provide a score for how good a given approximating
graph is for a given dataset. In real situation there is no “ground truth” so having several GBDA
methods (and typically many hyper-parameters for each of them) it is not always easy to choose
which is the best one. Our suggestion provides certain insights how the question can be approached.
The main idea is to transfer the methods used to score clustering to the GBDA area. We do not claim
that the method always works very well, but we will demonstrate that it makes sense at least in some
cases. That situation is similar to clustering setup, where choice of appropriate cluster number or a
clustering method is frequently a subtle question for real-life datasets.

The approach is very similar to what is described in the previous section. To calculate a score of
goodness of a given approximating graph for a given dataset we perform three steps:

1. Split each approximating graph into segments

2. Create clustering (partitioning) of the dataset by the segments

3. Use standard metrics and tools to calculate how good is the clustering:, e.g., calculate silhouette,
Calinski-Harabasz, Davies-Bouldin score etc.

The first two steps are exactly the same as described in details in the previous section, so we do
not comment on them here. The last step is standard for clustering techniques: There are several scores
which provide certain estimates how good a clustering is. They are efficiently implemented in Python
sklearn library. It should be noted that all three indices work better for convex clusters, rather than for
other cluster shapes—that is a disadvantage in certain situations. Silhouette score is bounded from —1
to 1, with higher values indicating better clustering, Davies-Bouldin index is non-negative, with zero
indicating perfect clustering, Calinski-Harabasz index is positive and non-normalized with higher
values indicating better clustering. Figure 3 shows an example: for a given dataset we consider three
approximating graphs. It is intuitively quite clear from the figure that the first produces the best GBDA
of the dataset, while the last one is the worst. Silhouette and Davies-Bouldin scores fit the intuition.
Calinski-Harabasz does not work perfectly even in this simple example, which illustrates that the
approach should be used with some care. We also provide a plot-silhouette score dependence on
the node numbers of approximating graphs, it also confirms the conclusions above—lower score is
assigned for graphs with higher nodes (which are constructed by MST technique)—which is natural
since these graphs have much more branching points than underlying ground truth dataset.

In what follows we consider the proposed method in more details: in Section 2.5 we work out
in details use case for the proposed method; in the section devoted to single-cell example we apply
that strategy to real data—as one can see it allows quite successfully to determine the range of the
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reasonable parameters; the plot in the next section presents results of simulations on thousands of
artificial datasets, we can see that maximum of silhouette is unfortunately not exactly at the point of
optimal parameters but nevertheless it is quite near.

MST trajectories with 8 nodes MST trajectories with 40 nodes MST trajectories with 60 nodes Silhouette

& 7 04

25

02

01

OCIJ

100 [) 0o 200 Mo -100 ) 1o 0 00 -100 o 1o 200 3,00 B 40 &
Nodes number

silhouette 0.394041 0.291919 0.203083
calinski_harabasz 1038.056498 842349216 1285.483032
davies_bouldin 0.679021 0.777834 0.919802

Figure 3. Example of estimating trajectories with the help of unsupervised clustering scores—better
trajectories—get higher scores. Consider three graphs approximating the dataset of dumbell like shape
with 2 branching points. We choose graphs such that the first graph fits nicely the structure of the
dataset, while graph with 40 nodes fits dataset in worse way (it has several branching nodes which does
not correspond to underlying dataset) and the last graph is even worse (i.e., has even more branching
nodes). Thus the good score should assign best score to the first, second to the second, etc. Silhouette
and Davies-Bouldin scores fit that expectation: the first graph (8 nodes) has the best scores, the second
(40 nodes) the second best and the third (60 nodes) is the worst. While Calinski-Harabasz index assigns
the best score to the third graph, which is counter-intuitive, nevertheless it correctly orders the first
and the second graphs. (The choice of concrete graphs (and nodes numbers 8,40,60) is somewhat
arbitrary the only purpose is to illustrate that scores fit the intuition—good score—corresponds to
good approximating graph). Thus the figure indicates that unsupervised scores can be used to select
the best graph; however, that should be done with certain care. The rightest plot confirms the same
conclusion in the other way. We plot silhouette scores values for all values of nodes between 6 and
60 is given (graphs are constructed by Minimal Spanning Tree (MST) technique). It is clear that large
node number correspond to lower scores on that plot, and that fits the expectations; graphs with large
number of nodes constructed by MST will create many branch points which does not fit the given
dataset, which has only 2 branching points. Thus it again confirms the principle—bad scores—bad
approximating property.

To conclude, we proposed a method to choose better parameters for trajectory constructions—to
choose those parameters where proposed scores are reasonably high. Our analysis suggests that
there is no always guarantee that exactly the maximum of scores corresponds to the best parameters,
however in many situations best parameter are not far from that point. So for practical purposes
our method allows to restrict the range of parameters and that restricted range might be analysed
additionally, using for example domain knowledge.
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2.3. Comparison of Clustering Based Scores with Other GBDA Metrics

In this section we show that the proposed scores can be matched to some simple and natural
GBDA metrics (such as the number and the position of branching points). Such simple scores are
good only for comparison of graphs in quite simple situations and their generalization to more
complex cases is non-evident, if possible. Compatibility of the clustering-based scores with the natural
scores provides one more justification that our approach quite corresponds to expected intuition for
trajectory comparison.

In order to make such a comparison, we created synthetic datasets with clear and simple ground
truth graph structure, representing a binary tree (see Figure 4A).

Sigma noise 1 Sigma noise 30

PCA2

50 100 150 200 -200 -100 0 100 200

16 35 450
B — adjusted_rand — adjusted_rand — inertia y —— Dist2True BranchPts
— adjusted_mutual_info / — adjusted_mutual info \ | Dist2True BranchPts woINF

1 n_components n_components

12 325 wo- |
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e o | ]
] //
|

- /\i S

V //;\ht . \
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Figure 4. (A) Examples of datasets with known underlying graph structure, a symmetric binary tree
with 7 edges. Datasets are 20-dimensional, visualized with PCA. The first one is with low level of noise
and the second one with high level of noise. Note that despite that the noisy dataset may visually
seem quite difficult for the correct graph approximation, it is distortion of 2-dimensional visualization;
in original 20-dimensional space correct graph approximation is not that unlikely as one can see here.
(B) Demonstration of agreement of our scores and naive scores like number and mutual distance to
branching points, etc. On these plots X axis is number of nodes for approximate graph construction.
The main observation is that ten nodes is the best value from all points of view: from our scores
(the second subplot-adjusted Rand index, adjusted mutual information, Fowlkes—-Mallows, etc.) as well
as from the comparing distances between ground truth branching points and approximate branching
points (the forth subplot), as well as elbow rule for inertia (the third subplot), as well as number
from looking on number of branching points (the first subplot); ground truth has three branching
points; approximate construction has three branching points for when number of nodes equal to 10
(first subplot gray line). All plots are average values over 100 randomly generated datasets having
the underlying graph ground truth structure of the same shape, symmetric binary trees with 7 edges
(3 branch points). See provided notebooks for details.

Since the ground truth graph is quite simple and it can be characterized by a number of branching
and their positions, so we can calculate these values and compare them to the ground truth. It provides
us the natural graph metrics. Of course, one cannot compare the number of branching points (which is
integer) with the adjusted Rand index (which is continuous number between 0 and 1). What one can
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compare is if both scores suggest the same type of graph in the family to be the best approximation of
the ground truth.

We run a simple GBDA algorithm based on MST applied to such a dataset. The main parameter
of such algorithms is the number of nodes in the graph. After that we looked what is the optimal
value of this parameter suggested by different scores;, i.e., the scores based on adjusted Rand index,
mutual information and naive scores based number of branching points and their positions. The main
observation is that results perfectly correspond to each other (see Figure 4B). Each point on these
plots represents an averaged value of scores over one hundred random datasets. Our experiments
showed that performing one hundred random simulations is more than enough to get statistically
significant conclusions.

From these examples one can see difficulties using simple scores to compare approximating
graphs: if the ground truth graph has three branching points, and the approximating graph has
different number of branching points—how one would compare them? We address this question in
our simulation in the following way: Take 3 nearest branching points of the approximating graph to
the branching points of the ground truth graph and neglect other possibly present branching points.
If there is less than 3 branching points in the approximation then one branching point serves as the
nearest to several in the ground truth graph. We can do this because we see that for our best parameter
value, number of nodes = 10, the number of branching points equals to 3, which is the same as for the
ground truth graph. Thus the question above is avoided for that particular example, but it cannot be
avoided for more complicated datasets.

2.4. Comparison of MST-Based Graph-Based Approximations and EIPiGraph

In that section we apply the technique introduced above to compare two popular GBDA
techniques. The first one is a simple method based on application of MST (minimal spanning trees)
and the second one is the EIPiGraph (Elastic Principal graphs). The simple idea of computing MST
underlies many popular methods for cellular trajectory inference [16,27-29], this is why it is a natural
choice to compare with EIPiGraph representing principal graph approach combined with topological
graph grammar-based topology optimization. A brief description of both methods is provided in
“Materials and Methods” section.

The main conclusions and highlights of the section are the following:

1. Both MST and EIPiGraph can achieve similar quality of graph-based data approximation by tuning
their main parameter, number of nodes. The quality here is estimated by the scores introduced
above and in comparison with ground truth for simulated datasets. However, the advantage of
EIPiGraph is in its stability with respect to this parameter. Small modifications do not change the
quality dramatically, while for MST even small modifications of the parameter may lead to quite
a drastic change of the approximating graph structure and, respectively, the quality of ground
truth approximation. That means that in practical situation where ground truth is not available,
EIPiGraph has an advantage since one should not be afraid of choosing the parameter incorrectly.
Therefore, a reasonably wide range of parameters gives similar results, while for MST approach
choosing an incorrect parameter would give a significant loss in approximation quality.

2. The embedment of approximating graphs produced by EIPiGraph are much smoother comparing
to MST. This observation is consistent with the previous one and with EIPiGraph algorithm which
penalizes for non-smoothness and hence it produces graphs which would not produce too much
branching points, the problem which underlies the MST instability.

3.  We analyse a possible combination of MST+EIPiGraph methods, where the initial graph
approximation is obtained by MST and then EIPiGraph algorithm starts from this initialization.
One of our conclusions is that EIPiGraph “forgets” the initial conditions quite fast. Nevertheless
the combination of methods may have certain advantages.
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4. We consider a real-life single cell RNA sequencing dataset and demonstrate that our approach
for choosing the parameters of the trajectory inference method based on unsupervised clustering
scores provides reasonable results.

2.4.1. Smoothness of ElpiGraph-Based Graph Approximators Comparing to MST

One of the features of EIPiGraph is the smoothness of its trajectories.

Figure 5 shows examples of EIPiGraph trajectories (green color). (See more pictures in the section
“Materials and Methods”). Even in these simple examples it is evident that EIPiGraph provides much
smoother trajectories which give the correct branching structure for much wide range of parameters
comparing to MST (black colored graphs).

It is not surprising since its trajectories are defined by minimizing the functional containing the
penalty for non-smoothness. This feature is related to stability of EIPiGraph with respect to parameters,
especially compared to MST. Figure 5 shows examples of MST and EIPiGraph trajectories for the same
node numbers. One can evidently see EIPiGraph trajectories are much smoother, and able to reproduce
correct branching structure for much wider range of node numbers. Smoothness and stability are quite
related, since non-smoothness of MST trajectories leads to creation of small incorrect branches of the
graph, which does not happen for EIPiGraph.

n_nodes = 20

.

n_nodes = 50

n_nodes = 100

Figure 5. Comparison of EIPiGraph (green) and MST (black) trajectories. EIPiGraph produces correct
trajectories for much wider range of main input parameter (nodes numbers) then MST.

2.4.2. Comparison between EIPiGraph and MST on Large Number of Different Datasets

Consider several types of datasets with clear ground truth graphs, for each type of dataset
create one hundred sample datasets differing by random fluctuations in the generative model.
The approximating graphs are produced for each dataset by both MST and EIPiGraph methods
and compared via the proposed methodology to the ground truth. Then the scores are averaged within
each type of dataset to get statically reliable result. Moreover both MST and EIPiGraph are simulated
for many values of the main input parameter, number of nodes. Thus we get the plots showing scores
of each method depending on the number of nodes.
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The conclusions are the following, for most of the dataset types both methods can achieve
approximately the same highest score. However, the main advantage of EIPiGraph is much higher
stability. Its dependence on the input parameter is much less pronounced, which in practice (where no
ground truth is known) is a crucial advantage, since a rough estimate of the parameter is enough to get
almost top quality. For the MST-based approach a small error in the estimation of the parameter may
lead to quite a drastic change of the approximation quality. To the best of our knowledge there is no
universal method to estimate the required node number in the approximating graph. Sometimes one
uses the following heuristic: The node number is approximately square root of the number of points in
the dataset. Our analysis below shows that this choice is not always close to optimal, i.e., the number
of nodes corresponding to the highest score can be quite far from the suggestion of this heuristic.

Figure 6 demonstrates the results of the simulations. One can see that blue plots (EIPiGraph) are
much flatter than red ones (MST) which shows higher stability of EIPiGraph. We do not show all
types of the datasets and all scores, in order not to overload the figures. Only plots for four types of
datasets, for adjusted Rand score and for number of branching points are presented. The results for
other dataset types and other scores are quite similar and does not change the conclusions.

sssss 10 Dataset: Dumbbell B2 NBOO

noise 005 Dataser: Lizard D20 N_BranchPntse n_branch pnts adjusted_rand
n_branch pnts adjusted_rand

— ST
J——-

@ ]

noise 0.1 Dataset: Lizard D20 N_BranchPnts6 noise 20 Dataset: Dumbbell D2 NECO
n_branch pnts adjusted_rand n_branch pnts adjusted_rand

— ST a0 — ST — ST = MsT
— el J— 4 — elp e — i

Figure 6. Comparison of scores for MST (red) and EIPiGraph (blue), depending on number of nodes
in graph (X-axis). Simulations on 4 different types of datasets with known ground truth, results are
averaged over 100 random simulations of each type (i.e., each point on each plot is result of averaging
over 100 simulations). For each dataset two types of plots are presented, number of branch points
and adjusted Rand index comparing trajectories of EIPiGraph and MST with ground truth. Best Rand
scores for both methods are approximately the same (except left bottom case where EIPiGraph gives
higher score), but the advantage of EIPiGraph is much higher stability, wide range of parameters with
near highest score.

2.4.3. Initialization of EIPiGraph with MST-Based Tree

In the default scenario, the EIPiGraph algorithm builds the approximating graph in an iterative
manner, adding nodes one by one. Thus it is possible to initialize it with a graph obtained by some
other algorithm. For example, EIPiGraph can be initialized with a tree built using an MST-based
approach. Indeed, such an initialization is implemented in a popular cellular trajectory inference tool
STREAM [20], and other tools use different heuristics for initializing EIPiGraph [30].

Here we consider the combination of MST and ElPiGraph algorithms within one method.
One creates the MST graph with K nodes and initializes EIPiGraph algorithm with this input,
and constructs the elastic principal tree with K 4+ N nodes. From the conducted computationals
experiments, the main conclusion was that EIPiGraph forgets the initialization rather rapidly. That
is yet another argument for stability of EIPiGraph: in examples below we take as initial condition
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MST graph with “overbranching” (i.e., much more branching points than in the ground truth graph),
and EIPiGraph algorithm in several steps creates a graph with correct number of branching points.
In order to demonstrate our conclusions, we run simulations over various test datasets.
We compared constructions by MST, EIPiGraph and several combinations of MST and EIPiGraph
differing by the number of nodes in the initializing MST graph. We compared different scores
developed in the previous sections for constructed graphs. And we see that statistically averaged scores
over many simulations confirm our observation that EIPiGraph quite rapidly forgets the initialization.
Figure 7A,B give one example of such behavior, EIPiGraph initialized by 30 node MST graph in
5 steps produces a graph similar to the case when EIPiGraph was applied without initialization by
MST, despite that initialization was drastically different: it had a large number of branching points
and was quite non-smooth. Figure 7C confirms similar phenomena in statistical manner: each point of
each plot is result of averaging over hundred of simulated tree-like datasets. Result for other dataset
types and other scores are similar. Combination of MST and EIPiGraph can be useful in some cases,
for example for large number of nodes current implementation of MST works faster, so one can first
create a “draft” graph by MST and then “polish” it by EIPiGraph, thus gaining faster implementation.

A Pure MST 30 nodes Combined MST+EIPiGraph 40 nodes C

noise 30 n_branch pnts

-+~ n_branch pnts5
-+ n_branch pnts10
n_branch pnts15

4

n_branch pts20
n_branch pts25
n_branch pnts30
n_branch pntsS0
-+ n_branch pnts50
-+~ n_branch pts95

n_branch pntsMST

15 . == n_branch pntselpi

PCA2

PCAT PCAT

B Rand to EIPiGraph Number of branch points

nodes number ' " nodes number

Figure 7. EIPiGraph forgets the initialization. A. Two constructions of graphs. Right: combined
construction (MST+EIPiGraph) produce result similar to pure EIPiGraph despite it started from quite a
different (overbranching and non-smooth) MST graph (left). B. Analysis how fast EIPiGraph forgets the
initialization. Dynamics of scores for each step of EIPiGraph processing which started from MST graph
with 30 nodes and finishing on graph with 40 nodes. X axis, number of nodes. One can see that in 5 steps
scores stabilize. EIPiGraph forgets the initialization in 5 steps (for that dataset). C. Demonstration
how fast EIPiGraph forgets the initialization. Results for MST, EIPiGraph and several combinations of
MST+EIPiGraph differing by node number of MST intializing EIPiGraph. X-axis, number of nodes in
constructed graph. Y-axis is number of branching points in constructed graph. Plots with different
colors, different algorithms: gray—pure EIPiGraph (without MST initialization); violet—pure MST;
yellow—combined: MST-25 nodes followed by EIPiGraph; green—combined: MST-30-nodes followed
by EIPiGraph, etc. As one can see especially for green, yellow, red plots, they start from nearby violet
plot (MST) quickly comes to around gray plot (pure EIPiGraph), thus demonstrating that EIPiGraph
initialized by MST quickly forgets the initialization and shows results similar to pure EIPiGraph
(sometimes even slightly better since for example several lines goes under gray line). Each point of the
plot is obtained by averaging results of 100 simulations on random datasets of binary tree like shape
with 3 branching points and 7 edges. Results for other simulations are similar.
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2.5. Tuning Parameters of GBDA Algorithms Using Unsupervised Clustering Quality Scores

Let us demonstrate that the proposed approach to choose best parameters of a GBDA algorithm
based on unsupervised clustering scores (silhouette, Calinski-Harabasz, Davies-Bouldin) provides
reasonable results in certain situations. Once again, let us consider a simulated dataset with clear
ground truth graph structure (e.g., a binary tree with 3 branching points), random normal noise with
standard deviation 5 is added, the dataset is built in 20 dimensional space, the direction of each edge is
chosen randomly.

The MST-based GBDA algorithm is applied, and the constructed tree is compared with ground
truth graph using the adjusted Rand index-based score and also scored by unsupervised score
(not requiring the ground truth). MST construction depends on the node number parameter. One can
see (Figure 8) that for all unsupervised scores the range 20-40 of the parameter gives almost highest
scores, thus that range is quite a good choice of the parameter. It is quite in agreement with supervised
score based on adjusted Rand index - which achieves it maximum for 40 nodes. And also we can check
that number of branching points is 3 at this range as for the ground truth. Thus we see unsupervised
scores provide reasonable suggestion for the choice of the parameter. The only thing we should
mention is that we see some incorrect maximum for the unsupervised scores for very small value of
parameter, e.g., 6 for silhouette, however that maximum is not stable. So to conclude one should use
unsupervised scores with certain care, not just taking the maximum value, but checking its stability
and if possible some subject area (e.g., biological) meaning.

.___,__a—-—-—'—_'_'_‘_—‘————__,__t —+— adjusted_rand
08 — _'"-———_.,__*___ silhouette
- 7__\_\_\-\_\-‘-\_“—0-_
—
o6 /\/ T ""‘“-..\__h
F -
.'I
04 f
02 |
|
20 40 &0 B0 100
nodes number in graph
Data normalized - divided by maximum
10 ———
e
. e
e ---.-*_(_f{ //
—— -
06 P—— //
(.--\_‘ I S — =
04 || _____,,,/
| - _-r/
| -
02 i - - et —— n_branch pnits
I /‘ alinski_harabasz
00 f = davies_bouldin
20 40 &0 B0 100

nodes number in graph

Figure 8. Agreement of supervised and unsupervised scores (silhouette, Calinski-Harabasz,
Davies-Bouldin). For datasets with a clear ground truth graph structure (binary tree with 3 branching
points) MST trajectory inference algorithm is applied. Constructed tree is compared with ground truth
with adjusted Rand index based score and also scored by unsupervised score (not requiring the ground
truth). (By the methodologies described above). One can see that all methods suggest that choice of
parameter in the 20-40 nodes is reasonable choice. So supervised and unsupervised scores agree at
this example. Thus unsupervised scores may provide an indication how to choose parameters for
GBDA algorithms. Each point of the plot obtained by averaging scores on hundred simulated datasets.
See notebook “SimulationUnsupervisedScoresForT1” for further details.
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2.6. Single Cell Data Analysis Example

14 of 21

Cellular trajectory inference for single cell RNA sequencing data is important research direction
in modern bioinformatics [15,16]. Since it can provide biological insights into important processes:
cell differentiation, cell cycle and development of pathology like cancer. In the present section we
demonstrate our approach on a single cell transcriptomic dataset from [31]. The data describes
24,748 gene expressions for 447 cells from liver of mouse embryos. The process under consideration is
differentiation of bi-potential hepatoblasts into hepatocytes and cholangiocytes (two main different
cell types in the liver). Figure 9A shows PCA projection and indicates regions for these three cell types.

PCA projection of gene expressions for 447 cells
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Figure 9. (A) PCA projections for single cell RNA data. Differentiation of bi-potential hepatoblasts
into hepatocytes and cholangiocytes for mouse embryos. Color corresponds to different timestamps.
(B) Trajectory inference from a single cell transcriptomic dataset using MST approach. The method
produces biologically correct trajectories for a much narrower range of parameters than EIPiGraph
(see next figure). Already for 10 nodes biologically incorrect branching appear. This threshold can be
seen from the drop of unsupervised metrics like silhouette metric (see figures below). (C) Trajectory
inference from a single cell transcriptomic dataset using EIPiGraph approach. The method produces
biologically correct trajectories for much wider range of parameters than MST. Only for 23 nodes
biologically incorrect branching appears. That threshold can be seen from drop of unsupervised

metrics like silhouette metric (see next figures).

The main goal here is to confirm conclusions made in the previous sections from the analysis of

synthetic data by consideration of a real single-cell example.
Namely:

1.  EIPiGraph demonstrates much higher stability than MST and choice of main parameter

(node number) can be made more easily and reliably.
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2. Unsupervised metrics for trajectories introduced above (based on silhouette, Calinski-Harabas,
Davies-Bouldin clustering scores) provides insights for the choice of parameters for trajectory
inference methods.

3. Heuristic for MST, to take number of nodes equal to approximately square root of number of
datapoints fails significantly for the present example. It would give 21 nodes, however trajectories
of MST with 21 nodes show significant “overbranching” (see figures below). Reasonable node
numbers for MST is 9 or a little below, but 10 and above leads to biologically incorrect branching.

In order to make these conclusions we constructed approximating graphs using MST and
EIPiGraph approaches for different node numbers and calculated the unsupervised metrics proposed
above. Both methods were applied after PCA-based linear dimensionality reduction to 50 dimensions
since such use of PCA is standard preprocessing for single cell datasets. Biological background suggests
that the correct trajectory should have exactly one branching point, since the process is differentiation
of bi-potential hepatoblasts into two cell types (hepatocytes and cholangiocytes). Thus trajectories
with large number of branching points are biologically incorrect. Figure 9B,C show that EIPiGraph
method produces reasonable trajectories for 5-22 nodes, while MST only for 5-9 nodes, so EIPiGraph
is much more stable. Using two unsupervised metrics (silhouette and Davies-Bouldin) we can very
clearly distinguish the threshold node number 23, where the overbranching for EIPiGraph first appears
(Figure 9B). Indeed these metrics abruply jumps at this point—see Figure 10B. Thus confirming
our approach to use unsupervised metrics to tune parameters. (From Calinski-Harabas score it is
less evident in that example). Using unsupervised scores for MST trajectories one can also get an
indication for the correct values of the node number parameter, the threshold value is 10 nodes, where
biologically incorrect branch first appears. While that indication is not fully perfect nevertheless one
can see significant drop of scores beyond 9 nodes (Figure 10A). Moreover at 9 nodes there is local
extremum for all scores, which is standard indication for parameters choice.
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Figure 10. Unsupervised metrics for trajectories inferred by MST and EIPiGraph for a single cell dataset.
X-axis, node number of the trajectory. (A) Application of MST-based approach. The metrics have
extremum for 9 nodes, that point is indeed a good choice for the node number parameter. For the
number of nodes more than 10, the metrics clearly indicate worse clustering quality, which corresponds
to the appearance of biologically incorrect branching for 10 nodes (see previous figures). (B) EIPiGraph.
The metrics are quite stable in wide range of node values. The clear drop of silhouette at 23 nodes
corresponds to appearance of biologically incorrect branching (see previous figures). Thus it confirms
that metrics can be used as an indication for the choice of parameters.
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3. Discussion

In the paper we proposed an improvement for benchmarking and parameter tuning for
graph-based data approximation methods. The principle of the approach is in transferring the
methods developed for comparing the clustering results to the trajectory inference area. We performed
multiple simulations and tests to argue that the approach is efficient. In particular we made a detailed
comparison of GBDA methods based on MST (minimal spanning tree) and EIPiGraph (Elastic Principal
Graph). We conclude that EIPiGraph is much more stable and parameter tuning can be made more
easily and reliably for it in the absence of the ground truth knowledge.

Let us remark that the methods of graph-based data approximation are applicable in the
data spaces of arbitrary ambient dimensionality. The examples used in this article to define and
illustrate the suggested approach are two-dimensional but the methods can be applied also in higher
dimensions without any modifications, as demonstrated in the analysis of a real-life single cell dataset.
Nevertheless, extracting trajectories from data point clouds assumes that the underlying point density
function is characterized by the existence of continuous one-dimensional “ridges” which can diverge
from or converge to each other in the data space. They can also connect local density peaks. In this
case, the appropriate data approximation methods (such as EIPiGraph) look for principal curves and,
more generally, branching principal trajectories, along which the data points are condensed. In the
case when the data point clouds are not characterized by such a structure, when the local intrinsic
dimension is much larger than one, extracting trajectories using principal graphs or any other types
of methods is meaningless and leads to arbitrarily defined graphs, which are pointless to compare.
Evaluating the general applicability of the graph-based data approximation methodology will make a
subject of our future work.

The methodology suggested in this study should find applications in such fields as
trajectory-based analysis of single cell datasets, defining dynamical phenotypes in large scale
observational data (e.g., clinical data), learning the patterns of motion of complex objects
(such as human), skeletonization of images and other fields where large multi-dimensional data point
clouds are characterized by a complex intrinsic organization.

4. Materials and Methods

4.1. Minimal Spanning Tree-Based Data Approximation Method

Minimal Spanning Tree (MST) for a graph is a tree-like subgraph which contains all nodes of
the original graph. For a weighted graph one requires minimality of the tree in the sense that sum
of weights on the edges of a tree is minimal. MST is one of the central concepts and tools in graph
theory [11]. It is widely used in various trajectory inference methods such as Waterfall [27], TSCAN [28],
Slingshot [29]. Let us remind the main ideas, provide simple implementation and examples.

Essential steps for many approaches are the following steps:

1. Split the dataset to certain pieces (for example, by applying K-means clustering for some K).
Construct kNN (k-nearest neighbour) graph with nodes at the centers of clusters.
3. Compute an MST (minimal spanning tree) of the kNN graph computed as described above.

N

There are various modifications around these ideas used by different authors. For our purposes
we will consider just the simplest algorithm which directly implements the steps above. The main
parameter of the algorithm, number of nodes in the graph, which is the same as number of clusters for
K-means clustering. Another parameter is the choice of “k” for the kNN graph, but results does not
essentially depend on a large enough “k”, so if computation speed is not an issue one may take the
maximal possible “k” equal to the number of input points, i.e., just to consider the fully connected
weighted graph. We provide notebooks with implementations of this algorithm in Python.

Figure 11A illustrates the work of the algorithm. One can see that it works reasonably well,
however, not so perfect even on examples which might be simple even for a visual-based analysis.
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There is evident role of the principal parameter, the number of nodes in the graph. If it is too small,
then it is impossible to catch the branching structure of the dataset. If it is too large then the algorithm
“overbranches”, i.e., it creates branches which do not correspond to the ground truth. Correct choice of
the node number parameter seems to be a subtle point for MST-based method.

MST trajectories with 20 nodes MST trajectories with 40 nodes MST trajectories with 60 nodes MST trajectories with 100 nodes

A S T 7S 7 2 S

-100 -100 -100 -100
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Trajectories by EIPiGraph 20 nodes Trajectories by EIPiGraph 40 nodes Trajectories by EIPiGraph 60 nodes Trajectories by EIPiGraph 100 nodes

Figure 11. Examples of MST and EIPiGraph trajectories inference with different number of
nodes. Overestimating node number would cause overbranching, creating branches which does
not correspond to the ground truth. On the other hand underestimating would not allow to catch
complex enough branching structure. Thus the correct choice of the number of nodes is important.
(A) Application of MST-based approach. (B) EIPiGraph produces correct trajectories for much wider
range of main input parameter (node number) than MST.

4.2. Method of Elastic Principal Graphs (EIPiGraph)

Elastic principal graphs are graph-based data approximators [3,6,10,12]. We provide its brief
description here for self-contained reading. A detailed description of EIPiGraph and related elastic
principal graph approaches is available elsewhere [32].

The graph nodes are embedded into the space of the data, minimizing the mean squared distance
(MSD) to the data points, similarly to the k-means clustering algorithm. However, unlike unstructured
k-means, the edges connecting the nodes are used to define the elastic energy term. This term is used
to create penalties for edge stretching and bending of segments. To find the optimal graph structure,
EIPiGraph uses topological grammar (or, graph grammar) approach and gradient descent-based
optimization of the graph topology, in the set of graph topologies which can be generated by a limited
number of graph grammar operations.

Formally, elastic principal graph is an undirected graph with a set of nodes V = {V;} and a
set of edges E = {E'}. The set of nodes V is embedded in the multidimensional space. In order to
denote the position of the node in the data space, we will use the notation ¢(V;), where ¢(V;) is a map
¢ : V. — R™. The optimization algorithm search for such ¢() that the sum of the data approximation
term and the graph elastic energy is minimized. The optimization functional is defined as:

U?(X,G) = MSD?(X, V) + U%(G) + U%(G), 1)
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where X
MSD(X, V) = 5 ¥ min([1X; = ¢(Vo)| - B3, @
i=1
. . . 2
UL(G) = Y Apenatizea () ($(E'(0)) = $(E'(1))) ", ©

Ei

u?(G) = Si(0 1 el Si(i 2 4
R( )—ﬂ; ol ())*m Y. ¢(8)] ., 4)

i=1

Apenatizea (E') = A+ o (max(2, deg(E'(0)), deg (E'(1))) — 2), ©)

where | V| is the number of elements in set V, X = {X;},i = 1,...,|X] is the set of data points, E?(0)
and E(1) denote the two nodes of a graph edge E', star S/ is a subgraph with central node S/(0) and
several (more than 1) connected nodes (leaves), S/(0),...,S/ (k) denote the nodes of a star S/ in the
graph (where S/(0) is the central node, to which all other nodes are connected), deg(V;) is a function
returning the order k of the star with the central node V;, and P(i) = argmin;_; 1y 1X; —¢(Vj)||*isa
data point partitioning function associating each data point X; to the closest graph node Vp;). Ro, A, i,
and « are parameters having the following meaning: Ry is the trimming radius such that points further
than Ry from any node do not contribute to the optimization of the graph, A is the edge stretching
elasticity modulo regularizing the total length of the graph edges and making their distribution close
to equidistant in the multidimensional space, u is the star bending elasticity modulo controlling
the deviation of the graph stars from harmonic configurations (for any star S/, if the embedding of
its central node coincides with the mean of its leaves embedding, the configuration is considered
harmonic). « is a coefficient of penalty for the topological complexity of the resulting graph.

Given a set of data points and a principal graph with nodes embedded into the original data space,
a local minimum of U¢(X, G) can found by applying a splitting-type algorithm. At each iteration
given the initial guess of ¢, the partitioning P(i) is computed, and then, given the P(i), U¢(X, G) is
minimized by finding new node positions in the data space. The convergence of this algorithm is
proven [12,33].

Topological grammar rules define a set of possible transformations of the current graph topology.
Each transformation produces a new graph topology which is fit to the data. The topology possessing
the minimal energy U¢(X, G) after fitting the candidate graph structures to the data is chosen as the
locally best with a given number of nodes. Topological grammars are iteratively applied to the selected
graph until given conditions are met (e.g., a fixed number of grammar application, or a given number
of nodes is reached, or the required approximation accuracy MSD? (X, V) is achieved). The graph
learning process is reminiscent to a gradient descent-based optimization in the space of all possible
graph structures achievable by applying a set of topological grammar rules (e.g., in the set of all
possible trees).

One of the simplest graph grammars consists of two operations ‘add a node to node’ and ‘bisect
an edge’, which generates a discrete space of tree-like graphs [32]. The resulting elastic principal
graphs are called elastic principal trees in this case.

Any vector in the dataspace x — not necessary belonging to the dataset X — can be projected
onto the tree and mapped onto one of the nodes or an edge in between two nodes. The projection is
achieved by finding the closest point on the principal graph as a piecewise linear manifold, composed
of nodes and edges as linear segments connecting nodes.

The EIPiGraph package implemented in Python is available from https://github.com/sysbio-
curie/EIPiGraph.P. EIPigraph serves as the algorithmic core for several methods of cellular trajectory
inference [20,30] and for quantifying trajectories from synchronic clinical data [34].

In the examples used in this article, the principal tree inference with EIPiGraph was performed
using the following parameters: Ry = oo, & = 0.01, » = 0.1, A = 0.01.


https://github.com/sysbio-curie/ElPiGraph.P
https://github.com/sysbio-curie/ElPiGraph.P
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4.3. Benchmark Implementation

The paper is supplemented with Python notebooks which provide relevant code see https:
//github.com/chervov/MSTvsET. For better reader convenience we also stored notebooks and
single-cell data at Kaggle environment https:/ /www.kaggle.com/alexandervc/trajectory-inference-
single-cell-rna-seq/notebooks. On Kaggle one can not only store code, but also run code, store
datasets, version control and various social networking possibilities, comment and discuss code,
easy forking notebooks etc. Notebook “GraphSegmentation and DataClusteringByGraphSegment”
provides main functions from our package “find branches”, splitting the graph into segments and
“branch labler”—clustering dataset by graph segments. Used examples are given there. Notebook
mostly corresponds to Section 2.1. Notebook “Trajectories for GSE90047” provides analysis of single
cell data used in the paper. There are also several other notebooks devoted to MST and EIPiGraph
trajectory inference algorithms as well as their benchmarking.

Author Contributions: Conceptualization, A.C. and A.Z.; methodology and software, all authors; formal analysis
and investigation and data curation, A.C.; writing—original draft preparation, A.C.; writing—review and editing,
all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been partially supported by Agence Nationale de la Recherche in the program
Investissements d’Avenir (project No. ANR-19-P3IA-0001; PRAIRIE 3IA Institute), by Ministry of Science and
Higher Education of Russian Federation (agreement No. 075-15-2020-808) and by the Association Science et
Technologie, the Institut de Recherches Internationales Servier and the doctoral school Frontieres de 1'Innovation
en Recherche et Education Programme Bettencourt.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

PG Principal graph

SOM Self-Organizing Map

kNN k-nearest neighbours

GBDA Graph-based data approximations
TI Trajectory inference

MST Minimal spanning tree

PAGA Partition-based graph abstraction

ElPiGraph Elastic Principal Graph
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